
Paired long- and short-read
metagenomics of cheese rind
microbial communities at
multiple time points

How do you approach getting a microbiome set up in a new lab?

We’re sharing protocols for how we collected, stocked, and

sequenced a set of cheese rind microbiomes and generated a

high-quality metagenomics resource for future computational

studies.

Purpose
This collection of high-quality short- and long-read, time series sequencing data

sets should serve as a valuable community resource for bridging observational and

experimental work, for developing metagenomic analysis pipelines, and for

understanding cheese rind microbial communities.

Data from this pub, including raw reads and assemblies, is accessible in
the European Nucleotide Archive (ENA). Taxonomic and functional analysis
is available on MGnify.

Step-by-step protocols are available as a collection on protocols.io.

Code and data tables used to produce visualizations are available in this
GitHub repository.

!
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We’ve put this effort on ice! 🧊

Background and goals
One of the biggest challenges in coupling community-level observations to

mechanistic understanding of microbiomes is figuring out how to bring microbial

communities into the lab. Here, we demonstrate an example of how we went

about “onboarding” a new microbial community at Arcadia. Our goal was to

proactively consider aspects of a new community that could be informative and to

stock samples so that future work would not be hindered by a lack of access to

material. We decided that in addition to generating glycerol stocks of the

communities for future community growth experiments or microbial isolation, it

would be helpful to stock samples for future mass spectrometry, spatial imaging,

viral DNA extraction and phage isolation, proximity ligation Hi-C libraries,

metagenomics, and metatranscriptomics.

Based on in-house expertise, we selected five microbial communities growing on

washed-rind cheeses as the first communities to onboard at Arcadia (Figure 1).

Cheese rinds are a validated and stable experimental platform for microbial

community research [1][2][3][4]. As part of our initial characterization of these

communities, we also produced high-quality short- and long-read metagenomic

time series sequencing data and assemblies, including whole-genome

amplification sequencing for some samples. Comparison of native DNA to

amplified DNA can facilitate discovery of DNA modifications [5].

Alongside this pub, we have provided a collection of protocols for onboarding this

microbial community, including protocols for sample collection, DNA extraction,

and virome harvest. We also generated glycerol stocks for all of the cheeses used

in these experiments that we’d be happy to make available to others for

downstream uses like isolating individual strains or building culture collections.

While we have shifted direction and no longer plan to use these data sets for the

time being, we hope that these protocols will be helpful to others who want to

bring a microbial community into the lab. The data sets should be useful for
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metagenomic data mining and development of metagenomic analysis software,

investigating DNA modifications, and learning about microbial communities of

cheese.

Figure 1. The five washed-rind cheeses that we sampled for this study.

Cheese names are abbreviated for simplicity. W: weeks, M: months

The approach
Briefly, we extracted DNA from five cheese rind communities, including their viral

components (Figure 1). We then used short-read Illumina sequencing and long-

read Nanopore sequencing (with and without whole-genome amplification) to

characterize the microbes present in the full communities. Long-read sequencing

can improve the quality of metagenomic assemblies. We sequenced multiple time

points to capture the succession of microbes throughout the aging process. We
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then used the long-read sequencing data to predict circular contigs in the

metagenomic assemblies. See detailed methods below or skip to the results.

Sampling and DNA extraction
We sampled rinds from five distinct washed-rind cheeses aged in a cave facility in

Vermont, USA as described in our “Harvesting and stocking cheese rind

community samples” protocol, available on protocols.io. For simplicity, we have

assigned each cheese an abbreviated name (Table 1). We selected three different

time points in aging from each cheese, and used a subset of those samples for

metagenomic sequencing. We made glycerol stocks for all the cheeses for

possible downstream use for culture collection, as described in the protocol. WH

2M and WH 2M Hous are the same cheese style but were separate wheels that we

sampled at different times. We performed DNA extraction from these samples as

described in our “High-molecular-weight DNA extraction from cheese rind

microbial communities” protocol.

Cheese Age of sequenced samples Full aging time of cheese

El 2 weeks, 1 month, 3 months 2–3 months

OM 2 weeks, 1 month, 2 months 2.5–3.5 months

WI 3 weeks 1.5–3 months

AL 4 months 8–12 months

WH 1 month, 2 months, 4 months 3–6 months

WH Hous 2 months 3–6 months

Table 1. Age of sequenced samples for the five cheeses.

