Performing mass spectrometry-based
proteomics in organisms with minimal
reference protein databases

If you're interested in generating proteomics data but your organism of
interest doesn’t have a sequenced genome to use as a reference database, it
is straightforward and useful to collect a transcriptome instead.
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Purpose

When we first started planning our project to find useful biomolecules in tick
saliva, we struggled with the lack of sequenced genomes and other omics
datasets. We were most interested in proteomics, but our tick species of interest
lacked a reference database, so we decided to simultaneously develop a
transcriptome and a mass spec-based proteome.

We're sharing our method and detailed protocol to make it easier for researchers
studying other non-model organisms to apply this approach, and hope it will be
especially helpful for those without a background in sequencing or proteomics.

e This pub is part of the project, “Ticks as treasure troves: Molecular discovery
in new organisms.” Visit the project narrative for more background and
context.

e We used this method to generate a dataset from tick salivary glands,
described here.

e This method features a detailed protocol, which you can view here.


https://research.arcadiascience.com/ticks-molecular-discovery
https://research.arcadiascience.com/ticks-molecular-discovery
https://research.arcadiascience.com/pub/data-set-transcriptome-proteome-amblyomma-americanum
http://dx.doi.org/10.17504/protocols.io.5qpvobqn9l4o/v2

The problem

Don't need background? Jump to “The method.”

Bottom-up, tandem mass spectrometry-based proteomics is a key technology for
detecting both protein sequences and post-translational modifications like
phosphorylation, sulfation, lipidation, or glycosylation. However, using this
technique requires a database containing all protein sequences expected to exist
in a biological sample set (Figure 1).
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Figure 1. How proteomic information can be generated or inferred, and which types of
information depend on each other to be useful.

Experimental mass spectrometry data (lower trapezoid) are decoded using hints generated by
genomics and transcriptomics data (upper trapezoid). These two data types converge during the
proteomics data analysis process, wherein experimental fragmentation mass spectra are compared
to theoretical mass spectra generated from genomic and transcriptomic sequencing experiments.



Why do we need a protein database?

Modern mass spectrometry-based protein identification techniques involve
shattering peptides to generate patterns called fragmentation spectra. For the
most part, each spectrum (generated from the fragmentation of a given molecule)

is unique, like a fingerprint. Fingerprints are useful when we have something to
which we can compare them. In that sense, a protein database is like a fingerprint
database—it lets us 1) match each experimental spectrum (fingerprint at a crime
scene) to a known/predicted peptide (fingerprint in a database), and 2) it tells us
what larger protein that peptide came from (whose finger left the print).
Additionally, a fingerprint database is very useful for matching imperfect mass
spectra, which tend to be the majority of spectra collected. Sometimes peptides
fail to fully fragment, yielding small ambiguous segments within a larger
sequence. Knowing that these imperfect fragmentation spectra can map to only a
limited number of possible peptides gives us confidence in an otherwise
ambiguous assignment.

Before we do mass spec, we treat our experimental proteome sample (protein
mixture) with a protease that chews all the proteins into smaller fragments, or
peptides. Next, the peptides are run through the mass spectrometer, generating a
pattern of unique fragmentation spectra. How do we interpret these spectra?
When we have a protein database for the organism we're studying, we can
computationally predict all the peptide sequences that will result from digesting
all possible proteins in the organism), and generate what their fragmentation
spectra would look like. By comparing these theoretical spectra to those from our
experimental sample, we can decode the signal and deduce which of the
reference peptides are actually in our sample. This process can be high-
throughput, letting us identify many proteins very quickly.

Many organisms lack reference databases

Well-studied "model organisms" are highly represented in public sequencing
repositories and a quick trip to the NCBI or UniProt will likely yield good-quality
reference proteomes assembled by other researchers. But for non-model
organisms, reference databases are scarce. The method describes parallel work
streams in which we 1) use transcriptomics to build a reference protein
database and 2) perform mass spectrometry-based proteomics experiments.


https://youtu.be/VcbbG7Y5qIs?t=11

The work streams converge during data analysis, when we use the new
reference protein database to help interpret the mass spec data.

We want to find interesting components of tick saliva, especially those that
interact with the human body. We used this new method to generate a dataset
from the salivary glands of lone star ticks, but we hope this approach will be
broadly useful in enabling proteomics in any organism for which there is a paucity
of reference genomic, transcriptomic, or proteomic data.

Why is this useful?

