An experimental and computational
workflow to characterize nematode motility
behavior

We used straightforward microscopy and computational analyses to
reproducibly characterize a nematode motility phenotype with
interpretable features. This method should be scalable for high-throughput
phenotypic screening.
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Purpose

Behavioral phenotypes can be informative discovery tools, but the generally high
variability of such readouts limits their utility. As part of our microscopy toolkit, we
developed and optimized a protocol to measure a motility-based behavioral
phenotype in Caenorhabditis elegans. Our phenotyping results were reproducible
between replicates and showed consistent differences between strains, which
could enable their use in high-throughput genetic or drug screens.

We're sharing our detailed protocol to help researchers employ nematode motility
behavior as a phenotypic readout.

e This pub is part of the platform effort, “Microscopy: Visually interrogating
the natural world.” Visit the platform narrative for more background and
context.

e The Snakemake workflow and notebooks to analyze C. elegans videos for
motility phenotypes are available in this GitHub repository.

e Protocols for C. elegans genotyping, culture and maintenance, bleach life-
stage synchronization, and prepping worms for image acquisition are
available on protocols.io.
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 Raw and processed imaging data can be found at the Biolmage Archive.

Background and goals

Because of the importance of disease models in biomedical research and drug
development, we're interested in leveraging evolutionary insights to identify better
organismal models of human disease. Toward this goal, we developed an
organismal selection framework (1] that found that PDE6D, along with several other

human genes that cause monogenic retinitis pigmentosa, exhibited exceptional
molecular conservation between C. elegans and humans. Mutations in PDE6D
result in neurodegeneration of photoreceptor cells and progressive blindness [2).
Given this insight, we were interested in whether C. elegans with mutations in pdl-
1, the conserved PDE6D homolog, could function as a low-complexity, high-
throughput model of neurodegeneration in retinitis pigmentosa.

Phenotypic screening lets us discover novel regulators of traits even when our
tools to enable nondestructive phenotypic characterization of a broad range of
species. One of the species-agnostic parameters we're exploring for this toolkit is
motility. Motility integrates critical features of living systems, including
bioenergetics, biomechanics, and response to stimuli. We've previously developed
and published a method to characterize motility in a single-celled organism,
Chlamydomonas reinhardtii 31, and are expanding this tool to Caenorhabditis elegans

(C. elegans), a metazoan.

As a model/assay pair, C. elegans motility has many advantages. C. elegans is
multicellular, so it captures biological traits that emerge from the coordinated
behavior of several cell types in tissues or organs. However, it's still small enough
for high-throughput experiments [41. Motility data from this species can be
acquired and analyzed non-destructively using light microscopy at low
magnification, a broadly available tool 51. Additionally, many computational
methods are available to analyze C. elegans motility that could serve as a basis for
an analytical workflow e)71. We sought a workflow to leverage these advantages

while controlling for the high natural variability inherent to behavioral analyses.
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The problem

We wanted an end-to-end experimental and computational approach for tracking
worm motility. While many researchers have developed approaches for C. elegans
motility tracking, we wanted an approach that:

1.

Would allow us to track varied motility phenotypes from many different C.
elegans strains without a priori knowledge of what phenotype we should
expect to see.

. Would produce interpretable motility features. We favored approaches in

which a feature intuitively describes a phenotype (i.e., worm speed).

. Would allow us to use our existing microscope. Some motility tracking tools

require a specific imaging setup, but we didn't want to acquire new
hardware and wanted to rely on basic laboratory consumables for worm
handling. This has the additional benefit of making the method accessible to
a broader set of researchers.

. Didn't require specific dyes/stains/fluoresence to track the worms. We didn't

want to introduce additional variables into the screen sjo.

. Could be adapted to high-throughput screens. While we started with a low-

throughput approach, we wanted to be able to track the motility of multiple
worms.

. Would use software that's explicitly been built for C. elegans motility tracking

(as opposed to general motility tracking r101) and has been used in many

motility tracking experiments. This would make any results we produced
potentially comparable to studies that used the same analytical method and
provide confidence that the software had fewer bugs or inaccuracies. We
also looked for open-source tools that were easily installable, ran after
installation without changes to the source code, and had a commercially
compatible license.

