A structurally divergent actin
conserved in fungi has no
association with specific
traits

We outline a comparative approach to investigate protein
function by correlating the presence or absence of a protein with
species-level phenotypes. We applied this strategy to a novel
actin isoform in fungi but didn’t find an association with any of
the phenotypes we considered.
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Purpose

We were curious to see if phylogenetic trait mapping might be a reliable way to
uncover the function of structural variants of actin that we identify via our
ProteinCartography pipeline 1. ProteinCartography leverages recent advances in
protein folding prediction [2j to identify structurally similar proteins, independent
of their sequence similarity. Actin is an ancient and highly conserved protein in
eukaryotes and is essential to multiple cellular processes. In previous work (33, we
identified a set of actin proteins that are present in a large number of fungi yet
are structurally distinct from the primary cytoskeletal actin, suggesting these
proteins may serve a different function.

We wondered if the presence or absence of these non-canonical, divergent
fungal actins (DFAs) correlates, across species, with biologically relevant fungal
traits. A strong correlation would suggest that this actin isoform is related to a
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given trait, potentially suggesting a novel structure-function relationship within
this protein family. We identified six fungal traits, available in public databases,
that we thought DFAs might influence. However, we found that none of these
traits predicted the presence of a DFA.

While we decided not to continue this project, we believe it could spark interest
in many audiences (e.g., fungal ecologists, evolutionary biologists, cell biologists).
At the end of this pub, we discuss potential follow-up directions for anyone
interested in studying DFAs.

e This pub is part of the platform effort, “Annotation: Mapping the
functional landscape of protein families across biology.” Visit the platform
narrative for more background and context.

e Data, including the inputs and outputs from our ProteinCartography run,
are available on Zenodo.

e All associated code, plus lists of divergent actins, associated species, and
trait information, is available in this GitHub repository.

Background and goals

Actins are some of the most conserved proteins among eukaryotes and support
essential functions including cell division, cellular trafficking, cell shape, and
motility (41. In fungi, primary actin is known to be essential to many cellular
processes (apical growth, endocytosis, exocytosis, cellular trafficking, cytokinesis,
and possibly pathogenicity in pathogenic species) 51. While investigating the
structural similarity of actin, actin-like proteins, and actin-related proteins with
ProteinCartography (a tool for clustering structurally similar proteins across
diverse organisms [11), our functional annotation team identified a well-defined

and distinct cluster that contained around 290 proteins (31 (Figure 1). The vast
majority of the proteins in this cluster are fungal, annotated as Actin-2 or actin-
like proteins, and are found in species that also possess another, structurally
canonical actin (Figure 1). We therefore refer to these as “divergent actins.”
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Figure 1. UMAP plot for the human cytoplasmic actin (ACTB).

(A) Cluster overlay. Leiden cluster identity (LC number) is indicated by color for each of the proteins
in the study.

(B) Broad taxon overlay. Color indicates the taxon to which each protein belongs.

The black circles indicate the cluster (LC14) that contains the divergent fungal actins. The star
represents the human actin structure we used to seed the ProteinCartography run.

It's not rare for organisms to possess multiple actin isoforms (for instance,
humans have six nearly identical actin isoforms 61 and Arabidopsis thaliana has at
least 10 isoforms [71). However, some species, like the malaria-causing parasite
Plasmodium, have structurally divergent isoforms known to have functions that
are distinct from their canonical isoform sy

Identifying a class of structurally similar actin isoforms that diverge from
canonical actin and are present in more than 200 fungal species raises a
question — what function(s) do these divergent actins perform in fungi? The
proteins in this cluster of divergent actins have conserved ATP-binding residues,
but the residues required for polymerization are not well-conserved 1. These
residues are important for the biochemical functions of actin and contribute to
the overall role that the protein plays in the cell. We wondered whether these
divergent actins have an uncharacterized function or role required by some
shared biological feature of the fungi that possess them. Thus, we sought to
identify biologically relevant fungal traits that predicted the presence or absence
of these divergent actins within species, a pattern that would hint at the function
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of these actins. To do so, we tested for statistical associations between the
presence or absence of a divergent actin and each selected phenotype using the
workflow outlined in Figure 2 (and detailed in the next section, “The approach”).