Virome harvesting and DNA extraction
In parallel to harvesting and analyzing the full cheese rind microbial community,

we also developed protocols to specifically harvest and analyze the viral

component (the virome). We made concentrated virome extracts from the cheese

rind samples, from which we extracted DNA and made glycerol freezer stocks. For

full, step-by-step instructions, see our “Virome harvesting from cheese
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microbiomes” and “Virome DNA extraction with phenol-chloroform” protocols on

protocols.io.

ONT long-read sequencing
We size-selected DNA samples from AL 4M, WH 2M, WH 2M Hous using this

protocol from Oxford Nanopore Technologies (ONT) prior to ONT library

preparation to enrich for fragments > 2 kb. Note that you need to make a free

Nanopore Community account to view ONT protocols. We size-selected DNA

samples from OM 2W, OM 8W, EL 2W, EL 12W, WH 1M, WH 4M using this protocol

from ONT prior to ONT library preparation to enrich for fragments > 10 kb. For

whole-genome amplified libraries (OM 4W WGA, EL 4W WGA, WH 2M WGA), we

used the same DNA sample we used for native sequencing as the input into this

protocol from ONT. We used 20 ng of DNA as input for amplification. For AL 4M,

WH 2M, WH 2M Hous, OM 4W, EL 4W, and WI 3W, we loaded 10 fmol of library,

assuming a size of 35 kb. For OM 2W, OM 8W, EL 2W, EL 12W, WH 1M, WH 4M,

OM 4W WGA, WH 2M WGA, El 4W WGA, we loaded 10 fmol of library onto the flow

cell, assuming 10 kb average length. We prepared libraries for OM 2W, EL 2W, and

WH 1M with SQK-LSK114 and ran them on R10.4.1 flow cells (one full cell per

sample); we prepared all other libraries with SQK-LSK112 and ran them on R10.4

flow cells (one full cell per sample). We sequenced until pores no longer showed

activity (~72 h, although the majority of pores were no longer active after 40 h).

We used the GridIon for sequencing and live base calling using the super-

accurate base calling configuration and the following software versions: MinKNOW

22.08.6, Bream 7.2.8, Configuration 5.2.5, Guppy 6.2.7, and MinKNOW Core 5.2.2.

We set the minimum read length to 1,000 bp and toggled read splitting on. For a

summary of how we sequenced DNA from which cheeses, see Table 2 below.

Illumina short-read sequencing
We sent the same DNA extractions that we used as input for size selection prior

to ONT sequencing to Novogene for Illumina library preparation and sequencing.

We requested 16 G of raw data per sample. Novogene performed paired-end 150

bp sequencing on an Illumina NovaSeq 6000. The cheese samples from which

we Illumina-sequenced DNA are summarized in Table 2.
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Native ONT WGA ONT Illumina

OM 2W x x

OM 4W x x x

OM 8W x x

EL 2W x x

EL 4W x x x

EL 12W x x

WH 1M x x

WH 2M x x x

WH 4M x x

AL 4M x

WH 2M Hous x

WI 3W x

Table 2. Summary of metagenomic sequencing work.

Each column represents a single DNA extraction sample. Rows represent sequencing techniques
and an ‘x’ means we applied this technique to the sample in this column. The final two characters
of the sample name designate the aging time of the cheese (W: weeks, M: months). ONT: Oxford
Nanopore Technologies, WGA: whole-genome amplification. WH 2M and WH 2M Hous are samples
from the same cheese style at approximately the same aging time point, but were separate wheels
that we sampled at different times.