Using mass spectrometry for proteomic analysis is straightforward for organisms
with pre-existing reference databases, but most non-model organisms lack such
information. The approach described here lets scientists simultaneously
gather new proteomic data from mass spectrometry while doing RNA
sequencing to create a protein database to compare with the proteomic
data.

Notably, while many transcriptomics studies rely on short-read RNA sequencing,
our method uses long-read sequencing. This can be advantageous for resolving
long repetitive genomic regions, speeding up genome assemblies, yielding more
complete contigs, and in this case, providing insights into the full structures of
transcripts without assembly.

Ultimately, this method generated a robust, long-read, transcriptome-based
proteome database that compares reasonably well to pre-existing data. Our
approach enabled detection of approximately 9% more peptide spectrum matches
(PSMs, the number of experimental spectra that we can match to a theoretical
spectrum) and peptides (the number of peptides identified; a given peptide may
have many mass spectra) than were represented in the prior database, and
favored detection of longer protein sequences, which may enable a more
complete understanding of function.

It may be helpful to check out our full description of the tick salivary gland dataset

that we generated through this approach.


https://research.arcadiascience.com/pub/data-set-transcriptome-proteome-amblyomma-americanum
https://research.arcadiascience.com/pub/data-set-transcriptome-proteome-amblyomma-americanum

The strategy

We set out to create a comprehensive method for learning about the proteome in
tissues from non-model organisms. We decided to use mass spectrometry to
detect proteins in our sample of interest. Because specific protein sequences in
mass spec data can generally only be identified by comparing to a reference, we
knew we’d also need a reference protein database. There is a paucity of genomic,
transcriptomic, and proteomic data for many non-model organisms, so we
decided to split our method into two parallel work streams (Figure 2) after initial
sample collection: one includes RNA sequencing to develop a reference protein
database; the other includes performing proteomic mass spectrometry. The two
work streams come together for the final step, data analysis, as the mass spec
data is best interpreted using a transcriptome-based protein database.

RMNA seguencing
Enrich mRMNA and . Preplibrary and
> Extracttotal RNA — ot for 2-10kb 7 sequence RNA
Collect sample LAL N . Analyze data
w .

s N
Sy
Prepare salivary N tDlg:;?_lttgsa;i:;Pe y Pertorm
gland lysate » d¥psinicg LC-MS/MS

smaller peptides

Proteomics mass spectrometry

Figure 2. Overview of the parallel transcriptomic (top) and proteomic (bottom) work
streams.

We encountered a few key decision points in designing our approach, which are
described in depth below (or you can skip to the step-by-step description of the
overall method). Let us know if you try this and tweak any of these procedural
options—we’d be curious to hear how it may influence the quality or nature of the
resulting data.



https://arcadia-research.pubpub.org/pub/method-mass-spec-proteomics-transcriptomics#the-method
https://arcadia-research.pubpub.org/pub/method-mass-spec-proteomics-transcriptomics#the-method

MRNA enrichment — Poly-A enrichment vs. rRNA
depletion

Ribosomal RNA (rRNA) tends to dominate in the total RNA mixture extracted from
samples (~80% of total RNA composition) and occludes the protein-coding
messenger RNA (MRNA) transcripts that we're interested in profiling. Thus, we
needed a way to enrich mRNA. One approach involves the negative enrichment of
rRNA, using capture techniques hinged on complementary nucleotides specifically
designed for each species's rRNA sequences. The other, more common approach
is the positive enrichment of mRNA via oligo-(dT) primers that target mRNA
containing poly-A tails. rRNA negative enrichment advantageously enables the
detection of non-coding RNA and mRNA without poly-A tails, but comes with the
added burden of troubleshooting rRNA probe design for non-model organisms.
Since this was our first shot at transcriptome profiling, we took the path of least
resistance and performed mRNA poly-A based enrichment using oligo-(dT) probes
instead.

RNA sequencing — Long-read vs. short-read

Sequencing technology selection was our most crucial decision point. lllumina
powers the dominant platform and enables the assembly of genomes and
transcriptomes via highly accurate nucleotide fragments hundreds of base pairs in
length (short-read sequencing). In contrast, the dominant long-read sequencing
platforms supported by Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) are able to assay contiguous nucleotide fragments in the
multi-kilobase and megabase range, respectively. PacBio and ONT have lagged
behind Illumina over the last decade due to lower-accuracy basecalls and lack of
sequencing depth, but recent technological improvements have brought their
platforms' sequencing accuracy within competitive range of lllumina.