Ultimately, we didn’t identify any correlations between the divergent actin and
these traits. Thus, the function of these actins remains mysterious (described in
“The results”), but we hope our trait-mapping strategy offers a useful approach for
future functional annotation efforts or that others in the community with a
particular interest or expertise in this space can make additional progress.
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Figure 2. Workflow for generating hypotheses about protein function using
ProteinCartography.

Step 1: Enrich the initial set of divergent fungal actins

Step 2: Identify a working set of fungal species with known DFA status
Step 3: Curate trait data

Step 4: Statistically model the association of DFAs and fungal traits

The approach

To investigate the functions of these divergent fungal actins (DFAS) (3], we
decided to test the association of a trait and the presence or absence of DFAs to
generate hypotheses about their role(s). For example, if all of the fungal species
that possess a DFA also possess a specific spore-bearing structure, we might
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guess that DFA is involved in spore storage and/or release. To be successful, we'd
need both trait information and genomic information about the presence or

absence of DFA across as many species as possible.

Our approach consisted of four main steps (Figure 2). First, we expanded the set
of fungal species in our analysis by running a new ProteinCartography analysis
focused on these divergent actins and removing non-fungal species. While this
allowed us to confidently identify fungal species that possess a divergent actin, it
was also necessary to be able to confidently identify fungal species that don't
possess one. Therefore, in step two, we defined our working set of species: the
set of fungal species for which we could determine whether or not they possess a
DFA (for details on how we determined the presence or absence of a DFA, jump to
the section, “Identifying a working set of fungal species”). Third, we curated

public fungal databases to gather trait and phylogenetic information for as many
species as possible in our working set. The last step then consisted of running
statistical models to test for the correlation between the presence or absence of
the DFA and six different fungal traits: growth form, trophic mode, ascus
dehiscence, presence of an auxin-responsive promoter, spore length, and spore
width.

We discuss each of these four steps below. Keep reading or skip straight to the

results.

1) Enriching the initial set of divergent fungal actins

We identified six representative divergent actins from an initial
ProteinCartography run (available on Zenodo in “actin_older_version.zip”). We then
performed a single ProteinCartography analysis with these six proteins as the
input to capture as many structurally similar DFAs as possible.

Clustering the original set of divergent actins and selecting
representatives

We first identified divergent fungal actins when we ran human B-actin (UniProt
ID: P60709) through ProteinCartography and noticed a cluster, LC14, that was
distinct within the map and mostly contained fungal proteins (3] (note that this
original run used ProteinCartography version v0.4.0-alpha, available on Zenodo).
In this work, we clustered all 292 protein sequences from cluster LC14 using
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MMseqs2 (version 14.7e284) and the clustering module pey11. This generated six
clusters with sizes ranging from one sequence to 281 sequences. From each
cluster, we extracted the longest sequence as the representative sequence
(cluster 1: AOA401L4A6, cluster 2: AOAQOC9IN219, cluster 3: AOA2N1JBKS, cluster
4: AOAS5BOSCNS, cluster 5: AQA226D8X1, cluster 6: AQA7J6TT41).

Running ProteinCartography

We aimed to expand the existing LC14 cluster by running ProteinCartography
(version v0.4.0-alpha) on our six representative proteins listed above. We used
each of the six divergent fungal actins as inputs for “search mode” in the pipeline.
Full details on the ProteinCartography pipeline can be found in the associated
GitHub repository and pub.

Briefly, ProteinCartography “search mode” starts with an input protein(s) and
searches for proteins with either similar sequences using BLAST [12), or structures
using Foldseek [131. The pipeline downloads all available structures from the
AlphaFold database and compares every downloaded structure to every other
downloaded structure, creating an all-v-all matrix of structural similarity scores 113
[2114]. The pipeline then uses Leiden clustering on this similarity matrix to group
these proteins 11s1. In our ProteinCartography analysis, we used “search mode”
with standard parameters on these six divergent actins 1. We requested 3,000
Foldseek hits per input protein and 6,000 total proteins per input. The run
generated 3,596 unique structure hits grouped into 17 clusters.

