
Biology needs to become prospective

Since biological data are often non-independent, more data doesn't always
mean more insight. We argue that a prospective approach is needed to
uncover the deepest principles of life.

Purpose
Biology’s first big data era — defined by the opportunistic, random accumulation
of sequences and structures — is due for an overhaul. While biological foundation
models (BFMs) represent the zenith of this era, their utility will always be
hamstrung by the inherent non-independence of biological data. Massive
increases in data volume don’t yield proportional increases in unique information.
We argue that the next era of biology must be prospective rather than
retrospective. We show that even a simple Bayesian framework can move us
beyond the "bitter lesson" of brute-force scaling and instead treat biological
measurement as a strategic act of inference. There’s no excuse to gather data
blindly; biology must become prospective.

This pub is intended for computational biologists, machine learning researchers,
and anyone modelling the complexities of life. It’s especially relevant for funders,
decision makers, and researchers invested in large-scale biological data collection
efforts and the development of biological foundation models.

Background
With origins in the molecular biology revolution of the 1970s, biology’s first big
data era gained momentum about 25 years ago with the widespread availability of
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genome sequencing. Public databases have grown exponentially ever since [1].

Exploratory analyses of high-dimensional datasets have become commonplace,
and new data-oriented disciplines — such as bioinformatics, genomics (and -
omics in general), computational biology, and systems biology — have emerged.
Biological research has shifted mainly from being hypothesis- to data-driven [2] [3].

Biological foundation models (BFMs) sit at the zenith of this era. As large-scale
machine learning systems, BFMs leverage the avalanche of biological data
generated over the past quarter-century: molecular sequences (e.g., DNA, RNA,
proteins), cellular and tissue-level images, high-dimensional omics measurements
(e.g., transcriptomics, proteomics, metabolomics), and even entire genomes.
BFMs are designed as general-purpose statistical tools. They're extensively pre-
trained to capture broad, transferable representations that can adapt to diverse
applications. Cell-based BFMs (e.g., virtual cell models), for instance, may identify
therapeutic targets, engineer synthetic pathways, or infer emergent cellular
properties [4]. Sequence-based BFMs, including protein/genomic language models

(pLMs and gLMs), might generate novel sequences, annotate them, or explore
complex fitness landscapes [5]. What’s more, the internal representations learned

by BFMs may reflect deep principles about the organization of life [6].

BFMs are a fitting culmination of biology’s first big data era. They may well also be
the harbinger of its end. Like all statistical models, the utility of BFMs depends not
only on the volume of data but also on its composition [7]. The public databases

that supply most training material — e.g., UniRef [8], the Protein Data Bank [9],

MGnify [10], RefSeq [11], and GenBank [12] — have grown opportunistically, reflecting

the distributed and often biased sampling priorities of the biological community.
Unsurprisingly, data imbalances abound [13]. Around 40% of structures in the

Protein Data Bank are human [9] [14], UniRef is dominated by a few bacterial phyla

[14], and five species account for over 65% of the Sequence Read Archive [13].

These imbalances matter. Training data composition shapes what BFMs can learn:
high-frequency sequences disproportionately influence model predictions and
generations [15] [16]. Latent correlations between training, validation, and test data

can lead to data leakage, allowing models to reproduce patterns rather than
generalize them. Leakage has been documented across various modalities —
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pLMs [17], gLMs [18] [19], neuroimaging [20], and medical imaging foundation models

[21]. When data points are evolutionarily or structurally related, models can "cheat"

by exploiting redundancy, inflating apparent performance while leaving underlying
biases uncorrected. Statistical models that ignore these dependencies risk
pseudoreplication — the treatment of correlated measurements as independent
observations [22] [23].

Pseudoreplication can have various undesirable consequences, and tools for
mitigating it in BFMs are in their infancy. For example, biases observed in pLMs
and gLMs often arise from latent evolutionary relationships among training
sequences [19]. It’s possible that phylogenetic methods can help identify and

correct these relationships. Some recent models — such as Phyla [24], MSA

Pairformer [25], and STAR-GPN [26] — explicitly incorporate phylogenetic

information to achieve strong performance with comparatively few parameters.
Another approach is to prune non-independent data before training, although this
often reduces the effective sample size dramatically [14] [19]. This helps explain the

recent plateau in performance for many pLMs trained on UniRef50 [27] — a

potential "peak data" scenario in which models have already absorbed most of the
unique information available.

