
Creating a 7,000-strain E.

coli genotype dataset with
antimicrobial resistance
phenotypes

We assembled a comprehensive E. coli antimicrobial
resistance phenotype-genotype resource. This dataset will
aid large-scale genetic studies on anti-microbial resistance
and support research in phylogenetics and other fields.

Purpose
Mapping the connections between genotypes and phenotypes is
central to understanding the principles governing biology and its
innovations. One of Arcadia's long-term goals is to improve methods
and datasets for these types of analyses. The increasing availability
of genetic and phenotypic data from many different Escherichia coli
infections presents an opportunity to investigate genotype–
phenotype relationships with particular relevance to anti-microbial
resistance (AMR). Additionally, the genetic diversity observed within
this species is almost comparable to the diversity found between
species, offering a unique opportunity to understand how genetic
variation drives phenotypic diversity across different levels of
biological organization. Therefore, using existing data, we produced
a large-scale dataset to serve as a testbed for genotype–phenotype
prediction models, exploring gene-gene interactions and establishing
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frameworks for bridging genetic analyses within and between
species.

We constructed our dataset using the wealth of sequenced microbial
genomes and associated phenotypes, including AMR. Specifically,
from 72 well-studied and heavily sequenced E. coli strains, we
assembled a pangenome, capturing the total genome content from
these species, including the presence or absence of genetic material.
We then aligned sequence data from ~7,000 E. coli strains to this
pangenome and performed variant calling to identify genetic
variation across strains. We found significant genetic diversity,
identifying 2.4 million variants. To validate this dataset, we measured
the association of variants in genes known to impact AMR with AMR
phenotypes within the dataset. We successfully correlated genetic
variation in known AMR-related genes to AMR phenotypes.

This work will be of particular interest to geneticists and evolutionary
biologists. It may also be valuable for microbiologists and
epidemiologists who are trying to develop more effective treatment
and prevention strategies for bacterial infections.

This pub is part of the platform effort, “Genetics: Decoding
evolutionary drivers across biology.” Visit the platform
narrative for more background and context.

You can find our code, including the code to generate the E.
coli pangenome, the main pipeline to perform variant-calling,
and the notebooks to further analyze the dataset, in this
GitHub repository.

The data, including the list of genome accession numbers for
the pangenome, the SRA accession numbers of the strains in
the dataset, and the output of the variant-calling process, are
on Zenodo.
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Background and goals
For over 100 years, mapping genetic variation to phenotypes has
been a focus in fields such as agriculture, human health, and
evolutionary biology. The development of high-throughput
sequencing has significantly increased the amount of genetic
information available, including data from entire populations and
thousands of individuals. This expansion has accelerated efforts to
map genetic variation with phenotypes, uncovering complex
relationships between specific genetic changes and their associated
traits. It has also facilitated the development of more accurate
genotype–phenotype predictions in both eukaryotes and
prokaryotes, enabling researchers to identify critical genetic markers
linked to various biological functions and disease states [1][2].

Genotype-phenotype studies rely on managing complex,
heterogeneous, and multidimensional data to connect genotype
information to phenotypes. Simply assembling an appropriate
dataset can be difficult and is complicated by an organism's genetic
complexity and incomplete genetic or phenotypic information. In this
work, we aimed to build a high-quality dataset as a resource for
investigators developing analytical frameworks in the genotype–
phenotype space, including genotype–phenotype predictions,
identification of epistasis, and new approaches bridging within and
between species analysis.

With comparatively simple genome structure and frequently
complete genotype and phenotype information, bacteria present an
opportunity to build a large, well-standardized dataset. Research
deciphering the genetic underpinnings of traits like antibiotic
resistance, pathogenicity, and metabolism has resulted in well-
documented microbial genomes and phenotypes. Specifically, E. coli
is an extensively studied, occasionally pathogenic bacterium, with
some variants posing significant healthcare challenges due to the
rise of anti-microbial resistance (AMR). As a result, clinical studies
have tracked infection outbreaks, sequenced strain genomes, and
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documented measured or predicted antimicrobial resistance
phenotypes for large populations.

Extensive E. coli research has demonstrated remarkable genetic
diversity. Only 20 to 40% of the genome is present across strains (the
species' core genome), while the presence of the remainder varies [3]

[4]. This diversity means that, in a large population of E. coli strains,

we can study genetic variation at both the nucleotide level (typical of
within-species analyses) and the larger scale of gene presence-
absence, frequently used when comparing species. Applying both
types of analyses could lead to a more comprehensive
understanding of how genetic variation drives phenotypic diversity
within and between species.

In this work, we aimed to consolidate genotype–phenotype
information of E. coli from a public database, mapping genetic
diversity and variations to AMR phenotypes. We conducted variant
calling on nearly 7,000 sequenced strains using a custom E. coli
pangenome and correlated this data with AMR profiles. We’ve shared
the dataset here. We hope it’ll serve as a resource for large-scale
genotype–phenotype studies and provide a benchmark dataset for
developing new methods. While it may allow researchers to
understand AMR mechanisms better and investigate genetic
interactions, the dataset should also enable novel phenotype–
phenotype prediction and phylogenetic research analyses.