Our solution

We set out to develop a combined experimental and computational workflow to
characterize diverse strains of C. elegans with unknown motility phenotypes. We
began by selecting the motility-tracking software we wanted to use to analyze our
imaging data. While many tools exist for worm tracking rezi8ieir11112111310141[151116](17]
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18], we found that only Tierpsy Tracker met all of the conditions we were

interested in re171.

Using our existing hardware, we tailored our data acquisition approach to the
Tierpsy tracker tool. We introduced a life stage synchronization step to make the
worms more uniform and easier for Tierpsy Tracker to detect, and we designed a
buffer transfer approach to minimize background artifacts that made worm
detection difficult. For imaging, we developed a low-throughput assay performed
on 6 cm plates using an upright microscope. We imaged multiple fields of view
from each plate and took 30-second videos of each field, each containing multiple
worms. These optimizations significantly improved our ability to track worm
movement with the Tierpsy Tracker tool.

We then built an automated computational workflow to track motility phenotypes
of individual worms from this imaging data. This workflow performs
preprocessing and quality control before running the Tierpsy Tracker tool.

As a positive control for assay development, we selected a worm strain with a
characterized motility phenotype to reproduce with our pipeline. We selected a
mutant with a large-scale deletion in the nematode gene pdl-1 (allele gk157). We
then sought to reproduce this known phenotype — increased speed and reduced
dwelling 111 — in our analysis.

Why is this useful?

This approach can be used to characterize the motility of different C. elegans
strains. Our experimental protocols don't require specialized tools (except for a
widefield upright microscope), and we have optimized them to generate
reproducible results using our automated analysis pipeline. This pipeline is an
end-to-end automated Snakemake pipeline that ingests movie files, processes
them, and detects interpretable features. This pipeline can be run on a Linux
computer through the command line, and we also provide an analysis approach
that can be used to detect features that are significantly different between imaging
conditions (such as comparing mutant worms to WT). In principle, other groups
can adapt this method to study the behavioral effects of other factors, such as
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drugs or environmental stimuli. With further development, it could also form the
basis of a high-throughput phenotypic screening approach in C. elegans, enabling
the discovery of novel biological mechanisms and/or therapeutic candidates.

The method

This method enables a researcher to generate and analyze C. elegans imaging data
and to process these data into a motility phenotype composed of 150 features:
distinct, quantifiable parameters that capture different facets of worm motion. We
have also included our protocols for culturing and genotyping worm strains,
should they be useful. Figure 1 presents a visual summary of the workflow. We
optimized these steps using the pdl/-1(gk157) deletion mutant described above.
You can find protocols associated with the experimental workflow in Figure 1, A on
protocols.io. They describe this process under baseline culture conditions using 6

cm Petri dishes, but you can adapt these parameters as necessary.
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Figure 1. Experimental and computational workflow overview.

(A) Diagram of experimental setup. We expanded worms under standard culture conditions (1). We
then performed a life-stage synchronization using alkaline bleach treatment to synchronize worms to
the L1 larval stage (2). After growing these to adulthood (3), we use M9 buffer to transfer the worms
to a fresh plate with growth medium without OP50 bacteria to facilitate clearer imaging (4). Finally,
we image the synchronized adults using our upright microscope (5).

(B) Image processing. To process images into motility measurements, we begin by converting images
from Nikon format (ND2) to TIFF (1). We then apply a difference of Gaussians filter to improve worm
segmentation (2). We convert these images to MOV format (3) and use Tierpsy Tracker to estimate
per-worm and per-frame motility measurements for 150 initial features (4). We also produce two
quality-control images. The first shows a projection of all video frames, allowing the viewer to see the
full path of each worm in one image. The second compares the first frame of the Tierpsy Tracker
mask to the first frame of the MOV so the viewer can see which worms Tierpsy Tracker successfully
detects. Steps with dashed lines create temporary files.

Analysis. To engineer motility features and compare strains, we read in the initial Tierpsy Tracker
motility measurements (1) and filter to worms detected for at least 10 consecutive seconds (2). We
then take an average of the 133 relevant features to create our motility features (3). Last, we test for
differences between strains using a generalized linear model (4).

