
An experimental and
computational workflow to
characterize nematode
motility behavior

We used straightforward microscopy and computational analyses

to reproducibly characterize a nematode motility phenotype with

interpretable features. This method should be scalable for high-

throughput phenotypic screening.

Purpose
Behavioral phenotypes can be informative discovery tools, but the generally high

variability of such readouts limits their utility. As part of our microscopy toolkit, we

developed and optimized a protocol to measure a motility-based behavioral

phenotype in Caenorhabditis elegans. Our phenotyping results were reproducible

between replicates and showed consistent differences between strains, which

could enable their use in high-throughput genetic or drug screens.

We’re sharing our detailed protocol to help researchers employ nematode motility

behavior as a phenotypic readout.

This pub is part of the platform effort, “Microscopy: Visually interrogating
the natural world.” Visit the platform narrative for more background and
context.

The Snakemake workflow and notebooks to analyze C. elegans videos
for motility phenotypes are available in this GitHub repository.

Version 3, published Mar 31, 2025. Originally published Jan 8, 2025.
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Protocols for C. elegans genotyping, culture and maintenance, bleach life-
stage synchronization, and prepping worms for image acquisition are
available on protocols.io.

Raw and processed imaging data can be found at the BioImage Archive.

Background and goals
Because of the importance of disease models in biomedical research and drug

development, we’re interested in leveraging evolutionary insights to identify

better organismal models of human disease. Toward this goal, we developed an

organismal selection framework [1] that found that PDE6D, along with several other

human genes that cause monogenic retinitis pigmentosa, exhibited exceptional

molecular conservation between C. elegans and humans. Mutations in PDE6D

result in neurodegeneration of photoreceptor cells and progressive blindness [2].

Given this insight, we were interested in whether C. elegans with mutations in

pdl-1, the conserved PDE6D homolog, could function as a low-complexity, high-

throughput model of neurodegeneration in retinitis pigmentosa.

Phenotypic screening lets us discover novel regulators of traits even when our

prior knowledge of the underlying biology is limited. We're developing microscopy

tools to enable nondestructive phenotypic characterization of a broad range of

species. One of the species-agnostic parameters we're exploring for this toolkit is

motility. Motility integrates critical features of living systems, including

bioenergetics, biomechanics, and response to stimuli. We’ve previously developed

and published a method to characterize motility in a single-celled organism,

Chlamydomonas reinhardtii [3], and are expanding this tool to Caenorhabditis

elegans (C. elegans), a metazoan.

As a model/assay pair, C. elegans motility has many advantages. C. elegans is

multicellular, so it captures biological traits that emerge from the coordinated

behavior of several cell types in tissues or organs. However, it's still small enough

for high-throughput experiments [4]. Motility data from this species can be

acquired and analyzed non-destructively using light microscopy at low

magnification, a broadly available tool [5]. Additionally, many computational
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methods are available to analyze C. elegans motility that could serve as a basis for

an analytical workflow [6][7]. We sought a workflow to leverage these advantages

while controlling for the high natural variability inherent to behavioral analyses.

The problem
We wanted an end-to-end experimental and computational approach for tracking

worm motility. While many researchers have developed approaches for C. elegans

motility tracking, we wanted an approach that:

1. Would allow us to track varied motility phenotypes from many different C.
elegans strains without a priori knowledge of what phenotype we should
expect to see.

2. Would produce interpretable motility features. We favored approaches in
which a feature intuitively describes a phenotype (i.e., worm speed).

3. Would allow us to use our existing microscope. Some motility tracking
tools require a specific imaging setup, but we didn't want to acquire new
hardware and wanted to rely on basic laboratory consumables for worm
handling. This has the additional benefit of making the method accessible
to a broader set of researchers.

4. Didn't require specific dyes/stains/fluoresence to track the worms. We
didn’t want to introduce additional variables into the screen [8][9].

5. Could be adapted to high-throughput screens. While we started with a low-
throughput approach, we wanted to be able to track the motility of multiple
worms.