Metagenomic assembly of long-read sequencing
data
We concatenated all FASTQ files with “passed” reads (quality score > 10) together

and trimmed adapters using Porechop_ABI 0.5.1 [6] and Python 3.8. We put

trimmed reads into metaFlye 2.9.1-b1780 [7] using the --nano-hq  and --meta

flags. We polished the assemblies with medaka 1.7.2 using BCFtools 1.14, bgzip

1.14, minimap2 2.17, SAMtools 1.14, and tabix 1.14. We obtained assembly statistics

from the metaFlye output log and obtained read statistics from the ONT reports

produced during sequencing.
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Metagenomic assembly of short-read sequencing
data
For each sample, we quality-filtered Illumina paired reads with fastp

0.23.2 [8] using the --cut_front --cut_tail --cut_mean_quality 15 -q

15  and keep_phix false  flags. We assembled filtered reads with metaSPAdes

3.15.3/Python 3.9.6. We obtained assembly statistics using the QUAST web

interface [9] and Novogene provided read statistics.

Sourmash and sourmashconsumr analysis
We used sourmash version 4.6.1 to compare all of the metagenomic assemblies

and to look at the taxonomic composition of the WH, OM, and EL Illumina

metagenomic time-series data [10]. We used the sourmash sketch dna

command with -p  flags k=31,scaled=1000  to make signatures for all

metagenomic assemblies. We then used the sourmash compare  command to

make a similarity matrix for the assemblies. We used the sourmash sketch dna

command with -p  flags k=31,scaled=1000,abund  to make signatures for

paired-end Illumina read files. We used the sourmash gather  command with -k

31  and --scaled 1000  options for each of the nine signatures. For sourmash

gather , we used the pre-prepared sourmash GenBank genomes from March

2022 k31 databases for viruses, bacteria, archaea, protozoa, and fungi, plus the

custom cheesegenomes-k31-scaled1k  database. We then used the sourmash

tax annotate  command on the resulting gather files with the taxonomy sheets

for these six databases. This resulted in nine sr.with-lineages.csv  files. We

then used the sourmashconsumr package [11] to make time-series alluvial plots.

Data deposition
We deposited raw Illumina and Nanopore reads (FAST5 and FASTQ files) and their

corresponding metagenomic assemblies in the ENA (project PRJEB58160). We

also requested MGnify analysis for the deposited data through the MGnify

webpage. The resulting analysis is available here (study MGYS00006097).
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The results
To generate reference metagenomic data sets for this microbiome, we generated

separate assemblies based on long- or short-read data.

Figure 2. Depth of Illumina sequencing per sample.
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Figure 3. ONT long-read sequencing statistics.

(A) Number of reads collected per sample.

(B) N50 of ONT reads per sample.

WGA: Whole-genome amplification. “WH 2M” and “WH 2M Hous” are samples from the same
cheese style at approximately the same aging time point, but were separate wheels that we
sampled at different times.

For Illumina short-read 150 bp PE sequencing, the average sequencing depth was

119 million reads per sample (Figure 2). For ONT long-read sequencing, the

average depth was around 1.2 million reads per sample, with an average N50 of

5.8 kb (Figure 3).
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Figure 4. Metagenomic assembly statistics from short-read assemblies.

(A) Total length of the assembly per sample.

(B) Number of contigs per sample.

(C) Longest contig per sample.

(D) N50 of contigs per sample.

The Illumina metagenomic assemblies were an average of 1.5 times larger than

the GridIon assemblies of the same DNA sample, with 7.5 times the number of

contigs (Figure 4 and Figure 5). The N50 of the Illumina assemblies was 19.6 kb

on average, whereas the N50 of the long-read assemblies was 333.8 kb. For long-

read sequencing, the longest assembled contigs were an average of 3.7 Mb, about

the size of a complete bacterial genome, while the longest Illumina contigs were

about 0.6 Mb on average (Figure 4 and Figure 5).
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Figure 5. Metagenomic assembly statistics from long-read assemblies.

(A) Total length of the assembly per sample.

(B) Number of contigs per sample.

(C) Longest contig per sample.

(D) N50 of contigs per sample.