ProteinCartography compares pairs of protein structures using the TM-align
algorithm 113) to calculate their structural similarity (11. This comparison yields a
TM-score (template modeling score) between zero and one. A TM-score above
0.5 suggests structural similarity, while a score below 0.17 indicates unrelated
proteins. For a given protein cluster, the "cluster compactness" score reflects the
average TM-score for all pairs of compared proteins within the cluster. Increasing
“cluster compactness” scores (on the diagonal of the similarity matrix (Figure 3,
B)) indicates increasing similarity within a cluster. The average cluster
compactness (average of the diagonal) indicates how well protein structures have
been sorted, and thus represents the overall quality of the results. In previous
work 11, 25 different runs of ProteinCartography yielded cluster compactness

scores ranging from 0.35-0.86. Considering this range, we consider that the

7


https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/nbt.3988
https://github.com/Arcadia-Science/ProteinCartography
https://doi.org/10.57844/arcadia-a5a6-1068
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1101/2022.02.07.479398
https://doi.org/10.1101/2022.02.07.479398
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.57844/ARCADIA-A5A6-1068
https://doi.org/10.1101/2022.02.07.479398
https://doi.org/10.57844/ARCADIA-A5A6-1068
https://doi.org/10.57844/ARCADIA-A5A6-1068

average cluster compactness of our run, 0.6, is a reasonable score, underlying an
overall useful clustering of the proteins. For this study specifically, we considered
any cluster whose compactness is greater than 0.6 to be “well-defined.” We
identified eight well-defined clusters: LCO1, LCO3, LCO4, LC1Q, LC11, LC12, LC14,
and LC15.

Defining the extended set of divergent actin proteins

We identified two clusters that contained the divergent actin structures used as
input, LCO4 and LC11, representing a total of 407 proteins. We then combined
this set of proteins with cluster LC14 from the original human actin
ProteinCartography analysis and obtained an extended set of structurally similar
actin proteins containing 436 proteins, spanning 412 strains.

Taxonomic analysis of the extended set of divergent actins
and selection of the fungal divergent actin set

For each protein that ProteinCartography identifies, it returns a set of metadata,
including the organism in which the protein is found and the associated

information on taxonomy or lineage.

For each protein in our extended set of divergent actins, we determined the
kingdom, phylum, and order of its species. As some proteins belong to organisms
that do not have a kingdom reported in UniProt, we manually curated them and
added corresponding clade information instead. This includes Discoba, SAR,
Amoebozoa, and Opisthokonta.

We removed all proteins associated with kingdoms other than fungi, leaving us
with 406 DFA proteins.

These 406 DFAs were present in a total of 385 unique strains. Among them, 16
strains contained two or more DFA hits: one strain with six DFA hits, one strain
with three DFA hits, and 14 strains with two DFA hits. We aimed to verify whether
these strains really possess multiple DFAs in their genomes or if this is an artifact
of inaccurate protein annotation or low genome sequencing and assembly quality.
For half of the strains, a single protein sequence had been annotated by different
groups and thus resulted in multiple entries into the PDB. In these cases there
was clearly only one DFA in the species. For the other strains, protein-to-
nucleotide BLAST (tBLASTN) alignments failed to identify discrete genomic
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locations. We believe this could be because of low genome sequencing coverage
and low-quality genome assembly. Nevertheless, the great majority (> 95%) of the
fungal species associated with divergent actin seem to possess only one DFA in

their genome.

2) Identifying a working set of fungal species

To test for any correlation between fungal traits and DFAs, we needed to establish
a “working set” of species where we confidently knew the presence or absence of
DFAs. While ProteinCartography allowed us to expand the set of species in which
we knew a DFA was present, we had to identify other fungal species from which
DFAs were absent.