In general, the prevailing response to these challenges has been to scale further:
gather more data, train larger models, and embrace the "bitter lesson" that
compute and scale always win [28] [7]. BaseData [13] and OpenGenome2 [28] each

contain nearly ten trillion genomic tokens — orders of magnitude larger than
previous public resources. The Logan database lists over 100 billion proteins, a 30-
fold increase over UniRef50 [29]. The Earth BioGenome Project aims to sequence all

eukaryotic species [30]. While additional resources will undoubtedly expand the

capabilities of BFMs, all gains aren't created equal.

Like their predecessors, these massive datasets are also products of random,
opportunistic sampling. OpenGenome2 and Logan are derived from public
repositories [29] [28], whereas BaseData expands through large-scale environmental

sequencing [13]. Each new data source introduces new information. They also

introduce redundancy. Because of evolutionary nonindependence, statistical
power doesn't scale linearly with sample size. A 30-fold increase in data volume
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doesn't yield 30-fold increases in unique information. Indeed, once redundancy is
accounted for, effective sample sizes shrink drastically — sometimes to a fraction
of the nominal database size. Non-independence also exists on a continuum;
nearly every protein family shows some degree of correlation [19].

Consequently, for every sequencing dollar spent under random sampling, some
fraction inevitably funds the recollection of information we already possess —
information that's duplicated at molecular, structural, or evolutionary levels. We
seldom know how much redundancy we're adding, where it occurs, or how it
biases downstream models. What’s more, our understanding of the limitations of
BFMs has been entirely retrospective. We typically train a massive model,
celebrate its scale, and only then perform forensic audits to discover what it
actually learned. Worse, we still lack a precise estimate of how much data — or
which model architectures — will be required for BFMs to truly generalize across
biology. From a taxonomic standpoint, we have only begun to scratch the surface:
reference genomes exist for roughly 1% of eukaryotic species [30], and billions of

prokaryotic lineages remain undiscovered. If our goal is to uncover general
principles of life, the gap remains daunting.

So how should biology move forward? Passive, random data accumulation will no
longer suffice. And just because the cost of generating, storing, and analyzing data
decreases over time, we shouldn’t indiscriminately capture it. Nonindependence
ensures that the effective number of unique biological dimensions grows far more
slowly than the number of measurements. Exclusively retrospective analyses will
also be insufficient as data, computation, and model size all scale. Biology’s next
era must be prospective: linking what we already know to what new observations
can teach us — a way to quantify novelty, redundancy, and diminishing returns as
data accumulate and models update.

Fortunately, transitioning from blind accumulation need not require Herculean
efforts. Many frameworks already exist to help guide the collection of information.
Even basic, if imperfect, application of these frameworks would benefit
comparative data collection. What’s more, these frameworks are flexible. As long
as the user can capture their data via a distribution and define a reasonable
measurement goal (more on this below), many of these approaches can be
applied to data in an agnostic manner. The utility of new data, whether RNA
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expression levels, genome sequences, or medical images, can be assessed within
these frameworks, enabling comprehensive analysis of a broad range of biological
data.

In what follows, we outline a basic framework for Bayesian collection of
comparative biological data. Our goal is to highlight how we might transition from
random, scale-driven data collection to an adaptive, inference-driven process —
one that treats biological measurement as an act of learning rather than mere
accumulation. To be more explicit, if you’ve ever wondered about the source,
composition, or structure of data that'll best inform your downstream purpose
(more bang for your data collection buck), this is for you.

The idea
Bayesian reasoning formalizes learning from evidence as an iterative process:
prior beliefs are updated by new data to yield a posterior distribution that
captures remaining uncertainty. This framing is particularly natural for biological
data, which are heterogeneous, hierarchical, and non‑independent. In what
follows, we interleave key Bayesian concepts with a concrete case study — the
AlphaFold Database (AFDB) — to show how Bayesian thinking can guide not only
retrospective analysis, but prospective data collection.