6. Would use software that’s explicitly been built for C. elegans motility
tracking (as opposed to general motility tracking [10]) and has been used in

many motility tracking experiments. This would make any results we
produced potentially comparable to studies that used the same analytical
method and provide confidence that the software had fewer bugs or
inaccuracies. We also looked for open-source tools that were easily
installable, ran after installation without changes to the source code, and
had a commercially compatible license.
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Our solution
We set out to develop a combined experimental and computational workflow to

characterize diverse strains of C. elegans with unknown motility phenotypes. We

began by selecting the motility-tracking software we wanted to use to analyze our

imaging data. While many tools exist for worm tracking [6][7][8][9][11][12][13][14][15][16][17]

[18], we found that only Tierpsy Tracker met all of the conditions we were

interested in [6][7].

Using our existing hardware, we tailored our data acquisition approach to the

Tierpsy tracker tool. We introduced a life stage synchronization step to make the

worms more uniform and easier for Tierpsy Tracker to detect, and we designed a

buffer transfer approach to minimize background artifacts that made worm

detection difficult. For imaging, we developed a low-throughput assay performed

on 6 cm plates using an upright microscope. We imaged multiple fields of view

from each plate and took 30-second videos of each field, each containing

multiple worms. These optimizations significantly improved our ability to track

worm movement with the Tierpsy Tracker tool.

We then built an automated computational workflow to track motility phenotypes

of individual worms from this imaging data. This workflow performs preprocessing

and quality control before running the Tierpsy Tracker tool.

As a positive control for assay development, we selected a worm strain with a

characterized motility phenotype to reproduce with our pipeline. We selected a

mutant with a large-scale deletion in the nematode gene pdl-1 (allele gk157). We

then sought to reproduce this known phenotype — increased speed and reduced

dwelling [11] — in our analysis.

Why is this useful?
This approach can be used to characterize the motility of different C. elegans

strains. Our experimental protocols don’t require specialized tools (except for a

widefield upright microscope), and we have optimized them to generate
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reproducible results using our automated analysis pipeline. This pipeline is an

end-to-end automated Snakemake pipeline that ingests movie files, processes

them, and detects interpretable features. This pipeline can be run on a Linux

computer through the command line, and we also provide an analysis approach

that can be used to detect features that are significantly different between

imaging conditions (such as comparing mutant worms to WT). In principle, other

groups can adapt this method to study the behavioral effects of other factors,

such as drugs or environmental stimuli. With further development, it could also

form the basis of a high-throughput phenotypic screening approach in C. elegans,

enabling the discovery of novel biological mechanisms and/or therapeutic

candidates.

The method
This method enables a researcher to generate and analyze C. elegans imaging

data and to process these data into a motility phenotype composed of 150

features: distinct, quantifiable parameters that capture different facets of worm

motion. We have also included our protocols for culturing and genotyping worm

strains, should they be useful. Figure 1 presents a visual summary of the workflow.

We optimized these steps using the pdl-1(gk157) deletion mutant described

above. You can find protocols associated with the experimental workflow in Figure

1, A on protocols.io. They describe this process under baseline culture conditions

using 6 cm Petri dishes, but you can adapt these parameters as necessary.
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Figure 1. Experimental and computational workflow overview.

(A) Diagram of experimental setup. We expanded worms under standard culture conditions (1). We
then performed a life-stage synchronization using alkaline bleach treatment to synchronize worms
to the L1 larval stage (2). After growing these to adulthood (3), we use M9 buffer to transfer the
worms to a fresh plate with growth medium without OP50 bacteria to facilitate clearer imaging (4).
Finally, we image the synchronized adults using our upright microscope (5).

(B) Image processing. To process images into motility measurements, we begin by converting
images from Nikon format (ND2) to TIFF (1). We then apply a difference of Gaussians filter to
improve worm segmentation (2). We convert these images to MOV format (3) and use Tierpsy
Tracker to estimate per-worm and per-frame motility measurements for 150 initial features (4). We
also produce two quality-control images. The first shows a projection of all video frames, allowing
the viewer to see the full path of each worm in one image. The second compares the first frame of
the Tierpsy Tracker mask to the first frame of the MOV so the viewer can see which worms Tierpsy
Tracker successfully detects. Steps with dashed lines create temporary files.