There are two possible reasons a species was not present in the output of
ProteinCartography: 1) the species encodes the protein but that information was
not available in UniProt or the AlphaFold database, and 2) the species truly does
not have a DFA. Studies have shown that some fungi have as few as 6,000
proteins and a typical fungal genome contains 10,000 protein-coding genes [16]
171. We considered DFAs to be absent in any species that didn’'t have a DFA hit if
that species also had more than 6,000 proteins in UniProt. Our selection criteria
are liberal and are likely to cause false negative errors where we determine DFA to
be absent when it is actually present. This is particularly true for those fungal
species that possess large numbers of proteins (i.e. ¥ 6,000 proteins). That is, we
likely will have underestimated the prevalence of these DFAs across the fungal
tree of life for species with typical fungal genome sizes (i.e., ~10,000 genes 18],
and thus > 10,000 proteins), a fact that may have limited our ability to recover
DFA-trait associations.

To identify the fungal species with 6,000 or more protein structures in the
UniProtKB and AlphaFold databases, we first conducted an advanced search in
UniProt using the following query: “Fungi” in the “Taxonomy” field and “*” for the
field “AlphaFoldDB cross-reference” (found within the “Cross reference/3D
structure” field), to obtain all the fungal proteins with available structures in
AlphaFold. We then counted the number of proteins per fungal species from this
search. Finally, after filtering for fungal species that have more than 6,000
proteins with available structures, we obtained their taxonomic classification from
NCBLI. This yielded 853 total fungal species. Among them, 346 species were also
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present in our extended set of species that possess a DFA (41%) and the 507
remaining species don’t possess a DFA (59%).

To assess whether our 6,000-protein threshold introduced a sampling bias
(independent of taxonomy), we varied the count threshold from 6,000 proteins to
25,000 proteins and compared the proportions of species with and without a
DFA. We found that the ratio of species with vs. without a DFA does not drastically
change across this threshold range (ratio for a threshold at 10,000 proteins:
40%:60%; ratio for a threshold at 20,000 proteins: 44%:56%; ratio for a
threshold at 25,000 proteins: 42%:58%).

Distribution of divergent fungal actins in the fungal kingdom

We obtained the phylogenetic relationships of the fungal orders represented in
our working set of species from the TimeTree database’s web interface
[timetree.org; 1191 (Figure 4)]. The resulting tree represented 85 fungal orders. We

next investigated the distribution of DFAs in the fungal kingdom by calculating
and visualizing the distribution of DFAs at the order level.

We were able to recover the order for 783 of the 853 species. For each order, we
calculated the fraction of associated species that possess a DFA and mapped this
information onto the tree (Figure 4, B).

3) Curating trait data

We used the database FunfU" as the source of fungal trait information r2e1. This

database contains a large amount of species-level information compiled from
different studies. In addition to FUNGuild information (classification of fungi
based on their ecological function and classification of fungi based on their
trophic mode) [21), it includes ecological, cellular, and biochemical traits.

We decided to focus on six traits: growth form, trophic mode, ascus dehiscence,
auxin-responsive promoter, spore length, and spore width. We chose these traits
specifically to maximize the overlap between the species for which we could
obtain trait information and for which we could determine DFA status, and to
include biological features for which actin was relevant. We extracted information
on these traits for the species present in the database that were also in our
working set.
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A total of 143 species from our working set had information for at least one of the
six selected traits in Fun™U". Of these species, 36 had multiple strains in the
ProteinCartography DFA dataset. However, we do not have trait information for
individual strains, just species. For 23 of these species, a DFA was present in all of
the strains. For the 13 species where DFA status varied across individual strains,
we attempted to determine whether this variation across strains resulted from real
biology or was caused by some bioinformatic error — e.g., a strain was incorrectly
identified as not possessing a DFA when it actually did. For all the strains that
don’t possess a DFA, we conducted a protein BLAST (BLASTp) search in NCBI as
well as a protein-to-nucleotide BLAST (tBLASTn) to identify whether there was
evidence that a DFA was encoded in the genome of the strain. However, these
attempts proved uninterpretable and the variation in DFA status across strains
may have resulted from undersampling the genetic material from some of these
species and noisy assembly data. We thus removed these 13 species from the
study. Intersecting the remaining species with those in our phylogeny led to the
removal of an additional 28 species not present in TimeTree.