The approach
Our primary objective was to create a dataset integrating available
genotypic and phenotypic E. coli data to allow mapping between
genetic variation and known antimicrobial resistance (AMR)
phenotypes. We first identified an E. coli cohort with documented
AMR phenotypes and available genomes. We then characterized the
phenotype distribution within our cohort. Next, given the genetic

4

https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1007/s00248-010-9717-3


diversity of E. coli, we constructed a pangenome from 72 especially
well-studied strains and used it to conduct variant calling across all
7,057 strains, including these initial 72. Finally, we correlated the
identified genetic variations with the known AMR phenotypes.

Generating the reference genome
Selecting an appropriate reference genome is essential for genotype–
phenotype analyses that leverage precise genomic locations of
genetic variants. The genome is the shared reference for genetic
variation across strains and, thus, must provide comprehensive
coverage across strains and accurately represent the genetic
diversity of the cohort [5].

E. coli exhibits high genetic diversity among its strains in terms of
single-nucleotide variation and, different from many eukaryotic
species, the presence or absence of large portions of the genome [3].

We, therefore, need a reference genome encompassing this global
diversity. We decided to generate a pangenome using the genomes
of the ECOR collection [6], which consists of 72 E. coli strains isolated

from a wide variety of hosts and geographical locations, including
strains from different phylogenetic groups. This collection offers a
broad representation of the natural diversity of the species.

Much pangenome analysis has focused on coding genes and
excluded intergenic regions (IGRs). However, IGRs are essential for
gene regulation and mediating gene-gene interactions. Therefore, we
included IGRs in our pangenome assembly. To construct the
pangenome for this study, we first obtained the sequenced genome
for all 72 strains in the ECOR collection from [7] using the Batch

Entrez API and the strains’ GenBank accession numbers. Using the
default parameters, we annotated the genomes with Prokka (version
1.14.6) [8]. Next, we generated the pangenome of coding genes with

Roary (version 3.13.0) [9] using a 90% identity threshold to cluster the

protein sequences and performing within-cluster alignments to
identify the reference sequence in each cluster. Finally, we generated

5

https://doi.org/10.1099/mgen.0.001021
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1128/jb.157.2.690-693.1984
https://doi.org/10.1128/mra.01133-18
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btv421


the pangenome of IGRs with Piggy (version 1.5) [10], using the

program defaults parameters, and we combined both pangenomes
into a single FASTA file (whole_pangenome.FASTA on Zenodo).

This final file contains the collective genetic content of the ECOR
collection and served as the “reference genome” for this study. It
contains 18,494 coding gene sequences, including 2,652 core genes
found in 99% of the ECOR collection species and 13,947 IGRs.
Altogether, the genome comprises 32,441 sequences, which we call
contigs (or pangenome contigs). Information about the presence or
absence of contigs in strains is in the file
whole_pan_ecor_presence_absence.csv on Zenodo.

Finally, we conducted functional annotation of the pangenome's
coding sequences using the eggNOG-mapper (version 2.1.12) web
interface [11].

Selecting the working dataset
We used the Bacterial and Viral Bioinformatics Resource Center (BV-
BRC) to identify the study cohort and compile our dataset of available
E. coli genomes and associated antimicrobial resistance phenotypes.
We conducted two separate searches: first, we identified strains with
genomic sequence data available on the Sequence Read Archive
(SRA), and second, we collected AMR phenotype data from BV-BRC.
By intersecting the results of these searches, we identified 6,985 E.
coli strains for which genomic sequencing data were available from
the SRA, and phenotypic information was available for at least one
antibiotic.

Identifying genetic variants
To enable genotype–phenotype mapping, we needed to identify
genetic variation across the cohort of E. coli strains. This procedure
included multiple steps. First, we created a reference genome (see
above) that we could use to identify single-nucleotide
polymorphisms and the presence or absence of large portions of
genetic material. Then, after downloading the available genome
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sequence data, we determined the allelic state for each strain at each
genomic location that varies between strains. Finally, we created a
genotype matrix containing each strain's predicted allelic state at
each variant location.

Downloading sequencing reads from the Sequence
Read Archive
We obtained the SRA accession numbers for the sequencing files of
the 7,057 selected strains (6,983 strains from the original cohort and
72 strains from the ECOR collection). Using the GNU parallel shell
tool [12] and the faster-dump  tool from the sra-toolkit [13], we

downloaded the FASTQ files from paired-end sequencing for each
strain.

Variant calling in 7,057 samples
Variant calling identifies genetic differences between a strain and a
reference genome by aligning genomic sequencing reads from the
strains against the reference and identifying where they differ. These
differences are then filtered based on the likelihood that they're true
variants versus sequencing errors and compiled into a variant call
format (VCF) file.

We performed variant calling independently for each strain from our
cohort (6,985 strains) and the 72 ECOR strains. Our workflow
proceeds as follows: First, we used fastp [14] to perform quality

control, remove sequences corresponding to sequencing primers
and remove reads shorter than 30 nucleotides or quality scores
below a threshold (Phred score below 30 across a sliding window of
four bases). Subsequently, we concatenated the resulting FASTQ files
(one for read one and one for read two; all samples were “paired-
end” read data) into a single file, which we then aligned against the
reference pangenome (BWA mem  [15]). We sorted the resulting

alignment file and marked duplicates using SAMtools (version
1.20) [16]. Using Picard (version 2.27.5) [17], we added read group tags

(RG tags), incorporating the strain name to ensure precise
identification and traceability of each sample in the downstream
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process. Next, we indexed the alignment file using SAMtools [16] and

generated the associated MPILEUP file using BCFtools [16]. An

MPILEUP file is a text-based format that provides a per-base
accumulation of sequencing reads against the reference sequence,
detailing coverage and variant information. Finally, we called variants
from the MPILEUP file using BCFtools [16], generating the

corresponding VCF file.