We assembled an average of 116 circular contigs per sample from the long-read

data, which may represent complete bacterial chromosomes, viruses, or plasmids

(Figure 6, Table 3). As expected, our data suggest that using long reads

dramatically improved assembly contiguity.
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Figure 6. Number of circular contigs per sample.
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< 1000

bp

1000–10000

bp

10000–100000

bp

100000 bp –1

Mbp

1

Mbp

AL 4M 10 81 39 3 0

EL 2W 2 58 18 1 3

EL 4W 1 34 19 2 3

EL 4W

WGA

2 40 35 1 1

EL 12W 4 63 44 3 2

OM 2W 5 43 24 2 2

OM 4W 5 47 14 2 2

OM 4W

WGA

3 28 41 0 0

OM 8W 0 51 41 2 4

WH 1M 14 129 82 7 2

WH 2M 21 151 39 4 0

WH 2M

WGA

2 49 64 4 1

WH 4M 1 90 38 1 0

WH 2M

Hous

18 144 52 2 1

WI 3W 5 20 12 1 3

Table 3. Size distribution of circular contigs in long-read assemblies.
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Figure 7. MDS ordination plot based on the similarity matrix produced by sourmash
comparison of the assemblies.

Since the cheeses sampled all belong to a similar rind style and are aged in the

same facility, we next applied a min-hash-based comparison pipeline to the short-

read data to understand how similar these data sets are. Sourmash comparison of

the time series assemblies showed that the microbial communities from OM and

EL cluster closely together, while WH appears distinct (Figure 7, green points).

Based on short-read data, the OM and EL communities appear to be dominated

by Psychrobacter and Pseudoalteromonas spp. throughout the aging process.

Actinobacteria and Halomonas spp. more heavily dominate WH communities. A

larger fraction of the WH metagenome is unclassified compared to the other two

communities (Figure 8). We suspect this may be due to a higher fraction of fungal

genomes in WH that are not well represented in databases.
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Figure 8. Change in abundance of microbes over the aging process based on sourmash
analysis of short-read sequencing data.
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Note that colors correspond to different microbes across the three panels.

Key takeaways
Cheese rinds are semi-complex microbial communities containing bacteria,

viruses, and fungi. We used both long- and short-read sequencing to survey the

microbial communities of five different cheeses across multiple time points.

Long-read sequencing lets us assemble contigs the length of bacterial

chromosomes. These data sets can serve as resources for benchmarking

computational workflows and guiding computational methods development at

Arcadia and beyond.

Please reuse our data!
We sequenced the same communities using multiple approaches: short-read

Illumina sequencing, native DNA ONT sequencing, and whole-genome amplified

ONT sequencing. These paired data sets are a resource to evaluate how different

sequencing approaches differentially impact recovery of microbial community

members [12], an important consideration when choosing a sequencing

methodology.

We also generated paired native DNA and whole-genome amplified (WGA) ONT

data sets as a resource to facilitate DNA modification discovery (for

example, [5] and [13]). DNA modification identification can guide genome

engineering efforts of bacteria [14][15], as well as the discovery of new DNA

chemistries in microbial communities. As current de novo modification prediction

tools for ONT data are designed for ONT R9 chemistry, which will be fully

discontinued this year, we hope that the paired WGA:native R10 chemistry data

that we’ve provided will be useful for the development of updated tools. FAST5

files required for this type of analysis are available in the European Nucleotide

Archive (ENA).
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We encourage others interested in microbial communities and/or DNA

modification to explore these data sets!

Next steps
We’re not planning to further analyze this data in the near-to-medium-term, but

we encourage others to make good use of the paired data sets and stocked

samples.

We have also done HiPR-FISH spatial imaging [16] on the same cheese samples

sequenced here. Be on the lookout for an upcoming pub presenting this data!

Acknowledgements

Thank you to Julia Pringle and Jasper Hill Farm for organizing the collection of

cheese samples from the cheese aging facility.

Contributors (A–Z)

Adair L. Borges: Conceptualization, Critical Feedback, Methodology

Rachel J. Dutton: Conceptualization, Supervision

Megan L. Hochstrasser: Editing, Visualization

Elizabeth A. McDaniel: Formal Analysis, Validation

Taylor Reiter: Critical Feedback, Formal Analysis, Validation

Emily C.P. Weiss: Conceptualization, Formal Analysis, Investigation, Methodology,

Visualization, Writing

References

1. Wolfe B, Button J, Santarelli M, Dutton R. (2014). Cheese Rind Communities Provide

Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity.

https://doi.org/10.1016/j.cell.2014.05.041

17

https://doi.org/10.1038/s41586-020-2983-4
https://doi.org/10.1016/j.cell.2014.05.041