Analysis. To engineer motility features and compare strains, we read in the initial Tierpsy Tracker
motility measurements (1) and filter to worms detected for at least 10 consecutive seconds (2). We
then take an average of the 133 relevant features to create our motility features (3). Last, we test
for differences between strains using a generalized linear model (4).

Step 1: Culture worms and set up experiment
The major challenge in animal behavior assays is the inherent variability of

behavioral parameters, so we sought to limit variability in the experimental set-up

(Figure 1, A). The most significant way we did this was by incorporating a life-
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stage synchronization step at the beginning of the experiment, minimizing the

confounding effects of age-related differences in body size, morphology, and

motility behavior.

We began by expanding two C. elegans strains that we’d been actively culturing,

N2 (wild type) and pdl-1(gk157), so that we had many gravid young adults for

synchronization. Life-stage synchronization in C. elegans involves bleaching

gravid adults so that they die and release their fertilized eggs, which are resistant

to bleach. Younger adults are a better starting point since they have more unlaid

eggs. Additionally, we avoided excessive bleach treatment to ensure that eggs

didn’t become non-viable during the sync.

Once the fertilized eggs we recovered had hatched into L1 larvae, we plated these

worms onto Petri dishes with OP50 and allowed them to grow for 3.5 days until

reaching young adulthood. At this point, we transferred the worms to Petri dishes

without OP50 for imaging.

We found that the most significant determinant of a successful analysis was

maximizing uniformity of the plate background during imaging, which allows for

straightforward computational segmentation of worms from background. To

achieve this, we lifted worms from their culture plate with a small amount of M9

buffer. We collected the suspended worms into a tube, then stood the tube up in

a rack and allowed the worms to drop to the bottom of the tube under natural

gravity (rather than via centrifugation), which took about 20 minutes. Next, we

removed some of the supernatant to avoid adding a high volume of liquid to the

fresh plates.

Background non-uniformity arose primarily from “tracks” left by the worms in their

bacterial lawn as they fed. To compensate for this, we replated worms on plates

without OP50 bacteria just before imaging.

We found that manually transferring worms using platinum wire introduced

additional background artifacts onto the new plate. Lifting worms from their

culture plate with M9 buffer and pipetting them to transfer resulted in the most

uniform background signal.
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Once we’d transferred the worms to the fresh plates, we allowed them to

habituate for 1 hour. This was enough time for the buffer to evaporate and for the

worms to begin moving around in their new environment. In some cases, worms

tended to cluster around each other, particularly if there was a bubble in the

evaporating buffer. We resolved this issue by firmly tapping the plate against the

lab bench, which stimulated their dispersal.

Step 2: Acquire imaging data
Once we replated and habituated the worms, we imaged them using our upright

widefield microscope. For each plate, we collected up to 25 fields of view (FOVs)

when sufficient worms were present. For each FOV, we collected 30 seconds of

video data at 24.5 frames per second (fps) using a Kinetix sCMOS camera. We

used a Plan Apo D 4× objective with a numerical aperture of 0.20. Each frame in

the resulting video file was 1,976 × 1,976 pixels at a resolution of 1.625 µm per

pixel.

Step 3: Processing imaging data
Our video analysis workflow (Figure 1, B) produces motility phenotype estimates

for 150 features. We start by converting the videos from Nikon format to TIFF

format. We then apply a “difference of Gaussians filter” from scikit-image

(v0.24.0, skimage.filters.difference_of_gaussians() ) [19] to improve worm

segmentation. This filter helps Tierpsy Tracker detect the worms. After filtering,

we convert the video to MOV file format and run Tierpsy Tracker (v1.5.3a_18aaba9)

to produce an initial set of 150 motility features. Each feature is measured for

each worm in each frame in which the worm is detected

(“results/*_featuresN.hdf5”). We use this file in downstream analysis to measure

motility differences.

In addition to running Tierpsy Tracker, we also produce two quality-control aids.

