Paired long- and short-read
metagenomics of cheese rind
microbial communities at
multiple time points

How do you approach getting a microbiome set up in a new lab?
We’re sharing protocols for how we collected, stocked, and
sequenced a set of cheese rind microbiomes and generated a
high-quality metagenomics resource for future computational
studies.
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Purpose

This collection of high-quality short- and long-read, time series sequencing data
sets should serve as a valuable community resource for bridging observational and
experimental work, for developing metagenomic analysis pipelines, and for

understanding cheese rind microbial communities.

e Data from this pub, including raw reads and assemblies, is accessible in
the European Nucleotide Archive (ENA). Taxonomic and functional analysis
is available on MGnify.

e Step-by-step protocols are available as a collection on protocols.io.

e Code and data tables used to produce visualizations are available in this
GitHub repository.



https://www.ebi.ac.uk/ena/browser/view/PRJEB58160
https://www.ebi.ac.uk/metagenomics/studies/MGYS00006097#overview
https://dx.doi.org/10.17504/protocols.io.n2bvj8j5xgk5/v1
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https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1

We’ve put this effort on ice!

Background and goals

One of the biggest challenges in coupling community-level observations to
mechanistic understanding of microbiomes is figuring out how to bring microbial
communities into the lab. Here, we demonstrate an example of how we went
about “onboarding” a new microbial community at Arcadia. Our goal was to
proactively consider aspects of a new community that could be informative and to
stock samples so that future work would not be hindered by a lack of access to
material. We decided that in addition to generating glycerol stocks of the
communities for future community growth experiments or microbial isolation, it
would be helpful to stock samples for future mass spectrometry, spatial imaging,
viral DNA extraction and phage isolation, proximity ligation Hi-C libraries,
metagenomics, and metatranscriptomics.

Based on in-house expertise, we selected five microbial communities growing on
washed-rind cheeses as the first communities to onboard at Arcadia (Figure 1).
Cheese rinds are a validated and stable experimental platform for microbial
community research 2i3141. As part of our initial characterization of these
communities, we also produced high-quality short- and long-read metagenomic
time series sequencing data and assemblies, including whole-genome
amplification sequencing for some samples. Comparison of native DNA to
amplified DNA can facilitate discovery of DNA modifications [s].

Alongside this pub, we have provided a collection of protocols for onboarding this

microbial community, including protocols for sample collection, DNA extraction,
and virome harvest. We also generated glycerol stocks for all of the cheeses used
in these experiments that we'd be happy to make available to others for
downstream uses like isolating individual strains or building culture collections.

While we have shifted direction and no longer plan to use these data sets for the
time being, we hope that these protocols will be helpful to others who want to
bring a microbial community into the lab. The data sets should be useful for
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metagenomic data mining and development of metagenomic analysis software,
investigating DNA modifications, and learning about microbial communities of
cheese.
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Figure 1. The five washed-rind cheeses that we sampled for this study.

Cheese names are abbreviated for simplicity. W: weeks, M: months

The approach

Briefly, we extracted DNA from five cheese rind communities, including their viral
components (Figure 1). We then used short-read Illumina sequencing and long-
read Nanopore sequencing (with and without whole-genome amplification) to
characterize the microbes present in the full communities. Long-read sequencing
can improve the quality of metagenomic assemblies. We sequenced multiple time
points to capture the succession of microbes throughout the aging process. We



then used the long-read sequencing data to predict circular contigs in the
metagenomic assemblies. See detailed methods below or skip to the results.

Sampling and DNA extraction

We sampled rinds from five distinct washed-rind cheeses aged in a cave facility in
Vermont, USA as described in our “Harvesting and stocking cheese rind

community samples” protocol, available on protocols.io. For simplicity, we have

assigned each cheese an abbreviated name (Table 1). We selected three different
time points in aging from each cheese, and used a subset of those samples for
metagenomic sequencing. We made glycerol stocks for all the cheeses for
possible downstream use for culture collection, as described in the protocol. WH
2M and WH 2M Hous are the same cheese style but were separate wheels that we
sampled at different times. We performed DNA extraction from these samples as
described in our “High-molecular-weight DNA extraction from cheese rind

microbial communities” protocol.