We incorporated this workflow into a Snakefile, allowing for efficient
parallel processing of multiple samples with Snakemake [18].

Merging VCF files
The output of this workflow was a single VCF file for each strain. To
facilitate the analysis of genetic variation at the cohort level, we
wanted to merge these VCF files. The procedure to merge VCF files
(the merge  function in the software package BCFtools) didn't run on
more than 1,000 VCF files at a time. Therefore, we merged batches of
1,000 files. We re-indexed these files before conducting a final
comprehensive merge (merged_output_all.vcf.gz on Zenodo).

Ultimately, we identified 3,119,517 variants in the cohort, including
single-nucleotide polymorphism (SNP) and insertion-deletion (indel)
variants.

Filtering variants
While many of these variants are likely to be true genetic variations
across this set of strains, some may result from sequencing or
alignment errors. We designed a filtering strategy to mitigate the risk
of false positives while aiming to preserve as many true positives as
possible. We used BCFtools [16] to refine our variant data and filtered

out any variants with a QUAL score below 30 (a threshold for the
probability of error) and a DP (depth of coverage) below 19.28 (a
threshold for read depth).

Using a quality threshold of 30 represents a 99.9% probability that
the variant is correctly identified. We established the read coverage
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threshold based on the coverage data from the 72 ECOR strains we
used to generate the pangenome and our understanding of the
presence or absence of each contig of the pangenome in these
strains. We expand upon this determination process in the next
section.

Applying these filters excluded 668,333 variants (21% of the initial
dataset), leaving 2,451,184 variants in the dataset
(filtered_output.vcf.gz on Zenodo). This filtration is conservative, and
we should note that these excluded variants (~2.8% of all variants)
may be true, potentially phenotypically impactful variation.

Defining the read depth filtering threshold
We defined the read depth threshold as the minimum number of
reads required to confidently assert the presence of a nucleotide
(and, by extension, the contig) in a strain. We analyzed the presence-
absence data for the 72 ECOR strains to calculate this threshold,
incorporating the coverage depth observed for each nucleotide that
mapped against the pangenome.

Using custom Python scripts (extract_mpileup_info.py and
numpy_merge_ecor.py), we first extracted the contig, position, and
depth information for each nucleotide from the MPILEUP files of
each of the 72 ECOR strains into a unified matrix (ecor72_array.txt on
Zenodo). Then, a custom R notebook
(Ecor72_averaging_contigDP.ipynb) calculated the average read depth
per nucleotide at each contig for each strain as the total reads per
nucleotide divided by the contig length.

Next, by integrating read depth and presence-absence data for each
contig across all strains, we assessed coverage and read depth
patterns in relation to the contig's presence-absence status
(ECOR72_and_DP_threshold_analysis.Rmd). We observed that absent
contigs are associated with significantly lower read depth (mean: 3 ±
10.85 reads/nucleotides) than present contigs (mean: 51 ± 28
reads/nucleotides). Some present contigs displayed low coverage
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and read depth, likely due to challenges in sequencing regions with
high repeat content, high GC content, or complex secondary DNA
structures. Conversely, some absent contigs exhibited full coverage
and substantial read depth, potentially due to contamination,
genome assembly errors, index hopping during sequencing,
alignment artifacts, or highly repetitive sequences.

Ultimately, we established the DP threshold based on the
distribution of read depth for absent contigs:

DP threshold = mean read depth of absent contigs + 1.5 ×
standard deviation

DP threshold = 3 + 1.5 × 10.85 = 19.28

This threshold indicates that we confidently consider any nucleotide
or contig with a read depth exceeding 19.28 to be present.

Annotating variants
We performed automated variant annotation to help interpret the
biological importance of variants in coding regions. Variant
annotation uses information such as gene sequence and annotation
to predict whether variants will have minimal or significant biological
effects (e.g., categorizing variants into categories such as silent,
missense, or nonsense mutations).

We used SnpEff (version 5.2c) [19] to annotate variants within the

pangenome's coding sequences, excluding intergenic regions (IGRs).
SnpEff analyzes input variants from a VCF file by annotating them
based on a predefined database that includes gene annotations and
gene sequence information. Since we used a custom pangenome, we
first needed to construct a corresponding custom database before
annotating.

Creating a SnpEff database and annotating variants
Creating a genome-specific database for variant annotation using
SnpEff requires genome information in FASTA format and genome
annotation in either GTF or GFF format. To this end, we annotated
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the pangenome coding sequences (pangenome_cds.fa on Zenodo)
using Prokka (version 1.14.6) [8], and we then used the output

(genes.gff on Zenodo) for SnpEff database creation.

Following the steps outlined in the SnpEff guidelines, we created the
custom database with -noCheckCds -noCheckProtein  to bypass the use
of transcript and protein sequence information, which wasn't
available.