The AFDB contains over 214 million predicted protein structures [31]. Recent work

has aggregated these structures into ~2.3 million clusters, each representing a
putative structural or functional class [32]. These structures span organisms across

the tree of life (ToL), yet the database is far from uniform [14]. Previous analyses

showed that a small number of bacterial taxa dominate the AFDB and tend to yield
higher-confidence (pLDDT) predictions. At the same time, many other lineages —
particularly across eukaryotes — remain sparsely sampled [14]. Importantly, these

disparities persist even after data balancing, suggesting that simple reweighting
can't compensate for missing diversity [14]. The problem isn't how to rebalance

existing data, but where to collect new data.

This question — where would additional data provide the greatest return? — is
naturally Bayesian. Answering it requires us to be explicit about (i) our prior
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knowledge, (ii) how new observations update that knowledge, and (iii) the specific
quantity we want to optimize.

An initial decision concerns the unit of analysis. Should new data be counted as
individual proteins, Foldseek clusters, environmental samples, or whole
proteomes? Different choices imply different priors and different interpretations.
Here, we focus on species‑level proteomes obtained through genome
sequencing. Each new species is treated as a single experiment that updates our
understanding of protein structural space.

Given this choice, each proteome can be represented as a discrete distribution
over Foldseek clusters: the counts of proteins belonging to each of ~2 million
clusters define a species‑specific "structural footprint." Aggregating these
footprints across all previously sequenced species yields a natural prior — a
Dirichlet distribution over protein clusters — that encodes our current beliefs
about how protein structures are distributed across life.

When a new species is sequenced, its observed cluster footprint can be evaluated
under this prior. In Bayesian terms, this is the likelihood: the probability of
observing that particular distribution of clusters given our existing model.
Updating the prior with this likelihood yields a posterior Dirichlet distribution that
reflects how our beliefs about protein structural space have changed after
incorporating the new proteome.

This framing emphasizes that not all new data are equally informative. A species
whose proteome closely resembles those already sampled will induce only a
slight shift in the posterior. In contrast, a species enriched for rare or novel
clusters will substantially reshape it.

To formalize this intuition, we must specify our estimand — the quantity we aim to
measure. Here, we define the estimand as the information provided by a new
proteome. Operationally, this is captured by the Kullback–Leibler (KL) divergence
between the prior and posterior Dirichlet distributions. We refer to this quantity as
the information gain (IG).

Under this definition, IG is low when a proteome essentially reinforces existing
beliefs and high when it introduces substantial novelty. Crucially, IG is conditional:
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it depends on the current prior, the unit of analysis, and the way data are
incorporated.

Before quantifying information gain, it's useful to examine the global relationships
among species‑level proteome fingerprints (Figure 1). Nonlinear embeddings of
these distributions reveal broad taxonomic structure. Species cluster by domain —
Eukaryotes, Archaea, and Bacteria — and, to a lesser extent, by kingdom (Figure 1).
Two bacterial clades, Pseudomonadati and Bacillati, dominate the embedding,
while eukaryotes separate into fungi/metazoa and viridiplantae (Figure 1). These
patterns suggest that proteomes are neither independent nor redundant, and that
taxonomy provides an informative — if imperfect — prior for estimating novelty.

Our first analysis asks: how much information do species from different taxa tend to
contribute? For each phylum, we construct a prior that excludes that phylum and
compute the IG for each of its species. This approach treats species as
independent and ignores proteome size, making it a coarse, taxonomy‑only
baseline that reflects minimal prior knowledge.
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(A) Example protein cluster "fingerprints" for major phyla. Protein number is indicated by the
heatmap; more proteins in a cluster correspond to a darker color (white indicates no proteins in the
cluster). Global totals are indicated by the top row. Included are the 500 largest AFDB structural
clusters. Kingdoms are indicated by color to the left of the fingerprints.
(B) UMAP embedding of per-species AFDB fingerprints. Species are colored by kingdom.
(C) Distribution of species abundance in the dataset by kingdom.

Apparent domain‑level differences emerge (Figure 2). Eukaryotic phyla contribute
substantially more information on average (mean IG = 4999 bits) than bacterial
(523 bits) or archaeal phyla (166 bits). Streptophyta (land plants and green algae)
exhibit the highest mean IG (IG = 11516 bits), while Aquificota rank lowest (IG = 2
bits). Eukaryotic phyla also show more consistent IG values within phyla, whereas
bacterial phyla display much greater variability (p = 2 × 10 ; Kruskal–Wallis test on
phylum-level coefficients of variation) (Figure 2). Taken at face value, this suggests
that expanding eukaryotic — particularly plant — sampling could yield significant
gains in protein structural novelty.