Cheese Age of sequenced samples Full aging time of cheese
El 2 weeks, 1 month, 3 months 2-3 months

oM 2 weeks, 1 month, 2 months 2.5-3.5 months

WI 3 weeks 1.5-3 months

AL 4 months 8-12 months

WH 1 month, 2 months, 4 months 3-6 months

WH Hous 2 months 3-6 months

Table 1. Age of sequenced samples for the five cheeses.

Virome harvesting and DNA extraction

In parallel to harvesting and analyzing the full cheese rind microbial community,
we also developed protocols to specifically harvest and analyze the viral
component (the virome). We made concentrated virome extracts from the cheese
rind samples, from which we extracted DNA and made glycerol freezer stocks. For
full, step-by-step instructions, see our “Virome harvesting from cheese
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microbiomes” and “Virome DNA extraction with phenol-chloroform” protocols on

protocols.io.

ONT long-read sequencing

We size-selected DNA samples from AL 4M, WH 2M, WH 2M Hous using this
protocol from Oxford Nanopore Technologies (ONT) prior to ONT library
preparation to enrich for fragments > 2 kb. Note that you need to make a free
Nanopore Community account to view ONT protocols. We size-selected DNA
samples from OM 2w, OM 8W, EL 2w, EL 12w, WH 1M, WH 4M using this protocol
from ONT prior to ONT library preparation to enrich for fragments > 10 kb. For
whole-genome amplified libraries (OM 4W WGA, EL 4W WGA, WH 2M WGA), we
used the same DNA sample we used for native sequencing as the input into this
protocol from ONT. We used 20 ng of DNA as input for amplification. For AL 4M,
WH 2M, WH 2M Hous, OM 4W, EL 4W, and WI 3W, we loaded 10 fmol of library,
assuming a size of 35 kb. For OM 2W, OM 8W, EL 2W, EL 12W, WH 1M, WH 4M,
OM 4W WGA, WH 2M WGA, El 4W WGA, we loaded 10 fmol of library onto the flow
cell, assuming 10 kb average length. We prepared libraries for OM 2W, EL 2W, and
WH 1M with SQK-LSK114 and ran them on R10.4.1 flow cells (one full cell per
sample); we prepared all other libraries with SQK-LSK112 and ran them on R10.4
flow cells (one full cell per sample). We sequenced until pores no longer showed
activity (~72 h, although the majority of pores were no longer active after 40 h).
We used the GridIon for sequencing and live base calling using the super-
accurate base calling configuration and the following software versions: MinKNOW
22.08.6, Bream 7.2.8, Configuration 5.2.5, Guppy 6.2.7, and MinKNOW Core 5.2.2.
We set the minimum read length to 1,000 bp and toggled read splitting on. For a
summary of how we sequenced DNA from which cheeses, see Table 2 below.

Illumina short-read sequencing

We sent the same DNA extractions that we used as input for size selection prior
to ONT sequencing to Novogene for Illumina library preparation and sequencing.
We requested 16 G of raw data per sample. Novogene performed paired-end 150
bp sequencing on an Illumina NovaSeq 6000. The cheese samples from which
we Illumina-sequenced DNA are summarized in Table 2.
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Native ONT WGA ONT Illumina

OoM 2w X X
OM 4W X X X
OM 8W X X
EL 2W X X
EL 4W X X X
EL 12W X X
WH 1M X X
WH 2M X X X
WH 4M X X
AL 4M X

WH 2M Hous X

WI 3w X

Table 2. Summary of metagenomic sequencing work.

Each column represents a single DNA extraction sample. Rows represent sequencing techniques
and an ‘X’ means we applied this technique to the sample in this column. The final two characters
of the sample name designate the aging time of the cheese (W: weeks, M: months). ONT: Oxford
Nanopore Technologies, WGA: whole-genome amplification. WH 2M and WH 2M Hous are samples
from the same cheese style at approximately the same aging time point, but were separate wheels
that we sampled at different times.