The final database comprises 16,736 coding sequences out of the
18,494 initially present in the pangenome. Prokka uses Prodigal [20] to

identify open reading frames (ORFs). Prodigal failed to identify 1,758
ORFs, possibly because Prodigal isn't designed to use pangenomes.
Our pangenome contains many more contigs (thousands) than a
typical genome (10s of contigs) expected by Prodigal. This could
impact Prodigal in the following ways: first, during the training
phase, Prodigal analyzes the genome to understand its
characteristics, such as codon usage patterns and nucleotide
composition, and adapts to the specific features of the input
genome. The diverse and fragmented nature of a pangenome may
hinder Prodigal's ability to accurately train this model. Second,
during the gene prediction phase, Prodigal optimizes the selection of
ORFs to predict the most likely set of genes in the input while
ensuring that ORFs don't overlap improperly. Prodigal assigns scores
to each potential ORF and, during the optimization step, ensures that
the final set of predicted ORFs isn't redundant during the
optimization step. Thus, if the same ORF (or substantially
overlapping ORFs) is detected multiple times, only the highest-
scoring version is retained. Despite Roary identifying the ORFs as
90% divergent at the protein level in our pangenome, Prodigal may
still consider them overlapping due to their nucleotide-level
similarity. This could lead to the exclusion of certain ORFs from the
final predicted set, contributing to the observed discrepancy in ORF
identification.
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We then used this custom database to annotate the filtered VCF file
and generated a new annotated VCF file (annotated_output.vcf.gz on
Zenodo) and the corresponding SnpEff report
(annot_summary_filtered.html on Zenodo).

Filtering silent mutations
We used SnpSift [21], a component of the SnpEff suite, to remove

silent mutations from our set of annotated variants. The remaining
variants (output.non_silent.vcf.gz on Zenodo) are likely to impact
biology and result in missense, nonsense, and frameshift mutations.

Analyzing antimicrobial resistance-
associated variants
To assess the veracity of our dataset, we tested whether we could
associate AMR phenotypes with variants in genes known to be
involved in AMR. We leveraged extensive previous work identifying
genetic markers linked to AMR in E. coli&nbsp;[22]. Specifically, we

focused on five genes known to confer resistance that we also
identified in the pangenome:

tetA_1 (contig: LMHPMMMF_04732), tetA_2 (contig:
APHKLHJA_00520), and tet_3 (contig: FCDKFLAE_04147),
associated with tetracycline resistance

dfrD (contig: NGHFEPFE_01999), associated with trimethoprim
resistance

catA1 (contig: DHJNCGMO_04398), associated with
chloramphenicol resistance

We extracted non-silent variant information for these contigs
(resistance_output.non_silent.vcf.gz on Zenodo) and analyzed the
distribution of these variants across the cohort. We then correlated
the presence or absence of these variants with AMR phenotypes.
These analyses are documented in an R notebook
(Antimicrobial_resistance_investigation.Rmd).
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Additional methods
We used ChatGPT to help write code and suggest wording ideas,
which we then chose small phrases or sentence structure ideas to
use. We used Grammarly Premium to help copy-edit draft text to
match Arcadia’s style and to clarify and streamline text that we wrote.

The dataset
We initiated our effort to build a large genotype–phenotype dataset
by querying the Bacterial and Viral Bioinformatics Resource Center
(BV-BRC) [23] to identify a large cohort of E. coli strains with available

genome sequence data and anti-microbial resistance (AMR)
phenotypes for at least one antibiotic.

We chose E. coli for our study primarily due to the availability of
thousands of genomes and extensively documented AMR
phenotypes. Although similar data exist for other global pathogenic
bacterial species, the remarkable genetic diversity within E. coli —
with strains sharing only 20% to 40% of a core genome and
possessing a wide array of accessory genes [3][4] — makes it uniquely

suited for our research. This diversity allows us to interrogate this
dataset using methods typically applied to interspecies comparisons
and traditional intraspecies studies.

Our cohort contains a wide diversity of
strains sampled over many years and
countries
We identified a set of 6,983 E. coli strains with documented
resistance or susceptibility to 50 antibiotics or combinations of two
antibiotics (for instance, a treatment that includes both ampicillin
and clavulanic acid). Genome sizes within this cohort ranged from
4.07 Mb to 5.98 Mb, with a median of 5.09 Mb and a mean of 5.07 Mb
(Figure 1, A). Correspondingly, the number of coding sequences (CDS)
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varied from 3,992 to 6,135, with a mean of 5,069 CDS. These metrics
reflect this species' typical genome size and genetic diversity [24].

In addition to genetic data, we retrieved metadata information from
the database, including isolation country, collection year, and
original host. Isolation country data was unavailable for only four
strains; the remaining strains came from 14 countries (Figure 1, B),
with the majority originating from the United Kingdom and Norway.
Collection year information was available for 4,910 strains collected
between 2001 and 2017. Host information was available for 3,922
strains, primarily isolated from humans and sourced from five other
hosts (cow, dog, pig, cat, and chicken).

The diversity of location, time of collection, and host species present
in our cohort demonstrates that our dataset isn't limited to a specific
outbreak, environment, or timeframe. Thus, the genetic diversity
within our cohort may be more analogous to species–species
differences than the diversity observed in more closely related
populations.

Our dataset includes susceptibility and
resistance data for many antibiotics
We evaluated the diversity and distribution of AMR phenotypes to
gain further insights into their patterns and prevalence within our
cohort. This included organizing and analyzing documented AMR
phenotypes across strains and antibiotics (or antibiotic classes) and
identifying potential multidrug-resistant strains.