Figure 1. Overview of proteome variation in the AFDB.

−5
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IG is plotted as the logarithm of bits. The kingdom associated with each phylum is indicated by color.
Median IG is indicated by the dashed line.

However, Bayesian estimates inherit the structure of the data-generating process.
Eukaryotes tend to have much larger proteomes than prokaryotes, and IG is
positively correlated with the number of proteins per species. More proteins
naturally provide more opportunities to observe rare clusters. Indeed, most phyla
follow a shared linear relationship between proteome size and IG (r = 0.53;
Pearson correlation) (Figure 3).
Viridiplantae nonetheless remain partial outliers, exhibiting higher IG than taxa
with comparable proteome sizes. Extensive genome expansion and diversification
in plant lineages may generate not only more proteins, but also more structurally
diverse ones. From a Bayesian perspective, these proteomes induce huge
posterior updates.

High information gain, however, doesn't necessarily imply efficient data collection.
Large, repetitive genomes are costly to sequence and assemble. To account for
this, we modify our likelihood function by holding sampling effort constant.
Instead of whole proteomes, we randomly sample fixed‑size subsets (n = 100

Figure 2. Phylogeny and paired violin plot of information gained (IG) per phylum.
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The kingdom is indicated by color. r = Pearson’s correlation coefficient.

proteins) from each species and compute IG for these subsamples, repeating the
process to estimate average IG per n proteins.

This efficiency‑adjusted analysis reverses the earlier taxonomic patterns.
Prokaryotic phyla now appear more information‑rich per sampled protein, with
Mycoplasmatota ranking highest (Figure 4). All eukaryotic phyla fall below 0.2 bits
of IG per 100 proteins (Figure 4). These results support the intuition that broad
microbial sampling — such as metagenomics — can be an exceptionally efficient
way to explore protein structural space.

Figure 3. Scatter plot highlighting the relationship between proteome size and IG (plotted as
the logarithm of bits).
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IG is plotted as the logarithm of bits. The kingdom associated with each phylum is indicated by color.
Median IG is indicated by the dashed line.

Yet efficiency isn't the whole story. Under subsampling, IG variance is strongly
negatively correlated with mean IG (r = −0.93; p = 4.95 × 10 ) (Figure 5).
Eukaryotes, while exhibiting lower mean IG per subsample, display much broader
IG distributions: each random draw of 100 proteins is more distinct than
comparable draws from prokaryotes. This highlights sampling density as a critical
design parameter. Sparse sampling favors prokaryotes, while deeper sampling
may allow large eukaryotic proteomes to continue yielding novelty.

Figure 4. Phylogeny and paired violin plot of information gained (IG) per phylum using
permutation-based sampling.

−23
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The kingdom is indicated by color. r = Pearson’s correlation coefficient.

Together, these examples underscore a central lesson: there's no single optimal
dataset independent of context. The value of new data is conditional on our goals
(the estimand), our current knowledge (the prior), and our constraints on sampling
effort. If the aim is to maximize total structural novelty, eukaryotic genomes offer
the highest ceiling. If efficiency per sequenced residue is paramount, microbial
diversity provides the best return. By explicitly formalizing these trade-offs, a
Bayesian framework empowers us to replace blind accumulation with strategic
design. It moves the field from a retrospective audit of what's been learned to a
prospective calculation of what should be measured next, ensuring that future data
collection isn't just extensive, but intentional.

Conclusion
The end of biology’s first big data era isn't a signal to stop measuring; rather, it's a
mandate to start measuring differently. As our examples demonstrate, the value of
a biological dataset isn't intrinsic to its size (in terabytes) or breadth (in species
count), but rather depends on the question being asked and the knowledge we
already possess. Viewed through this lens, we see an inversion of the "bitter

Figure 5. Scatter plot highlighting the relationship between the coefficient of variation
(mean normalized variance) and mean IG (bits) under permutation-based sampling.
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lesson" [33]: efficient compute doesn’t require data to be simply abundant or

diverse, but of high utility.

Transitioning to this prospective framework offers a path out of the plateau of
diminishing returns. By explicitly modeling the dependencies between biological
entities — whether they're evolutionary relationships between species or
structural similarities between proteins — we can calculate the expected
information gain of a proposed experiment before a single sample is sequenced.
This effectively closes the loop between the "dry lab" of model training and the
"wet lab" of data generation. Instead of being passive consumers of opportunistic
databases, biological foundation models can become active participants in the
scientific process, guiding experimentalists toward the "dark matter" of the
biological universe — the rare, the divergent, and the truly novel.