Step 1: Culture worms and set up experiment

The major challenge in animal behavior assays is the inherent variability of
behavioral parameters, so we sought to limit variability in the experimental set-up
(Figure 1, A). The most significant way we did this was by incorporating a life-stage
synchronization step at the beginning of the experiment, minimizing the



confounding effects of age-related differences in body size, morphology, and
motility behavior.

We began by expanding two C. elegans strains that we'd been actively culturing, N2
(wild type) and pdI-1(gk157), so that we had many gravid young adults for
synchronization. Life-stage synchronization in C. elegans involves bleaching gravid
adults so that they die and release their fertilized eggs, which are resistant to
bleach. Younger adults are a better starting point since they have more unlaid
eggs. Additionally, we avoided excessive bleach treatment to ensure that eggs
didn't become non-viable during the sync.

Once the fertilized eggs we recovered had hatched into L1 larvae, we plated these
worms onto Petri dishes with OP50 and allowed them to grow for 3.5 days until
reaching young adulthood. At this point, we transferred the worms to Petri dishes
without OP50 for imaging.

We found that the most significant determinant of a successful analysis was
maximizing uniformity of the plate background during imaging, which allows for
straightforward computational segmentation of worms from background. To
achieve this, we lifted worms from their culture plate with a small amount of M9
buffer. We collected the suspended worms into a tube, then stood the tube up in a
rack and allowed the worms to drop to the bottom of the tube under natural
gravity (rather than via centrifugation), which took about 20 minutes. Next, we
removed some of the supernatant to avoid adding a high volume of liquid to the
fresh plates.

Background non-uniformity arose primarily from “tracks” left by the worms in their
bacterial lawn as they fed. To compensate for this, we replated worms on plates
without OP50 bacteria just before imaging.

We found that manually transferring worms using platinum wire introduced
additional background artifacts onto the new plate. Lifting worms from their
culture plate with M9 buffer and pipetting them to transfer resulted in the most
uniform background signal.

Once we'd transferred the worms to the fresh plates, we allowed them to
habituate for 1 hour. This was enough time for the buffer to evaporate and for the
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worms to begin moving around in their new environment. In some cases, worms
tended to cluster around each other, particularly if there was a bubble in the
evaporating buffer. We resolved this issue by firmly tapping the plate against the
lab bench, which stimulated their dispersal.

TRY IT: Our protocols for genotyping, worm culture and

maintenance, bleach life-stage synchronization, and prepping

worms for image acquisition are available on protocols.io.

Step 2: Acquire imaging data

Once we replated and habituated the worms, we imaged them using our upright
widefield microscope. For each plate, we collected up to 25 fields of view (FOVs)
when sufficient worms were present. For each FOV, we collected 30 seconds of
video data at 24.5 frames per second (fps) using a Kinetix sSCMOS camera. We used
a Plan Apo D 4x objective with a numerical aperture of 0.20. Each frame in the
resulting video file was 1,976 x 1,976 pixels at a resolution of 1.625 pm per pixel.

Step 3: Processing imaging data

SHOW ME THE DATA: Raw and processed imaging data are
available in the Biolmage Archive (DOI: 10.6019/S-BIAD1563).

Our video analysis workflow (Figure 1, B) produces motility phenotype estimates
for 150 features. We start by converting the videos from Nikon format to TIFF
format. We then apply a “difference of Gaussians filter” from scikit-image (v0.24.0,
skimage filters.difference_of_gaussians() ) (191 to improve worm segmentation. This filter
helps Tierpsy Tracker detect the worms. After filtering, we convert the video to
MOV file format and run Tierpsy Tracker (v1.5.3a_18aaba9) to produce an initial set
of 150 motility features. Each feature is measured for each worm in each frame in
which the worm is detected (“results/* featuresN.hdf5"”). We use this file in
downstream analysis to measure motility differences.
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View the configuration file we used to run Tierpsy Tracker on
GitHub (DOI: 10.5281/zenodo.14611279).