Metagenomic assembly of long-read sequencing
data

We concatenated all FASTQ files with “passed” reads (quality score > 10) together
and trimmed adapters using Porechop_ABI 0.5.1 (61 and Python 3.8. We put
trimmed reads into metaFlye 2.9.1-b1780 (71 using the --nano-hqg and - -meta
flags. We polished the assemblies with medaka 1.7.2 using BCFtools 1.14, bgzip
1.14, minimap2 2.17, SAMtools 1.14, and tabix 1.14. We obtained assembly statistics
from the metaFlye output log and obtained read statistics from the ONT reports

produced during sequencing.
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Metagenomic assembly of short-read sequencing
data

For each sample, we quality-filtered Illumina paired reads with fastp

0.23.2 sy using the --cut_front --cut_tail --cut_mean_quality 15 -q
15 and keep_phix false flags. We assembled filtered reads with metaSPAdes
3.15.3/Python 3.9.6. We obtained assembly statistics using the QUAST web
interface 191 and Novogene provided read statistics.

Sourmash and sourmashconsumr analysis

We used sourmash version 4.6.1 to compare all of the metagenomic assemblies
and to look at the taxonomic composition of the WH, OM, and EL Illumina
metagenomic time-series data (1e1. We used the sourmash sketch dna
command with -p flags k=31, scaled=1000 to make signatures for all
metagenomic assemblies. We then used the sourmash compare command to
make a similarity matrix for the assemblies. We used the sourmash sketch dna
command with -p flags k=31, scaled=1000, abund to make signatures for
paired-end Illumina read files. We used the sourmash gather command with -k
31 and --scaled 1000 options for each of the nine signatures. For sourmash
gather, we used the pre-prepared sourmash GenBank genomes from March
2022 k31 databases for viruses, bacteria, archaea, protozoa, and fungi, plus the
custom cheesegenomes-k31l-scaledlk database. We then used the sourmash
tax annotate command on the resulting gather files with the taxonomy sheets
for these six databases. This resulted in nine sr.with-1lineages.csv files. We

then used the sourmashconsumr package 11 to make time-series alluvial plots.

Data deposition

We deposited raw Illumina and Nanopore reads (FAST5 and FASTQ files) and their
corresponding metagenomic assemblies in the ENA (project PRIEB58160). We
also requested MGnify analysis for the deposited data through the MGnify
webpage. The resulting analysis is available here (study MGYSOO006097).
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The results

To generate reference metagenomic data sets for this microbiome, we generated
separate assemblies based on long- or short-read data.
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Figure 2. Depth of Illumina sequencing per sample.
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Figure 3. ONT long-read sequencing statistics.

(A) Number of reads collected per sample.

(B) N50 of ONT reads per sample.

WGA: Whole-genome amplification. “WH 2M” and “WH 2M Hous” are samples from the same
cheese style at approximately the same aging time point, but were separate wheels that we
sampled at different times.

For Illumina short-read 150 bp PE sequencing, the average sequencing depth was
119 million reads per sample (Figure 2). For ONT long-read sequencing, the
average depth was around 1.2 million reads per sample, with an average N50 of

5.8 kb (Figure 3).
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Figure 4. Metagenomic assembly statistics from short-read assemblies.

A) Total length of the assembly per sample.

(A)
(B) Number of contigs per sample.
(C) Longest contig per sample.
(D)

D) N5O0 of contigs per sample.

The Illumina metagenomic assemblies were an average of 1.5 times larger than
the GridIon assemblies of the same DNA sample, with 7.5 times the number of
contigs (Figure 4 and Figure 5). The N50 of the Illumina assemblies was 19.6 kb
on average, whereas the N50 of the long-read assemblies was 333.8 kb. For long-
read sequencing, the longest assembled contigs were an average of 3.7 Mb, about
the size of a complete bacterial genome, while the longest Illumina contigs were
about 8.6 Mb on average (Figure 4 and Figure 5).
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Figure 5. Metagenomic assembly statistics from long-read assemblies.