First, we make a projection from the initial TIFF file to see the full path of each

worm in each video in a single image (PNG) file. The projection lets us visually

count the number of worms in a field of view and develop an intuition for how the

worms are moving. Second, we compare the mask generated by Tierpsy Tracker to

the input MOV (by default, the first frame only) to see which worms Tierpsy

Tracker is able to detect.
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The analysis produced by Tierpsy Tracker and the two quality-control images are

the endpoints for the automated pipeline. We performed subsequent analysis in

Jupyter notebooks.

Step 4: Engineering features and comparing motility
phenotypes
In the steps above, we used Tierpsy Tracker to produce raw motility

measurements from videos of C. elegans. Next, we used this output to generate

features that represent the movement patterns of the worms.

Tierpsy Tracker produces multiple feature read-outs that capture motility

information about worms, all captured in the “results/featuresN.hdf5” file. This is

a nested file that contains multiple named data tables. The Tierpsy Tracker paper

presents analyses based on the information in the “features_stats” table [7]. This

table includes features derived from all worms in a given field of view. It contains

estimates for 4,539 features, including those in summary sets like TIERPSY_8

and TIERPSY_16. We chose not to use these features because they're summaries

of worms in a field of view, and our fields of view are subsections of a plate,

which aren't biologically meaningful subunits. Had we used these features, our

statistical analysis would also have been based on field-of-view summaries

instead of individual worms. Instead, we used the per-worm and per-frame

information in the “timeseries_data” table. This data table contains motility

measurements for 150 features (not counting “worm_index,” “timestamp,” or

“well_name”). These features include overall motility measurements like “speed”

and “angular_velocity,” as well as body-resolved measurements such as

“relative_to_body_radial_velocity_head_tip.” They also contain time derivatives of

each measured feature (“d”), which indicate the amount that the feature changes

from the previous frame (e.g., “d_speed”). Because these features are resolved to

a single worm, we chose to engineer features from these estimates. We termed

this set of features “Tierpsy single-worm features.”

To create features to compare worms of different strains, we first took the

absolute value of columns with directionality (where negative values indicate

reverse or leftward motion, for example). We then took the mean of all measured

values for each worm in each field of view. We required that Tierpsy Tracker

capture a worm for at least 245 frames (10 seconds) for the worm to be included
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in our analysis. We use these features to compare worms of different strains and

to assess the repeatability of our measurements.

Workflow in action: Altered motility
features in pdl-1 mutant worms
recapitulate previously reported
phenotypes
Once we optimized the workflow, we used it to analyze the motility phenotype of

pdl-1(gk157). We chose to test our workflow on this strain because it has a

dramatic and well-characterized motility phenotype that we sought to recapitulate

with our approach.

We collected videos of wild-type (N2) and mutant (pdl-1) worms on two different

days. Each day, we imaged 50 fields of view (25 FOVs per plate on two plates) per

strain. After filtering to worms that we captured for at least 10 consecutive

seconds (245 frames), we observed 388 worms on day one (mean 557 frames per

worm) and 210 worms on day two (mean 501 frames per worm).

To analyze the data, we first removed parameters that contained only missing

values or weren’t relevant for comparison (for example, orientation relative to the

food edge and coordinate data). This focused our analysis on motility parameters

that provide insight into the behavioral differences between strains.

Despite the inherent noisiness of animal behavior data, we identified 71 features

that exhibited a statistically significant difference (linear mixed effect model, p <

0.05) between the strains. We represent a subset of these data describing whole-

worm features visually in Figure 2, grouping the features according to the type of

characteristic defined by the feature (motility category).
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Figure 2. Summary plot depicting a comparison of whole-body motility phenotypes for
wild-type (N2) and pdl-1(gk157) C. elegans.

We calculated estimates and p-values using a linear mixed effect model where strain is a fixed
effect and date of image acquisition is a random effect. A vertical dashed line represents the p-
value significance cut off at p < 0.05. “Motility category” refers to groups we created that reflect
the category of measurement for a motility feature. For simplicity, this figure shows motility
features that were calculated from the whole worm, as opposed to specific body parts such as the
neck. Motility features that are significantly different between strains are labeled. Each point on the
main plot represents a statistical comparison using a linear mixed-effect model . For mean speed,
we show a boxplot overlaid with individual data points for the “mean speed” for individual worms;
these are the underlying data that are used to calculate the linear mixed effect model .