In addition to running Tierpsy Tracker, we also produce two quality-control aids.
First, we make a projection from the initial TIFF file to see the full path of each
worm in each video in a single image (PNG) file. The projection lets us visually
count the number of worms in a field of view and develop an intuition for how the
worms are moving. Second, we compare the mask generated by Tierpsy Tracker to
the input MOV (by default, the first frame only) to see which worms Tierpsy
Tracker is able to detect.

The analysis produced by Tierpsy Tracker and the two quality-control images are
the endpoints for the automated pipeline. We performed subsequent analysis in
Jupyter notebooks.

Step 4: Engineering features and comparing motility
phenotypes

In the steps above, we used Tierpsy Tracker to produce raw motility
measurements from videos of C. elegans. Next, we used this output to generate
features that represent the movement patterns of the worms.

Tierpsy Tracker produces multiple feature read-outs that capture motility
information about worms, all captured in the “results/*featuresN.hdf5” file. This is a
nested file that contains multiple named data tables. The Tierpsy Tracker paper
presents analyses based on the information in the “features_stats” table (7). This table

includes features derived from all worms in a given field of view. It contains estimates
for 4,539 features, including those in summary sets like TIERPSY 8 and TIERPSY 16. We
chose not to use these features because they're summaries of worms in a field of view,
and our fields of view are subsections of a plate, which aren't biologically meaningful
subunits. Had we used these features, our statistical analysis would also have been
based on field-of-view summaries instead of individual worms. Instead, we used the
per-worm and per-frame information in the “timeseries_data” table. This data table
contains motility measurements for 150 features (not counting “worm_index,”
“timestamp,” or “well_name”). These features include overall motility measurements like
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“speed” and “angular_velocity,” as well as body-resolved measurements such as
“relative_to_body_radial_velocity_head_tip.” They also contain time derivatives of each
measured feature (“d*"), which indicate the amount that the feature changes from
the previous frame (e.g., “d_speed”). Because these features are resolved to a
single worm, we chose to engineer features from these estimates. We termed this
set of features “Tierpsy single-worm features.”

To create features to compare worms of different strains, we first took the
absolute value of columns with directionality (where negative values indicate
reverse or leftward motion, for example). We then took the mean of all measured
values for each worm in each field of view. We required that Tierpsy Tracker
capture a worm for at least 245 frames (10 seconds) for the worm to be included
in our analysis. We use these features to compare worms of different strains and
to assess the repeatability of our measurements.

View the notebook we used to engineer motility features and
compare across data acquisition dates and worm strains on
GitHub.

Workflow in action: Altered motility features
in pdl-1 mutant worms recapitulate
previously reported phenotypes

Once we optimized the workflow, we used it to analyze the motility phenotype of
pdl-1(gk157). We chose to test our workflow on this strain because it has a
dramatic and well-characterized motility phenotype that we sought to recapitulate
with our approach.

We collected videos of wild-type (N2) and mutant (pd/-7) worms on two different
days. Each day, we imaged 50 fields of view (25 FOVs per plate on two plates) per
strain. After filtering to worms that we captured for at least 10 consecutive


https://github.com/Arcadia-Science/2024-worm-tracking/blob/v1.0/notebooks/20241028-pub-analysis.ipynb

seconds (245 frames), we observed 388 worms on day one (mean 557 frames per
worm) and 210 worms on day two (mean 501 frames per worm).

To analyze the data, we first removed parameters that contained only missing
values or weren't relevant for comparison (for example, orientation relative to the
food edge and coordinate data). This focused our analysis on motility parameters
that provide insight into the behavioral differences between strains.

Despite the inherent noisiness of animal behavior data, we identified 71 features
that exhibited a statistically significant difference (linear mixed effect model, p <
0.05) between the strains. We represent a subset of these data describing whole-
worm features visually in Figure 2, grouping the features according to the type of
characteristic defined by the feature (motility category).
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Figure 2. Summary plot depicting a comparison of whole-body motility phenotypes for wild-
type (N2) and pdl-1(gk157) C. elegans.