(A) Total length of the assembly per sample.
(B) Number of contigs per sample.

(C) Longest contig per sample.

(D) N5O of contigs per sample.

We assembled an average of 116 circular contigs per sample from the long-read
data, which may represent complete bacterial chromosomes, viruses, or plasmids
(Figure 6, Table 3). As expected, our data suggest that using long reads
dramatically improved assembly contiguity.
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Figure 7. MDS ordination plot based on the similarity matrix produced by sourmash
comparison of the assemblies.

Since the cheeses sampled all belong to a similar rind style and are aged in the
same facility, we next applied a min-hash-based comparison pipeline to the short-
read data to understand how similar these data sets are. Sourmash comparison of
the time series assemblies showed that the microbial communities from OM and
EL cluster closely together, while WH appears distinct (Figure 7, green points).
Based on short-read data, the OM and EL communities appear to be dominated
by Psychrobacter and Pseudoalteromonas spp. throughout the aging process.
Actinobacteria and Halomonas spp. more heavily dominate WH communities. A
larger fraction of the WH metagenome is unclassified compared to the other two
communities (Figure 8). We suspect this may be due to a higher fraction of fungal
genomes in WH that are not well represented in databases.
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Note that colors correspond to different microbes across the three panels.

Key takeaways

Cheese rinds are semi-complex microbial communities containing bacteria,
viruses, and fungi. We used both long- and short-read sequencing to survey the
microbial communities of five different cheeses across multiple time points.
Long-read sequencing lets us assemble contigs the length of bacterial
chromosomes. These data sets can serve as resources for benchmarking
computational workflows and guiding computational methods development at
Arcadia and beyond.

Please reuse our data!

We sequenced the same communities using multiple approaches: short-read
Illumina sequencing, native DNA ONT sequencing, and whole-genome amplified
ONT sequencing. These paired data sets are a resource to evaluate how different
sequencing approaches differentially impact recovery of microbial community
members 1123, an important consideration when choosing a sequencing

methodology.

We also generated paired native DNA and whole-genome amplified (WGA) ONT
data sets as a resource to facilitate DNA modification discovery (for

example, 151 and 1131). DNA modification identification can guide genome
engineering efforts of bacteria ajis], as well as the discovery of new DNA
chemistries in microbial communities. As current de novo modification prediction
tools for ONT data are designed for ONT R9 chemistry, which will be fully
discontinued this year, we hope that the paired WGA:native R10 chemistry data
that we've provided will be useful for the development of updated tools. FAST5
files required for this type of analysis are available in the European Nucleotide
Archive (ENA).
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We encourage others interested in microbial communities and/or DNA
modification to explore these data sets!

Next steps

We're not planning to further analyze this data in the near-to-medium-term, but
we encourage others to make good use of the paired data sets and stocked
samples.

We have also done HiPR-FISH spatial imaging 1161 on the same cheese samples

sequenced here. Be on the lookout for an upcoming pub presenting this data!

Acknowledgements

Thank you to Julia Pringle and Jasper Hill Farm for organizing the collection of
cheese samples from the cheese aging facility.

Contributors (A-Z)

Adair L. Borges: Conceptualization, Critical Feedback, Methodology
Rachel J. Dutton: Conceptualization, Supervision

Megan L. Hochstrasser: Editing, Visualization

Elizabeth A. McDaniel: Formal Analysis, Validation

Taylor Reiter: Critical Feedback, Formal Analysis, Validation

Emily C.P. Weiss: Conceptualization, Formal Analysis, Investigation, Methodology,

Visualization, Writing

References

1. Wolfe B, Button J, Santarelli M, Dutton R. (2014). Cheese Rind Communities Provide
Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity.
https:/doi.org/10.1016/j.cell.2014.05.041



https://doi.org/10.1038/s41586-020-2983-4
https://doi.org/10.1016/j.cell.2014.05.041

10.

11.

12.

13.