Comparing our data to previous reports
Once we characterized pdl-1(gk157) with our workflow, we compared our

experimental results to the reported phenotype of this strain.

The study that previously characterized pdl-1(gk157) used a broadly similar

experimental setup to us, with a few critical differences. These authors captured

imaging data over 15 minutes, and their worms were on plates with food during

imaging. This extended imaging time was important for their purposes, since they

analyzed a large set of mutant worms across different genes, and extended

imaging times were required to eliminate bias from a subset of “extreme coiler”

mutants [11]. Because pdl-1(gk157) wasn’t such a mutant, this particular

requirement didn’t apply to our experiment. By limiting our imaging to 30

seconds, we generate less overall data, which is advantageous given the large size

of raw image data files.
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The previous study’s authors also used WormTracker2 rather than Tierpsy Tracker

to analyze features [11]. WormTracker2 has a license that's not permissive to

commercial organizations, so we couldn't use this approach to analyze our data.

Since we defined features based on the original Tierpsy feature set and the

biologically meaningful subunits in our specific experimental design, not all of our

features map directly onto the WormTracker2 features used in the previous study.

Nevertheless, we identified six phenotypes that did map directly onto features in

our dataset (enumerated in Table 1).
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Yemini et

al. feature

Yemini et

al.

measured

phenotype

Tierpsy single-worm

feature

Tierpsy

single-

worm

phenotype

Tierpsy single-

worm feature

description

Dwelling

reduced

N2 mean:

11.004

pdl-1 mean:

8.535

Mean shift: –

2.469

q-val:

0.0443

motion_mode_mean

(increased)

N2 mean:

0.106

pdl-1 mean:

0.237

Estimate:

0.13

p-adj:

3.57E–04

–1 for backward

motion, 0 for no

motion, 1 for

forward motion,

averaged across

all frames

Forward

locomotion

increased

N2 mean:

0.353

pdl-1 mean:

0.511

Mean shift:

0.158

q-val:

0.0268

speed_mean (increased) N2 mean:

8.462

pdl-1 mean:

14.273

Estimate:

5.800

p-adj:

2.84E–17

Worm speed

Body bend

frequency

variant

N2 mean:

11.098

pdl-1 mean:

11.015

Mean shift: –

0.0837

q-val:

0.0135

curvature_midbody_mean N2 mean:

0.027

pdl-1 mean:

0.023

Estimate: –

0.00405

p-adj:

5.39E–06

Mean curvature

of the midbody

Head bend

angle

variant

N2 mean:

0.337

pdl-1 mean:

–0.664

Mean shift: –

1.001

curvature_std_neck_mean N2 mean:

0.014

pdl-1 mean:

0.011

Estimate: –

0.00308

Standard

deviation of

curvature across

the neck,

calculated in

each frame and

then averaged
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Yemini et

al. feature

Yemini et

al.

measured

phenotype

Tierpsy single-worm

feature

Tierpsy

single-

worm

phenotype

Tierpsy single-

worm feature

description

q-val:

5.40E–04

p-adj: 1.15E–

12

across all

frames

Nose

movement

variant

N2 mean:

127.864

pdl-1 mean:

162.975

Mean shift:

35.112

q-val:

0.0142

relative_to_neck_angular_

velocity_head_tip_mean

N2 mean:

0.489

pdl-1 mean:

0.653

Estimate:

0.161

p-adj:

1.20E–16

Mean angular

velocity of the

head tip relative

to the neck

Tail bend

angle

variant

N2 mean:

17.077

pdl-1 mean:

16.168

Mean shift:

-0.909

q-val:

3.05E–03

relative_to_hips_angular_

velocity_tail_tip_mean

N2 mean:

0.283

pdl-1 mean:

0.396

Estimate:

0.113

p-adj:

6.22E–09

Mean angular

velocity of the

tail tip relative to

the hips

Table 1. Some previously reported effects of pdl-1 deletion on C. elegans motility and our
summarized Tierpsy single-worm features that map to these phenotypes.