Altogether, we were able to collect DFA status, trait information, and phylogenetic
relationship information for a total of 102 species.

4) Statistical modeling of the association of DFAs
and fungal traits

To test whether each of our six traits predicted the presence of DFAs, we applied
several statistical models, including generalized linear models for continuous
traits and discrete-state Markov models for categorical/binary traits. These
approaches are described in more detail below.

For discrete traits, we used a model selection approach comparing the likelihoods
of two models: one where the evolutionary trajectory of DFA (i.e., its
presence/absence in any given species across evolutionary time) and the similar
trajectory of another trait are the same, and a second model where DFA and the
trait of interest evolved independently. For continuous traits, we estimated the
portion of variation in the presence or absence of a DFA that can be accounted
for by variation in the trait of interest while controlling for shared evolutionary
history. For a summary of the input data, see Table 1.



Number of categories with 24  Number of

Trait Data type species species
Growth form Discrete 3 (agaricoid, microfungus, yeast) 24
Trophic mode Discrete 3 (saprotroph, pathotroph, 63
symbiotroph)

Ascus dehiscence Discrete 2 (deliquescent, poricidal) 13
Auxin-responsive Discrete 2 (present/absent) 71
promoter

Spore length Continuous - 10
Spore width Continuous - 10

Table 1. Description of the data used for statistical modeling of DFA presence/absence
and fungal traits.

Testing the association of DFAs with discrete or binary traits

We re-defined categorical trait data from the Fun™!" database to maximize the

number of categories containing four or more species, as categories with fewer

than four species would not have enough data to accurately model the association

between DFA status and the trait:

For “growth form,” we collapsed the categories “yeast” and “facultative
yeast” into a single level: “yeast.” We removed the categories ergot,
cordyceptoid, rust and xylaroid.

For “trophic mode,” we defined three levels: “saprotroph,” “pathotroph,”
and “symbiotrioph,” and parsed any species with multiple trophic modes
into each individual mode (for instance, if a species was labeled as
“saprotroph-pathotroph,” we counted it as “saprotroph” and “pathotroph”).

For “ascus dehiscence,” we removed the categories fissitunicate and
rostrate.

For “auxin-responsive promoter,” we transformed the number of auxin-
responsive promoters into a simple binary variable: presence or absence of
promoters.

To determine whether DFA status and a discrete trait are associated, we used an

evolutionary model selection procedure. As mentioned above, we fit two classes

of models to the data: a “correlated” model in which we assumed the evolution of



DFA presence/absence correlates with the trait of interest and an “independent”
model where we assumed a DFA and the trait of interest evolved independently.
We then compared the likelihood of these models using the Akaike information
criterion (AIC), a measure of likelihood that penalizes for model complexity. Under
this paradigm, if the correlated model was more likely, we would take this as
evidence that the evolution of DFA could be explained in part by the trait of
interest, and conversely, if the independent evolutionary model was more likely, it
would suggest that DFA and that particular trait evolved independently.

We used this model selection procedure for two classes of models, a discrete-
time Markov model (DTMM) and a hidden Markov model (HMM), both commonly
used for modeling the evolution of discrete traits over time [22;. DTMMs assume
that the evolutionary rate of change for a trait is constant independent of the
state of that trait. For example, the probability that a DFA will be lost as a function
of evolutionary time is the same as the probability that a DFA will be gained in
that same amount of time. Alternatively, HMMs allow for multiple evolutionary
rates dependent on the current trait status (e.g., DFA presence or absence). Our
HMMs allowed for two different evolutionary rates for each observed trait status.