2. Morin M, Pierce EC, Dutton RJ. (2018). Changes in the genetic requirements for

microbial interactions with increasing community complexity.

https://doi.org/10.7554/elife.37072

3. Zhang Y, Kastman EK, Guasto JS, Wolfe BE. (2018). Fungal networks shape dynamics

of bacterial dispersal and community assembly in cheese rind microbiomes.

https://doi.org/10.1038/s41467-017-02522-z

4. Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE,

Sanchez LM, Dutton RJ. (2020). Bacterial–fungal interactions revealed by genome-

wide analysis of bacterial mutant fitness. https://doi.org/10.1038/s41564-020-

00800-z

5. Tourancheau A, Mead EA, Zhang X-S, Fang G. (2021). Discovering multiple types of

DNA methylation from bacteria and microbiome using nanopore sequencing.

https://doi.org/10.1038/s41592-021-01109-3

6. Bonenfant Q, Noé L, Touzet H. (2022). Porechop_ABI: discovering unknown adapters

in ONT sequencing reads for downstream trimming.

https://doi.org/10.1101/2022.07.07.499093

7. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J,

Polevikov E, Smith TPL, Pevzner PA. (2020). metaFlye: scalable long-read

metagenome assembly using repeat graphs. https://doi.org/10.1038/s41592-020-

00971-x

8. Chen S, Zhou Y, Chen Y, Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ

preprocessor. https://doi.org/10.1093/bioinformatics/bty560

9. Mikheenko A, Saveliev V, Gurevich A. (2015). MetaQUAST: evaluation of metagenome

assemblies. https://doi.org/10.1093/bioinformatics/btv697

10. Titus Brown C, Irber L. (2016). sourmash: a library for MinHash sketching of DNA.

https://doi.org/10.21105/joss.00027

11. Chou S, Reiter T. (2023). A new R package, sourmashconsumr, for analyzing and

visualizing the outputs of sourmash. https://doi.org/10.57844/arcadia-1896-ke33

12. Cook R, Brown N, Rihtman B, Michniewski S, Redgwell T, Clokie M, Stekel DJ, Chen Y,

Scanlan DJ, Hobman JL, Nelson A, Jones MA, Smith D, Millard A. (2023). The long

and short of it: Benchmarking viromics using Illumina, Nanopore and PacBio

sequencing technologies. https://doi.org/10.1101/2023.02.12.527533

13. Kot W, Olsen NS, Nielsen TK, Hutinet G, de Crécy-Lagard V, Cui L, Dedon PC,

Carstens AB, Moineau S, Swairjo MA, Hansen LH. (2020). Detection of preQ0

deazaguanine modifications in bacteriophage CAjan DNA using Nanopore

18

https://doi.org/10.7554/elife.37072
https://doi.org/10.1038/s41467-017-02522-z
https://doi.org/10.1038/s41564-020-00800-z
https://doi.org/10.1038/s41564-020-00800-z
https://doi.org/10.1038/s41592-021-01109-3
https://doi.org/10.1101/2022.07.07.499093
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.21105/joss.00027
https://doi.org/10.57844/arcadia-1896-ke33
https://doi.org/10.1101/2023.02.12.527533


sequencing reveals same hypermodification at two distinct DNA motifs.

https://doi.org/10.1093/nar/gkaa735

14. Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM. (2019). Rational development of

transformation in Clostridium thermocellum ATCC 27405 via complete methylome

analysis and evasion of native restriction–modification systems.

https://doi.org/10.1007/s10295-019-02218-x

15. Johnston CD, Cotton SL, Rittling SR, Starr JR, Borisy GG, Dewhirst FE, Lemon KP.

(2019). Systematic evasion of the restriction-modification barrier in bacteria.

https://doi.org/10.1073/pnas.1820256116

16. Shi H, Shi Q, Grodner B, Lenz JS, Zipfel WR, Brito IL, De Vlaminck I. (2020). Highly

multiplexed spatial mapping of microbial communities.

https://doi.org/10.1038/s41586-020-2983-4

19

https://doi.org/10.1093/nar/gkaa735
https://doi.org/10.1007/s10295-019-02218-x
https://doi.org/10.1073/pnas.1820256116
https://doi.org/10.1038/s41586-020-2983-4