First, we assessed the number of antibiotics or antibiotic
combinations for which strains had documented AMR phenotypes.
The majority of strains had known phenotypes (either “susceptible,”
“intermediate,” or “resistant”) for between eight and 11 antibiotics,
and six strains had known phenotypes for only one antibiotic (Figure
2, A). Notably, one strain had phenotype information for 33
antibiotics. We analyzed the distribution of phenotypes for each
antibiotic. Gentamicin had the highest number of documented
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Figure 1. The worldwide isolated strains in our cohort span the expected
genome size range for E. coli.

(A) Genome size distribution (number of base pairs).
(B) Map of the countries from which strains have been isolated.

phenotypes (6,043 strains), and 20 other antibiotics had phenotypes
for more than 500 strains. We further focused on these antibiotics to
evaluate the distribution of phenotypes (Figure 2, B). For most
antibiotics, strains predominantly exhibited a “susceptible”
phenotype, with some exceptions, such as ampicillin.
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Figure 2. Our cohort exhibits diverse AMR phenotypes across strains and
antibiotics.

(A) Distribution of the number of known AMR phenotypes per strain.
(B) Distribution of AMR phenotypes for antibiotics with AMR information available in
500 or more.
(C) Word cloud of antibiotic classes associated with the most resistant phenotypes.
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Finally, we focused on the “resistant” phenotype, identifying 1,319
strains resistant to at least one antibiotic, including 139 strains
resistant to 10 or more. These resistant phenotypes span 15
antibiotic classes; the most represented classes were penicillin,
cephalosporin, fluoroquinolone, penicillin/beta-lactamase inhibitors,
and sulfonamide. We identified 1,425 strains resistant to at least one
antibiotic from three different classes, indicating multidrug
resistance.

Our study encompasses a broad spectrum of antibiotic phenotypes,
including susceptibility and resistance to a large number of differing
antibiotics and many multi-drug-resistant strains. While not
developed in this work, we believe that this dataset includes a
diversity of phenotypic information that would allow us to identify
correlations of AMR phenotypes within and between antibiotic
classes, thus simplifying and improving predictions of AMR
phenotypes.

We found broad genetic diversity across this
cohort consistent with the diversity found in
other E. coli populations
We identified genomic locations that vary across our cohort by first
creating a pangenomic reference, aligning sequence data from all
strains to this reference, and identifying locations that varied relative
to the reference (variant calling). Given the broad genetic diversity
commonly found in E. coli, selecting a representative reference
genome was crucial. To this end, we constructed a pangenome from
the 72 strains of the ECOR collection, which encompasses the
species’ natural diversity [6]. The pangenome included intergenic

regions (IGRs), which can play a critical regulatory role, and coding
sequences (CDS). The final pangenome comprised 32,441 genetic
sequences: 18,494 CDS and 13,947 IGRs. We further refer to these
sequences as contigs.

By mapping all the strains against this pangenome and conducting
variant calling, we identified 3,119,517 variants. This number was
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reduced to 2,451,184 after we filtered to control for false positives
(see “The approach” for details on our filtering strategy). 2,407,385 of
these variants were single-nucleotide polymorphisms (SNPs), and
43,799 were insertions or deletions (indels). Furthermore, we
identified 376,038 multi-allelic variants, with the majority featuring
two or three alternative alleles.

We further characterized the variants by their contig type (CDS versus
IGR), assessed the variant rate per contig, and analyzed variant
distribution within the cohort to identify likely rare variants and
common variants. We detected variants in 85% of all contigs (27,637
of 32,441), with a higher tendency for variation in CDS contigs (16,715
out of 18,494; 90%) compared to IGR contigs (10,922 out of 13,947;
78%). The variant rate, the ratio of the contig length to the number of
variants in that contig, characterizes a contig’s disposition to
variation. For example, a variant rate of three suggests that variants
occur every three nucleotides, on average. While variant rates varied
widely, indicating different propensities for variation among contigs,
the median variation rates were eight for CDS and 10 for IGRs,
indicating slightly higher variability in coding sequences.

Finally, we evaluated the prevalence of each allelic variant across the
strain cohort, measuring how often alternative alleles appeared.
Notably, 19% of the variants (527,686 variants: 452,357 in CDS, 75,329
in IGR) were found in only one strain, indicating their rarity.
Conversely, 6,167 variants (5,515 in CDS and 652 in IGR) appeared in
6,350 strains or more, suggesting these represent the more typical
genetic composition of these contigs rather than true variants as
they're found in at least 90% of the strains.

Altogether, our analysis of the variants in the E. coli cohort highlights
the extensive genetic diversity within the species.
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On average, around 40% of the variations in
CDS are non-silent
The diversity of genetic variants identified in our study cohort is
extensive, and we detected many variants within coding sequences
(CDS contigs). However, we expect only some of these to be
impactful. Genetic variation in coding regions can lead to silent
mutations that don't affect the protein sequence, or non-silent
mutations can alter protein sequence. To better understand the
effects of these variants, we performed variant annotation to
distinguish between silent and non-silent mutations within CDS
contigs (see “The approach” for details).