Altogether, using the R corHMM package (version 2.8) 122], we fit four models for
each trait: DTMM with assumed independent evolution of DFA and trait (labeled as
“independent_model_fit” in the package output), DTMM with assumed correlated
evolution of DFA and trait (labeled as “correlated_model_fit” in the corHMM
package output), HMM with assumed independent evolution of DFA and trait
(labeled as “hidden_Markov_independent_model_fit” in the package output), HMM
with assumed correlated evolution of DFA and trait (labeled as
“hidden_Markov_correlated_model_fit” in the package output).

Testing the association between DFA and continuously
variable traits

We evaluated the correlation between DFA presence with continuously variable
traits (e.g. spore size) using phylogeny-corrected generalized linear mixed models
(pglmm). Specifically, the pglmm_compare function from the R package phyr
(version 1.1.2) [231.
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These models test whether variation in the trait (i.e., the predictor variable) can
account for variation in DFA status while controlling for the evolutionary non-
independence among species due to their shared evolutionary history.
Specifically, they implement a linear model (a logistic regression) to determine
whether changes in the continuous predictor trait account for the presence or
absence of a DFA. The model equation is typically structured as follows:

logit(P(DFA =1)) = B0+ Bl *Trait+ Zu + €

Where:

e logit(P(DFA=1)) is the logit transformation of the probability that DFA equals
one (i.e., the probability that DFA is present in a species). The logit link
function is used to model the relationship between the probability of the
binary outcome and the continuous predictor, ensuring that the predicted
probabilities lie between zero and one.

e [30 is the intercept: the predicted log odds of the DFA outcome when the
continuous trait is at zero.

e [31(or slope) is the unknown coefficient for the continuous trait indicating
the effect size of the trait on the log odds of DFA being one.

e Trait is the known vector of continuous trait values (e.g., spore length or
spore width).

e Zisthe known evolutionary variance-covariance matrix capturing the
average relatedness among species. It represents the random effects due
to phylogenetic relatedness among observations, capturing the unobserved
phylogenetic variance.

e U is the vector of unknown coefficients on the Z matrix.

is the residual error term.

To evaluate whether a given continuous fungal trait is a predictor of DFA status,
we focused on the coefficient for the continuous trait (or slope 1) that a fitted
pglmm returns. Any slope that is significantly different from zero indicates that
changes in trait values change the probability of the DFA outcome, indicating
that, to some degree, the continuous trait is a predictor of DFA status.



Additional methods

We used ChatGPT to help write some code.

The results

ProteinCartography identifies clusters of divergent
actins

We expected the initial set of divergent actins identified in our original work to be
incomplete. Thus, we first aimed to look for other proteins that are structurally
similar to our proteins of interest using ProteinCartography.

We identified six representative divergent actins to seed ProteinCartography,
which generated 3,596 unique hits grouped into 17 clusters (Figure 3, A), eight of
which were well-defined (LCO1, LCO3, LCO4, LC1O, LC11, LC12, LC14, and LC15 —
Figure 3, A and B). These clusters contain hits from three main kingdoms:
Metazoa, Fungi, and Viridiplantae (Figure 3, C). Semantic analysis shows that they
are mainly associated with the actin family, and they contain proteins with similar
length distribution. Together, these findings indicate that the well-defined
clusters contain proteins that belong to the actin protein family but are
sufficiently structurally different to cluster separately, suggesting that these are
structurally distinct isoforms.
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Figure 3. ProteinCartography analysis of six representatives of the divergent actin.

(A) UMAP of the ProteinCartography clustering output with cluster identity indicated by color. Black
stars indicate the six proteins that were the input.

(B) Similarity matrix for the clustering of the divergent actins. For each cluster pair, we calculated
the mean TM-score of the structures in a cluster vs. structures of proteins in the other cluster.

(C) Kingdom distribution of the proteins within clusters.
(D) Distribution of protein lengths within clusters.
(E) Semantic analysis of keywords describing proteins in each cluster.