We calculated estimates and p-values using a linear mixed effect model where strain is a fixed effect
and date of image acquisition is a random effect. A vertical dashed line represents the p-value
significance cut off at p < 0.05. “Motility category” refers to groups we created that reflect the
category of measurement for a motility feature. For simplicity, this figure shows motility features that
were calculated from the whole worm, as opposed to specific body parts such as the neck. Motility
features that are significantly different between strains are labeled. Each point on the main plot
represents a statistical comparison using a linear mixed-effect model. For mean speed, we show a
boxplot overlaid with individual data points for the “mean speed” for individual worms; these are the
underlying data that are used to calculate the linear mixed effect model.



Comparing our data to previous reports

Once we characterized pdl-1(gk157) with our workflow, we compared our
experimental results to the reported phenotype of this strain.

The study that previously characterized pdl-1(gk157) used a broadly similar
experimental setup to us, with a few critical differences. These authors captured
imaging data over 15 minutes, and their worms were on plates with food during
imaging. This extended imaging time was important for their purposes, since they
analyzed a large set of mutant worms across different genes, and extended
imaging times were required to eliminate bias from a subset of “extreme coiler”
mutants 1111. Because pdl-1(gk157) wasn't such a mutant, this particular
requirement didn’t apply to our experiment. By limiting our imaging to 30
seconds, we generate less overall data, which is advantageous given the large size
of raw image data files.

The previous study's authors also used WormTracker2 rather than Tierpsy Tracker
to analyze features 111. WormTracker2 has a license that's not permissive to

commercial organizations, so we couldn't use this approach to analyze our data.

Since we defined features based on the original Tierpsy feature set and the
biologically meaningful subunits in our specific experimental design, not all of our
features map directly onto the WormTracker2 features used in the previous study.
Nevertheless, we identified six phenotypes that did map directly onto features in
our dataset (enumerated in Table 1).
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Yemini et
al. feature

Dwelling
reduced

Forward
locomotion
increased

Body bend
frequency
variant

Head bend
angle
variant

Nose
movement
variant

Tail bend
angle
variant

Yemini et
al.
measured
phenotype

N2 mean:
11.004

pdl-1 mean:
8.535

Mean shift:
-2.469

g-val: 0.0443

N2 mean:
0.353

pdl-1 mean:
0.511

Mean shift:
0.158

g-val: 0.0268

N2 mean:
11.098

pdl-1 mean:
11.015
Mean shift:
-0.0837
g-val: 0.0135

N2 mean:
0.337

pdl-1 mean:
-0.664
Mean shift:
-1.001
g-val:
5.40E-04

N2 mean:
127.864
pdl-1 mean:
162.975
Mean shift:
35.112
g-val: 0.0142

N2 mean:
17.077
pdl-1 mean:
16.168
Mean shift:
-0.909
g-val:
3.05E-03

Tierpsy single-worm

feature

motion_mode_mean

(increased)

speed_mean (increased)

curvature_midbody_mean

curvature_std_neck_mean

relative_to_neck_angular_
velocity_head_tip_mean

relative_to_hips_angular_
velocity_tail_tip_mean

Tierpsy
single-
worm
phenotype

N2 mean:
0.106

pdl-1 mean:
0.237
Estimate:
0.13

p-ad;j:
3.57E-04

N2 mean:
8.462

pdl-1 mean:
14.273
Estimate:
5.800
p-ad;j:
2.84E-17

N2 mean:
0.027

pdl-1 mean:
0.023
Estimate:
-0.00405
p-ad;j:
5.39E-06

N2 mean:
0.014

pdl-1 mean:
0.011
Estimate:
-0.00308
p-ad;j:
1.15E-12

N2 mean:
0.489

pdl-1 mean:
0.653
Estimate:
0.161
p-adj:
1.20E-16

N2 mean:
0.283

pdl-1T mean:
0.396
Estimate:
0.113
p-adj:
6.22E-09

Tierpsy single-
worm feature
description

-1 for backward
motion, 0 for no
motion, 1 for
forward motion,
averaged across
all frames

Worm speed

Mean curvature
of the midbody

Standard
deviation of
curvature across
the neck,
calculated in
each frame and
then averaged
across all frames

Mean angular
velocity of the
head tip relative
to the neck

Mean angular
velocity of the
tail tip relative to
the hips

Table 1. Some previously reported effects of pd/-1 deletion on C. elegans motility and our

summarized Tierpsy single-worm features that map to these phenotypes.