We were able to annotate variants in 16,736 of the original 18,494
CDS contigs of the pangenome. The incompleteness of our
annotation is likely due to limitations in using a pangenome in
genome-based annotation algorithms and the exclusion of CDS that
are considered redundant with already annotated CDS. The missing
CDSs represent 9% of the CDS of the pangenome, and the absence of
annotations for these variants is one limitation of this analysis.

Non-silent mutations alter protein sequence and are more likely to
impact phenotypes. We analyzed the 783,436 variants classified as
non-silent, which included frameshift, nonsense, and missense
variants. Among these, 765,536 were SNPs, 17,900 were INDELs, and
95,581 were multiallelic variants. Notably, 33% of these variants
(258,194 variants) were rare and found in only one strain. Conversely,
325 variants were prevalent in at least 90% of strains, suggesting
these may be present in the majority of E. coli strains and that the
allelic states in the ECOR collection (used to create the pangenome)
are of lower prevalence.

Finally, we assessed the non-silent variant rate within each CDS
contig to explore these sequences’ functional and evolutionary
dynamics. Contigs with many non-silent mutations may indicate
positive selection for these variants and suggest that CDS may
impact phenotypes that enhance survival in some settings. In

19



contrast, contigs predominantly containing silent variants are likely
essential for cellular functions, and non-silent mutations would be
deleterious. In the average CDS contig, ~42% of variants are non-
silent (Figure 3, A). Furthermore, we found 316 contigs where non-
silent variants accounted for at least 90% of the variants and 117
contigs where non-silent variants were less than 10% of the variants.

We used the Clusters of Orthologous Groups (COGs) database [25] to

assign likely functions to each of the CDS contigs (Figure 3, B). For
both groups — those with high and low non-silent mutation rates —
most contigs were poorly characterized in this database (156 contigs
in the high non-silent mutation rates group and 45 in the low rates
group). However, for contigs associated with high rates of non-silent
variants (> 90% of variants non-silent), the most represented COG
categories were “Replication and Repair” (COG L: 8.1% of COG
annotations) and “Cell Wall/Membrane/Envelope Biogenesis” (COG
M: 4.2% of the COG annotations). Notably, these categories are some
of the essential mechanisms of antibiotic resistance [26][27][28].

Conversely, the COG categories that are enriched in contigs
associated with low non-silent variant rates (< 10% of variants non-
silent) were Intracellular “Trafficking and Secretion” (COG U: 9.3%)
and “Transcription” (COG K: 6.2%), essential cellular functions that,
when altered, can lead to significant detrimental effects and tend to
be conserved [29].

Within this cohort, there are many non-silent mutations in coding
regions. Contigs associated with DNA replication, DNA repair, and
cell wall biogenesis, functions associated with biological processes
that adapt to evade antibiotics, tend to have higher rates of non-
silent variants, consistent with E. coli’s reported adaptability.
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Figure 3. Analysis of non-silent variant distribution.

(A) Distribution of non-silent variant rate in the annotated CDS contigs. The ratio on
the x-axis is the fraction of non-silent variants within each annotated CDS contig (per
contig: non-silent variant / total number of variants).
(B) Distribution of COG functional categories among the contigs associated with high
(> 90% non-silent mutations in a contig — 316 contigs) or low (< 10% of non-silent
mutations in a contig — 117 contigs) non-silent variant rates. “Percentage” indicates
the percentage of CDS in each dataset associated with the COG functional category.
Stars identify the two COG functional categories (discussed in the text) that were the
most represented among the contigs with high or low levels of non-silent
polymorphisms. COG categories: A: RNA processing and modification; C: Energy
production and conversion; D: Cell cycle control and mitosis; E: Amino acid
metabolism and transport; F: Nucleotide metabolism and transport; G: Carbohydrate
metabolism and transport; H: Coenzyme metabolism; I: Lipid metabolism; J:
Translation; K: Transcription; L: Replication and repair; M: Cell
wall/membrane/envelope biogenesis; N: Cell motility; O: Post-translational
modification, protein turnover, chaperone functions; P: Inorganic ion transport and
metabolism; Q: Secondary structure; S: Function unknown; T: Signal transduction; U:
Intracellular trafficking and secretion; V: Defense mechanisms.

Assessing the veracity of the dataset:
Identifying genetic variants
associated with AMR
To evaluate the utility of our dataset in identifying polymorphisms
associated with phenotypes, we correlated the presence of non-
silent variants in coding sequences (CDS) previously associated with
antimicrobial resistance (AMR).
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We focused on resistance to three well-studied antibiotics:
tetracycline, chloramphenicol, and trimethoprim, and five genes
associated with resistance to these antibiotics. The genes tetA_1,
tetA_2, and tetA_3 code for tetracycline efflux pumps that expel
tetracycline from the cell, thereby conferring resistance [30]. The gene

catA1, which encodes chloramphenicol acetyltransferase, confers
resistance to chloramphenicol by acetylating the antibiotic, thus
preventing its binding to the bacterial ribosome [31]. The gene dfrD

codes for a variant of the dihydrofolate reductase DhfR, the main
target of the antibiotic trimethoprim. The DfrD protein can have a
lower affinity for trimethoprim than DhfR and compensate for the
DhfR function, conferring resistance to trimethoprim [32][33].