We next examined the proteins that co-clustered with our representative
divergent actin proteins. The representative divergent actin proteins fell into two
well-defined (high within-cluster compactness score in similarity matrix; Figure 3,
B) clusters, LCO®4 and LC11. Proteins in both clusters are largely fungal and are
annotated as “Actin-like protein” (Figure 3, C and E). Therefore, we considered
any protein in these two clusters to be a divergent actin similar to the divergent
actins used in this search, which inspired this project. Altogether, clusters LCO4
and LC11 represent 407 proteins, 144 of which were not part of the original set of
divergent actins, and they span 139 additional strains and species. Combining the
original set and the new hits generated an extended set of 436 divergent actins
spanning 412 strains.

The extended set of divergent actins still contains
mainly fungal proteins

What caught our attention in the original set of divergent actins was the fact that
nearly all (285/292) are fungal proteins. We analyzed the kingdom or clade
distribution (as defined by NCBI Taxonomy when kingdom rank was not available)
for the proteins in the extended set of divergent actins (Figure 4, A) to see if we
were still looking at mostly fungal proteins. While the percentage of non-fungal
proteins is higher, more than 93% of the proteins are found in fungal species.
The second-most represented kingdom is Metazoa, which represents just 2% of
the proteins. This confirms that these divergent actins are mostly found in fungi.
We therefore refer to them as divergent fungal actins (DFAs). Additionally, most of
the fungi seem to possess only one divergent actin in their genome, suggesting
that there is usually only one DFA per species (in addition to a more conserved
primary actin).



The distribution of DFAs across species is highly
variable

We next investigated the distribution of DFA within the fungal kingdom. We
examined how consistently DFAs are present in orders or phyla and if they were
gained and lost frequently across the fungal tree. The latter is a characteristic
pattern of an evolutionarily labile trait (in contrast to a conserved trait). The
distribution of DFA across species in the fungal kingdom will indicate whether
DFA is associated with fundamental, conserved traits or if it is more evolutionarily
labile and potentially important for adaptive responses to the environment.

We started by determining a working set of fungal species for which we could
reliably determine whether a DFA is present or absent (see “The approach”). This

working set is composed of 853 fungal species: 346 species that possess a DFA
(these are from the extended set of divergent actin species) and 507 species that
don’t possess a DFA. These species span eight fungal phyla: Ascomycota (611
species), Basidiomycota (186 species), Mucoromycota (30 species),
Blastocladiomycota (two species), Chytridiomycota (16 species), Zoopagomycota
(13 species), Microsporidia (two species), and Cryptomycota (one species). We
visualized the phylogeny of fungal orders and mapped the fraction of species that
possess a DFA in each fungal order (Figure 4, B).

Overall, the distribution of DFAs is highly variable across fungal orders. For many
orders, the fraction of species possessing one or more DFA is neither zero (i.e., no
species have a DFA) nor one (i.e., all species have a DFA), indicating that DFA
distribution is also variable within orders. Thus, DFA seems evolutionarily labile.
This lability suggests that DFA could have an alternative function to the canonical
actin, which is extremely evolutionarily conserved. It's possible that the
presence/absence of a DFA can rapidly change in response to
natural/environmental pressures, and thus DFAs may be associated with specific
adaptive fungal traits. Our next step was to look for any such associations. We
note, however, that these findings may be impacted by our definition of DFA
absence defined earlier. That is, by potentially overestimating the number of
species for which DFAs are absent, we may have in turn overestimated the
evolutionary lability of the trait.
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Figure 4. Taxonomic analysis of the organisms possessing the divergent actin form of
interest in the extended set.

(A) Kingdom (or clade) analysis. Each branch is one representative species from a given
clade/kingdom.

(B) Phylogenetic tree that highlights, for each fungal order, the fraction of species that possess a
DFA (heatmap) and the number of species analyzed per order (bar plot). Bar and tree tip color
indicate their phylum.