“Yemini et al. feature” qualitatively describes the phenotype observed by the previous study
characterizing pdI-1(gk157). “Yemini et al. phenotype” shows the quantitative result the authors
measured for that specific feature. “Tierpsy single-worm feature” identifies the feature in our dataset
that we believe best corresponds to the phenotype described by Yemini and coauthors. “Tierpsy
single-worm phenotype” shows the quantitative result we measured for the corresponding Tierpsy
single-worm feature. “Tierpsy single-worm feature description” describes, in plain English, the
meaning of the corresponding Tierpsy single-worm feature.

p-adj = Bonferroni-adjusted p-value. g-val = g-value. Q-values control the false discovery rate for a
set of statistical tests by providing the minimum proportion of false positives among rejected
hypotheses, offering a direct threshold for significance. In contrast, Bonferroni correction adjusts p-
values by dividing the desired alpha level by the number of tests, controlling the family-wise error
rate and reducing the likelihood of any false positives, often in a more conservative manner. While
they're different, both have a significance threshold of 0.05. “Mean shift” represents the magnitude of
difference between groups based on the Wilcoxon rank-sum test. In contrast, the “estimate” refers to
the change in mean phenotype between the wild type (N2) and mutant (pd/-1) strains, as determined
by mixed-effects linear models controlling for acquisition date.

Among these six features, our data for pdl-1(gk157) qualitatively recapitulated
previous observations. For example, we observed that speed_mean was
significantly increased (p = 2.84E-17) in pdI-1 mutant worms, as did the Yemini et
al. study. We present our data comparing these six features between N2 and pd/-1
mutant worms in Figure 3.

Taken together, these data demonstrate that our workflow captured an overall
motility phenotype in pd/-T mutant C. elegans.

View the TSV of statistical results for all Tierpsy single-worm
features on GitHub.
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Figure 3. Effect of pdl-1 deletion on key motility features that directly map to previously
reported phenotypes in this strain.

For the Tierpsy single-worm features in Table 1, we calculated estimates and p-values comparing wild
type (N2) and mutant (pd/-7) worms using a linear mixed effect model where strain is a fixed effect
and date of image acquisition is a random effect. Each box plot shows individual data points for a
given feature for individual worms; these are the underlying data that are used to calculate the linear
mixed effect model. The thicker lines inside the boxes represent the mean value for the feature
determined for each strain. * indicates p < 0.05, *** indicates p < 0.001, **** indicates p < 0.0001.

Additional methods

We used Arcadia themeR for data visualization pz0;.

We used ChatGPT to assist with background research on pdl/-1 biology, write code,
add comments to code, and suggest wording ideas that we then selectively
incorporated. We also used ChatGPT to help reformat code by providing it with
template scripts and having it adapt them for new goals, such as converting files
between different formats. GitHub Copilot was also used to help write code.
Additionally, we used Grammarly Business to suggest wording ideas, reformat text
according to a style guide, and streamline and edit text that we wrote.


https://github.com/Arcadia-Science/arcadiathemeR

Next steps

We've added this workflow to our microscopy toolkit at Arcadia. We've also paused
additional development on this method. However, there are several clear next
steps to consider for anyone who'd like to develop and apply this technology
further.

To date, we've used this workflow to compare two strains of C. elegans side-by-
side. We originally planned to increase the throughput of this assay by adapting it
to a multiwell plate format, which we believe is possible with additional
optimization. The buffer transfer method we developed to plate the worms on
media without OP50 will simplify efforts to increase throughput.

There are also opportunities to incorporate automation into the experimental side
of the workflow to maximize throughput and reproducibility. We briefly explored
the possibility of automating both experimental setup and image acquisition but
elected not to invest heavily in experimental automation for now.

We think this technology's most exciting application is in high-throughput
phenotypic genetic or drug screening. Though we didn't progress this effort into
bona fide disease modeling for retinitis pigmentosa caused by PDE6D mutation,
others may be interested in pursuing this more clinical angle.
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