We identified 275 strains with non-silent variants in tetA_1, tetA_2, or
tetA_3 genes. Of these 275 strains, only 26 had a documented AMR
phenotype for tetracycline, and all 26 were resistant. However, in the
entire cohort, phenotype information for tetracycline was available
for 393 strains (including the 26 strains just mentioned), of which 237
were resistant and 156 were susceptible (Figure 4). We performed a
hypergeometric test to assess whether the set of 26 strains is
significantly enriched for tetracycline resistance. This test calculates
the probability of randomly selecting 26 resistant strains out of the
393 strains with available phenotype data. We found that the non-
silent variants in tetA_1, tetA_2, or tetA_3 are significantly associated
with tetracycline resistance (p < 0.001). The resistance of the
remaining 211 strains lacking variants in the tetA genes may be
attributed to alterations in other tetracycline resistance genes,
including additional efflux pumps (tetB, tetC, tetD, and tetE) or
ribosomal protection proteins (tetM and tetO) [30].

When we investigated resistance to chloramphenicol, we identified
58 strains with non-silent variants in catA1, but only two of these 58
strains had documented chloramphenicol AMR phenotypes — both
resistant. In the cohort, phenotype information for chloramphenicol
was available for 253 other strains with no variant information, 72 of
which were resistant (Figure 4). Given the small number of strains
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with variants in the catA1 contig with an available AMR phenotype,
we were unable to find a significant connection between variants in
catA1 and resistance to chloramphenicol (p > 0.05, hypergeometric
test). It’s possible that the resistant phenotypes of the strains lacking
variations in catA1 are associated with variations in other known
chloramphenicol resistance genes, such as other cat genes or cml
genes [34].

Last, we assessed the possible genetic basis of trimethoprim
resistance. We found 571 strains with non-silent variants in dfrD, and
AMR phenotype information was available for 40 of them (Figure 4).
These 40 strains displayed both susceptible (19 strains) and resistant
phenotypes (21 strains). In the whole cohort, trimethoprim resistance
data was available for 704 strains, including the 40 aforementioned
strains. Ultimately, we didn’t find a significant association between
the presence of trimethoprim resistance and non-silent mutations in
dfrD (p > 0.05, hypergeometric test). Across the dfrD gene, there were
a total of seven non-silent alleles. One possibility is that some of
these non-silent alleles significantly impact the functioning of dfrD
while others do not. This potentially motivates a more targeted
analysis of these individual polymorphisms but is beyond the scope
of this work.

Our analysis focuses on resistance to three antibiotics and five genes
successfully correlated genes known to influence tetracycline
resistance but failed to identify genes linked to chloramphenicol or
trimethoprim. For the latter two, one non-trivial explanation could be
statistical power as the number of strains with documented
chloramphenicol resistance was small (two), and the number of non-
silent loci in dfrD (known to influence trimethoprim resistance) was
numerous, possibly reducing the statistical power of the test.
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Figure 4. Analysis of non-silent variants in known genes associated with E. coli
antimicrobial resistance.

Intersections of strains with non-silent variants in antibiotic resistance contigs and
available AMR phenotypes. Each Venn diagram shows the intersections of strains
that have identified non-silent variants in resistance genes of the indicated antibiotic
(chloramphenicol, trimethoprim, or tetracycline) and corresponding AMR
phenotypes. The color of the intersection indicates the AMR phenotypes observed for
these strains (pale blue: susceptible, darker blue: resistant).

Key takeaways
In this work, we’ve compiled a genotype–phenotype dataset from
public databases for around 7,000 E. coli strains, focusing on their
anti-microbial resistance (AMR) phenotypes. After retrieving AMR
phenotypes for 50 antibiotics or combinations, we performed variant
calling for these strains against a custom pangenome generated
from 72 different E. coli strains.

The cohort features significant genetic diversity, with 2.4 million
variants in 85% of the pangenome's coding sequences and intergenic
regions. We also identified non-silent variants that could affect
protein integrity and function. Specifically, we focused on variants
within genes reported to be associated with AMR, and we were able
to find resistant variants in known AMR-related genes.

Altogether, we hope this dataset will be a versatile resource for
microbiologists, geneticists, and evolutionary biologists who want to
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probe genotype–phenotype associations or delve deeper into the
genetic basis of AMR.

Challenges and limitations
Compiling this dataset presented multiple challenges, which led us
to make specific decisions that shaped the scope of our analysis. As
a result, we may have excluded some AMR genetic markers, making
our dataset less comprehensive for a complete analysis of
antimicrobial resistance in E. coli.

We discuss these challenges, the choices we made in response, and
the probable limitations of the dataset that result from those choices
here.

Incomplete data
We compiled data for around 7,000 E. coli strains, but AMR
phenotypes weren't available for all antibiotics and strains. For some
antibiotics, like gentamicin or ciprofloxacin, AMR phenotypes were
available for over 6,000 strains. Unfortunately, for most antibiotics,
phenotypes were available for less than 1,000 strains, reducing the
utility of this dataset.

Choice of phenotype
AMR is one of the best-documented phenotypes for microbes, so it
made a great option for building a large-scale genotype–phenotype
dataset. However, many AMR genes are found on plasmids,
contributing significantly to the rapid spread of AMR resistance
through processes like horizontal gene transfer [35][36]. Although our

pangenome contains likely plasmid sequences, it doesn't capture the
full diversity of plasmids in E. coli. Genome assembly from short
reads doesn’t allow for the efficient recovery of plasmid sequences,
and the 72 ECOR strains [6] are unlikely to cover the entire plasmid
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diversity within E. coli. Therefore, our dataset may only include
variation for some AMR genes.