Long-read sequencing data can provide insights into the full structures of
transcripts without assembly. Our interest in full transcript structures brought us
to PacBio's relatively mature HiFi Iso-seq methodology as a first choice. In
addition, we figured it would provide a great complement to the Mulenga lab's
short-read dataset collected on the same tick species [11.


https://doi.org/10.1371/journal.pntd.0007758

Protein identification — Mass spectrometry vs.
immunoprecipitation or Edman degradation

We hope that mass spectrometry will be advantageous in this context because it
lets us analyze cell-free secretions. Importantly, it is suited for the detection of
non-encoded molecules/modifications, which can include protein post-
translational modifications (e.g. phosphorylation, sulfation, lipidation,
glycosylation, etc.), non-ribosomal peptides, and small molecules (metabolomics).
Other protein identification tools like immunoprecipitation and Edman
degradation are also available options, but these methods can be low-throughput
and require non-trivial amounts of purified protein (which can be difficult to
obtain in some settings).

The method

The following is a high-level overview of our approach, also visually summarized in
Figure 2. You can view a detailed, step-by-step protocol on protocols.io.

Sample collection

Our efforts began with the excision of salivary glands from unfed female
Amblyomma americanum ticks 21. While our interest lies in ticks, this method

should work with tissue from any organism.

RNA extraction and quality control

We pooled about 10 ticks worth of salivary gland tissue and obtained total RNA
using a standard extraction kit.

We collected electropherograms to calculate RNA integrity number (RIN), which is
a ratio of the 28S:18S ribosomal RNA (rRNA) subunit peak areas and a proxy for
RNA quality.

MRNA enrichment

Next, we needed to enrich mRNA from the total RNA mixture, as rRNA tends to
dominate. We used positive enrichment of mRNA via oligo-(dT) primers, which
target mRNA containing poly-A tails.


http://dx.doi.org/10.17504/protocols.io.5qpvobqn9l4o/v2
https://doi.org/10.3791/3894

RNA sequencing

We submitted our samples to the UC Berkeley QB3 genomics core for size-
selection (> 3 kb), PacBio's library preparation, Sequel Il HiFi sequencing, and Iso-
seq analysis.

Tandem mass spectrometry-based proteomics

In parallel to the RNA processing and sequencing steps, we prepared tryptic
peptides from A. americanum salivary gland lysate and analyzed them by data-
dependent LC-MS/MS using a high-resolution strategy on an Orbitrap mass
spectrometer.

Transcriptomic and proteomic data analysis

Our overall computational pipeline is summarized in Figure 3. We identified
coding sequences in our transcriptome data using TransDecoder 35, CPAT 145, and

ANGEL (5. We combined our resultant output and submitted all sequences for
BUSCO analysis 1. Next, we collapsed sequences down by CD-HIT clustering with
a similarity setting of 100% (c = 1.0) 7181 to deduplicate, and then we used these
CD-HIT-collapsed sequences for subsequent proteomics mapping. For functional
analysis, we further clustered these sequences down using CD-HIT with a
similarity setting of 95% (c = 0.95) in order to group closely related sequences.

Representative sequences for each of these 95% cutoff clusters were submitted for
Interproscan analysis o).
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Figure 3. Overview of data analysis workflow and tools.



https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
https://doi.org/10.1093/nar/gkt006
https://github.com/PacificBiosciences/ANGEL
https://github.com/PacificBiosciences/ANGEL
https://busco.ezlab.org/
https://doi.org/10.1093/bioinformatics/btv351
http://cd-hit.org/
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/bts565
https://www.ebi.ac.uk/interpro/search/sequence/
https://doi.org/10.1093/bioinformatics/btu031

We assigned fragmentation spectra with a basic proteomic search. We compared
the overlap between PSMs and peptides identified using various databases. In
order to compare protein-level results, we further clustered sequences using CD-
HIT at a 65% similarity cutoff (c = 0.65). Our intent was to group moderately related
sequences and gain an orthogonal view of the number of protein clusters
identified by each database. Since we developed this method to study lone star
ticks and don't have a genome to which we can map transcripts, it can be difficult
to group transcripts accurately due to alternative splicing events. One of the
easiest operations we can do until we have a genome is to cluster the sequences
we do have by a similarity metric.

To see a representative output from this method, check out our tick salivary gland

dataset.

What's next?

We developed this method to gain insight into the tick salivary gland proteome,
and are now analyzing that dataset.

If you decide to try this or a similar method in your own research, we'd love to
hear how it goes. Let us know if you have any questions!
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