“Yemini et al . feature” qualitatively describes the phenotype observed by the previous study
characterizing pdl-1(gk157). “Yemini et al . phenotype” shows the quantitative result the authors
measured for that specific feature. “Tierpsy single-worm feature” identifies the feature in our
dataset that we believe best corresponds to the phenotype described by Yemini and coauthors.
“Tierpsy single-worm phenotype” shows the quantitative result we measured for the corresponding
Tierpsy single-worm feature. “Tierpsy single-worm feature description” describes, in plain English,
the meaning of the corresponding Tierpsy single-worm feature.

p-adj = Bonferroni-adjusted p-value. q-val = q-value. Q-values control the false discovery rate for a
set of statistical tests by providing the minimum proportion of false positives among rejected
hypotheses, offering a direct threshold for significance. In contrast, Bonferroni correction adjusts p-
values by dividing the desired alpha level by the number of tests, controlling the family-wise error
rate and reducing the likelihood of any false positives, often in a more conservative manner. While
they’re different, both have a significance threshold of 0.05. “Mean shift” represents the magnitude
of difference between groups based on the Wilcoxon rank-sum test. In contrast, the “estimate”
refers to the change in mean phenotype between the wild type (N2) and mutant (pdl-1) strains, as
determined by mixed-effects linear models controlling for acquisition date.
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Among these six features, our data for pdl-1(gk157) qualitatively recapitulated

previous observations. For example, we observed that speed_mean was

significantly increased (p = 2.84E−17) in pdl-1 mutant worms, as did the Yemini et

al. study. We present our data comparing these six features between N2 and pdl-1

mutant worms in Figure 3.

Taken together, these data demonstrate that our workflow captured an overall

motility phenotype in pdl-1 mutant C. elegans.

Figure 3. Effect of pdl-1 deletion on key motility features that directly map to previously
reported phenotypes in this strain.

For the Tierpsy single-worm features in Table 1, we calculated estimates and p-values comparing
wild type (N2) and mutant (pdl-1) worms using a linear mixed effect model where strain is a fixed
effect and date of image acquisition is a random effect. Each box plot shows individual data points
for a given feature for individual worms; these are the underlying data that are used to calculate the
linear mixed effect model . The thicker lines inside the boxes represent the mean value for the
feature determined for each strain. * indicates p ≤ 0.05, *** indicates p ≤ 0.001, **** indicates p ≤
0.0001.

Additional methods
We used Arcadia themeR for data visualization [20].
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We used ChatGPT to assist with background research on pdl-1 biology, write code,

add comments to code, and suggest wording ideas that we then selectively

incorporated. We also used ChatGPT to help reformat code by providing it with

template scripts and having it adapt them for new goals, such as converting files

between different formats. GitHub Copilot was also used to help write code.

Additionally, we used Grammarly Business to suggest wording ideas, reformat text

according to a style guide, and streamline and edit text that we wrote.

Next steps
We’ve added this workflow to our microscopy toolkit at Arcadia. We’ve also paused

additional development on this method. However, there are several clear next

steps to consider for anyone who’d like to develop and apply this technology

further.

To date, we’ve used this workflow to compare two strains of C. elegans side-by-

side. We originally planned to increase the throughput of this assay by adapting it

to a multiwell plate format, which we believe is possible with additional

optimization. The buffer transfer method we developed to plate the worms on

media without OP50 will simplify efforts to increase throughput.

There are also opportunities to incorporate automation into the experimental side

of the workflow to maximize throughput and reproducibility. We briefly explored

the possibility of automating both experimental setup and image acquisition but

elected not to invest heavily in experimental automation for now.

We think this technology's most exciting application is in high-throughput

phenotypic genetic or drug screening. Though we didn't progress this effort into

bona fide disease modeling for retinitis pigmentosa caused by PDE6D mutation,

others may be interested in pursuing this more clinical angle.
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