Ultimately, the future of biological discovery won't belong to those who merely
accumulate the largest haystacks or automate its brute force collection, but to
those who develop the sharpest magnets for finding needles. By replacing random
sampling with the precision of inference-driven design, we can ensure that the
next era of biology is defined not just by how much we read, but by how much we
learn.

Methods

The data we used are available on Zenodo.

Data acquisition and taxonomic classification
We obtained protein cluster data and associated metadata from Barrio-Hernández
et al., 2023 [32]. Taxonomic information for each protein was retrieved by querying

NCBI taxonomy identifiers using the taxonomizr (v0.11.1) [34] and taxizedb (v0.3.1)

[35] R packages. To ensure robust statistical comparisons, we filtered the dataset to

include only species with high-quality proteome representations: a minimum of
500 proteins for Bacteria and Archaea, and 5,000 proteins for Eukaryota. To allow
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permutation-based testing, we focused on phyla represented by at least 10
species within the filtered dataset.

A global phylogeny was derived from the Timetree of Life [36]. To visualize broad

evolutionary patterns, we simplified this tree to the phylum level using a custom
subsampling approach: one representative species was randomly selected per
phylum to serve as a tip label, and the tree was pruned accordingly using the
ape package in R (v5.8) [37].

Characterizing taxonomic "fingerprints"
To define the protein landscape of different taxa, we calculated the distribution of
protein cluster IDs for each species and phylum.

We identified the 500 most frequent protein clusters across the entire dataset to
create a reference matrix. Distributions were normalized to the maximum cluster
count within each taxon to allow for comparative visualization alongside the
phylum-level phylogeny.

To explore high-dimensional structure in protein distributions, we identified the
top 10,000 protein clusters. We performed principal component analysis (PCA) on
the species-by-cluster frequency matrix, followed by uniform manifold
approximation and projection (UMAP) [38] on the first 200 principal components to

visualize taxonomic grouping in two dimensions.

Quantifying information gain
We employed a Bayesian framework to quantify the "novelty" or information
content of a proteome relative to an established evolutionary background.

Example 1: For a focal phylum, a Dirichlet prior was established based on the
protein cluster distributions of all other phyla in the dataset. The prior
concentration parameters ( ) were estimated using an empirical Bayes approach
via the optimize function to maximize the Dirichlet-multinomial marginal
likelihood.

We calculated the information gain (IG) for each species by measuring the
Kullback–Leibler (KL) divergence between the prior and posterior distributions,

α
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both updated with the focal species' protein counts.

where  is the sum of  parameters and  is the digamma function. Results were

converted from nats to bits for interpretability.

Example 2: To control for the confounding effect of proteome size — where larger
genomes naturally accumulate more information — we performed a permutation-
based subsampling analysis. For each species, we randomly sampled 500 proteins
and recalculated the IG over 10 iterations. This standardized metric allowed us to
compare the "density" of novelty across diverse taxonomic groups regardless of
total protein count.

Statistical differences in IG and its coefficient of variation across domains
(Bacteria, Archaea, and Eukaryota) were assessed using Kruskal–Wallis tests. All
visualizations, including phylogenetic heatmaps, UMAP plots, and violin plots of IG
distributions, were generated in R using the arcadiathemeR (v0.1.0) [39] and vioplot

(v0.5.0) [40].

The code for this work is available in this GitHub
repository (DOI: 10.5281/zenodo.18475275).

AI usage
We used ChatGPT (GPT-5 Thinking) to help write code, help clarify and streamline
text that we wrote, and suggest wording ideas and then chose which small
phrases or sentence structure ideas to use. We also used Grammarly Business
and Gemini (3.0 Pro) to suggest wording ideas and then chose which small
phrases or sentence structure ideas to use.

D ​(P ​∣∣P ​) =KL post prior ln ​ −
Γ(A ​)0

Γ(A ​)p ln ​ +∑
Γ(α ​)0,i

Γ(α ​)p,i (α ​ −∑ p,i α ​)(ψ(α ​) −0,i p,i ψ(A ​))p

A α ψ
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