Working with a pangenome
While using a pangenome doesn't fully capture plasmid diversity, it
allowed us to capture more of the genetic diversity in our E. coli
cohort than using a single reference strain. However, this choice, too,
brought inherent challenges and further analytical considerations
worth discussing.

One major challenge is determining the number of species to
include in the pangenome. This choice depends on multiple factors.
While covering most of the diversity is desirable, adding more
genomes increases the risk of inaccuracies due to sequencing,
assembly, and annotation errors. We chose to work with the ECOR
collection because it's been extensively studied, but even in this
cohort, there are reported sequencing and assembly errors [7]. While

it includes strains from different E. coli populations, it nonetheless
leaves some diversity of the whole E. coli species unaccounted for,
possibly missing important information regarding the genetic basis
of AMR phenotypes.

Challenges also arise during the creation of the pangenome,
including clustering and classification of orthologous and paralogous
genes and errors in automated gene identification, which can
introduce inaccuracies in the final set of sequences. Additionally,
programs designed for genome or pre-assembled genome
processing, such as Prokka [8] and Prodigal [20], might not perform as

well with a pangenome. For instance, CDS identification by Prodigal
is informed by the genome structure and organization and is
optimized based on what’s expected to be a complete, non-
redundant set of ORFs in a prokaryotic genome. This reliance on a
typical genome structure could have led to the lack of annotation of
some CDS in our pangenome, resulting in potentially important
missing information regarding variants and non-silent variants in
CDS regions, including potential AMR contigs.
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Ultimately, our pangenome resulted in a reference sequence four to
five times the size of a regular bacterial genome, leading to a more
significant computational load compared to typical microbial
genomics studies.

Despite these challenges, the pangenome allowed us to intentionally
generate a dataset that examines single-nucleotide variation in
specific genomic locations and encompasses the loss and gain
coding regions between strains. This common backbone was
essential to investigate a cohort of E. coli strains, as E. coli is known
for its dynamic genome, characterized by frequent DNA loss and
gain [3]. As a result, individual strains in this dataset are somewhat

similar to separate species where gene gain/loss is a critical
differentiator, but also resemble actively interbreeding individuals
where single-nucleotide polymorphisms are the primary form of
genetic variation. This complexity allows for analysis from both a
phylogenetic and a population genetic perspective. This data can
serve as a testbed for methods that apply to the study of genetic
variation within and between species, with the goal of integrating
these two approaches more completely.

These challenges and considerations highlight the importance of
accurately defining the scope and ambitions of a genotype–
phenotype study to rationally decide whether a pangenome is more
valuable than a single reference strain.

Computational resources and data
limitations
Producing the entire dataset required significant computational
power and runtime. For instance, generating all individual variant
calling files took a week with 50 CPUs, and the data generated,
including important intermediary files such as alignment files and
MPILEUP files, represented 15 to 20 terabytes. Such requirements
inevitably limit the number of genotype–phenotype datasets and
studies for large populations.
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This approach also limited the level of data and completeness of the
information we could save or generate. To reduce the size of the
MPILEUP files, we included information only for locations with
aligned reads. Similarly, when identifying variants, we saved
information in the vcf.gz file only for locations where we identified an
allelic variant. This choice further limited our ability to call the
reference allelic states in our final variant population. Consequently,
our final dataset in the variant calling format (VCF) file is incomplete,
as it only reports identified allelic variants. However, if further
investigations are needed, the missing information can be retrieved
from the associated BAM files.

Next steps
We have a few things in mind for using this dataset at Arcadia.

First, it’ll be an excellent candidate for testing and using our
phenotype encoder [37] and for carrying out phenotype–phenotype

predictions. It'll provide an opportunity to evaluate how the
autoencoder from our previous work handles datasets with multiple
missing phenotypes. Biologically, it’ll offer deeper insights into the
distribution and correlation of AMR phenotypes by identifying
interesting patterns of AMR phenotypes associations between
antibiotics and antibiotic classes.

Second, this dataset will be valuable for investigating gene–gene
interactions and building models to reconstruct gene networks from
genotype–phenotype information. This will enable a move from a
single-gene definition of phenotypes to a better characterization of
epistasis. Again, the existence of details regarding gene–gene
interaction in antimicrobial resistance will allow us to assess the
power and reliability of these models. This would also provide better
insights into the gene networks underlying antimicrobial resistance.
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Outside of Arcadia, we hope that microbiologists, population
geneticists, epidemiologists, and evolutionary biologists will also
find this dataset valuable. We're eager to hear from researchers
using it to better understand antimicrobial resistance mechanisms in
E. coli, predict the emergence of resistance, or conduct genotype–
phenotype predictions in future outbreaks. Although AMR is the
example phenotype for this work, the extensive variant matrix we
generated, mapping out the diversity within this large E. coli cohort,
isn't limited to studying AMR phenotypes. Researchers can use it to
identify the genetic basis of many other phenotypes in E. coli (across
all 7,000 strains or a subset). We hope researchers will use this
genotype mine to investigate phenotypes like host association,
metabolism, or stress response and provide feedback on other
interesting phenotypes to explore.
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