Morin M, Pierce EC, Dutton RJ. (2018). Changes in the genetic requirements for
microbial interactions with increasing community complexity.
https:/doi.org/10.7554/elife.37072

Zhang Y, Kastman EK, Guasto JS, Wolfe BE. (2018). Fungal networks shape dynamics
of bacterial dispersal and community assembly in cheese rind microbiomes.
https:/doi.org/10.1038/s41467-017-02522-z

Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE,
Sanchez LM, Dutton RJ. (2020). Bacterial-fungal interactions revealed by genome-
wide analysis of bacterial mutant fitness. https:/doi.org/10.1038/s41564-028-
00800-z

Tourancheau A, Mead EA, Zhang X-S, Fang G. (2021). Discovering multiple types of
DNA methylation from bacteria and microbiome using nanopore sequencing.
https:/doi.org/10.1838/s41592-021-01109-3

Bonenfant Q, Noé L, Touzet H. (2022). Porechop_ABI: discovering unknown adapters
in ONT sequencing reads for downstream trimming.
https:/doi.org/10.1101/2022.07.07.4990893

Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J,
Polevikov E, Smith TPL, Pevzner PA. (2020). metaFlye: scalable long-read
metagenome assembly using repeat graphs. https:/doi.org/10.1838/s41592-020-
00971-x

Chen S, Zhou Y, Chen Y, Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ
preprocessor. https:/doi.org/18.18093/bioinformatics/bty56 0

Mikheenko A, Saveliev V, Gurevich A. (2015). MetaQUAST: evaluation of metagenome
assemblies. https:/doi.org/10.189 3/bioinformatics/btv6 97

Titus Brown C, Irber L. (2016). sourmash: a library for MinHash sketching of DNA.
https:/doi.org/10.21105/joss.00027

Chou S, Reiter T. (2023). A new R package, sourmashconsumr, for analyzing and
visualizing the outputs of sourmash. https:/doi.org/10.57844/arcadia-1896-ke33

Cook R, Brown N, Rihtman B, Michniewski S, Redgwell T, Clokie M, Stekel DJ, Chen Y,
Scanlan DJ, Hobman JL, Nelson A, Jones MA, Smith D, Millard A. (2023). The long
and short of it: Benchmarking viromics using Illumina, Nanopore and PacBio
sequencing technologies. https:/doi.org/10.1101/2023.02.12.527533

Kot W, Olsen NS, Nielsen TK, Hutinet G, de Crécy-Lagard V, Cui L, Dedon PC,
Carstens AB, Moineau S, Swairjo MA, Hansen LH. (2020). Detection of preQ®
deazaguanine modifications in bacteriophage CAjan DNA using Nanopore


https://doi.org/10.7554/elife.37072
https://doi.org/10.1038/s41467-017-02522-z
https://doi.org/10.1038/s41564-020-00800-z
https://doi.org/10.1038/s41564-020-00800-z
https://doi.org/10.1038/s41592-021-01109-3
https://doi.org/10.1101/2022.07.07.499093
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.21105/joss.00027
https://doi.org/10.57844/arcadia-1896-ke33
https://doi.org/10.1101/2023.02.12.527533

14.

15.

16.

sequencing reveals same hypermodification at two distinct DNA motifs.
https:/doi.org/10.1893/nar/gkaa735

Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM. (2019). Rational development of
transformation in Clostridium thermocellum ATCC 27405 via complete methylome
analysis and evasion of native restriction-modification systems.
https:/doi.org/10.1007/5s10295-019-02218-x

Johnston CD, Cotton SL, Rittling SR, Starr JR, Borisy GG, Dewhirst FE, Lemon KP.
(2019). Systematic evasion of the restriction-modification barrier in bacteria.
https:/doi.org/10.1873/pnas.1820256116

ShiH, Shi @, Grodner B, Lenz JS, Zipfel WR, Brito IL, De Vlaminck I. (2020). Highly
multiplexed spatial mapping of microbial communities.
https:/doi.org/10.1038/s41586-020-2983-4



https://doi.org/10.1093/nar/gkaa735
https://doi.org/10.1007/s10295-019-02218-x
https://doi.org/10.1073/pnas.1820256116
https://doi.org/10.1038/s41586-020-2983-4