None of the six tested fungal traits correlate with
DFA status

We then took an evolutionary modeling approach to identify biological processes
that DFA may be involved in. We looked for evidence that DFA and specific
adaptive traits are correlated. We started by curating public databases to gather
trait information that we believe to be relevant to the protein we are investigating.
For this project, we chose to use FunfU" [2¢}, a recently established database that

aggregates trait information from multiple databases.

We chose to focus on six available traits (Figure 5). Four traits are discrete traits
that take on categorical values: growth form, trophic mode (source from which a
fungus derives its nutrients), ascus dehiscence (mechanism to release the
ascospores), and the number of auxin-responsive promoters (the ability to
respond to auxin-based signals from the environment [241. The two other traits are

continuous traits associated with spore morphology: spore length and spore width.
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We chose to look at these traits because each one is associated with either
morphological structures, cell architecture, cell dynamics, or cell trafficking — all
areas where actin could play a pivotal role. Furthermore, these traits are widely
distributed across the fungal species in our working set. Thus, we believe that
DFA could be associated with one of these traits (see below).

Altogether, we were able to collect high-confidence DFA status, phenotypic data
for at least one trait, and phylogeny information for a total of 102 species, allowing
us to pursue statistical modeling of the evolutionary trajectory of DFA status and
traits in these species [24].
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Figure 5. Tree representation of the fungal species for which we looked for a correlation
between DFA status and specific traits.

Tree branches are colored based on phylum. The row “DFA present” indicates whether the species
possesses a DFA (purple) or not (empty). In subsequent rows, a grey square indicates that
information on a given trait is available for the species.

Next, we developed an evolutionary modeling strategy to find evidence of
correlated evolution between DFA and one of these traits. For the discrete traits
(Figure 6, A-D), we compared statistical models that assumed either correlated or
independent evolution of the trait and DFA for two classes of model: the discrete-
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time Markov model (DTMM) and the hidden Markov model (HMM). We used the
Akaike information criterion (AIC) to evaluate the models, where the model that
describes the best association of a trait and DFA is the one with the lowest AIC
(Table 2). For all discrete traits, we found the model in which DFA and a trait of
interest did not have correlated evolutionary histories to be more likely.
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Figure 6. Distribution of DFA status within trait data.

For each trait, we're showing the number of species that have (purple) and don't have (light purple)
DFAs. For discrete traits (A) we show the number of species in each trait category. For continuous
traits (B), we show the trait value for each species.

For continuous traits (Figure 6, E-F), we used a generalized linear mixed effects
model that accounts for the evolutionary non-independence of species and their
traits, and quantifies the degree to which a continuous variable explains the
presence or absence of DFA. It provides a statistical test for the influence of a
trait on DFA status, and a significant p-value (< 8.05) indicates a correlation
between the trait and DFA (Table 3). None of the continuous traits explained the
presence or absence of DFA in a given species.
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In conclusion, we did not detect a correlation between the presence of a DFA and
the traits investigated in this study.

Trait Model class Evolution of DFA and trait AIC
Growth form DTMM Independent 69.34
HMM Independent 87.13

DTMM Correlated 86.65

HMM Correlated 125.62

Trophic mode DTMM Independent 211.79
HMM Independent 222.46

DTMM Correlated 22442

HMM Correlated 256.31

Ascus dehiscence DTMM Independent 30.06
HMM Independent 41.02

DTMM Correlated 37.49

HMM Correlated 5715

Auxin-responsive promoter DTMM Independent 144.88
HMM Independent 146.13

DTMM Correlated 149.33

HMM Correlated 159.73

Table 2. Akaike information criterion (AIC) for the different models used to model the
evolution of DFA and discrete fungal traits.

Trait Parameters Values p-values
Spore length Intercept 0.8882429 0.41
Length 0.0060128 0.64

Spore width Intercept 1.003899 0.35
Width 0.0045372 0.71

Table 3. Results of the phylogeny-corrected generalized linear mixed models for
continuous traits.
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Limitations

We did not find a correlation between the presence of a DFA in a fungal species
and any fungal traits. Thus, we failed to support any preliminary hypotheses about
the function of DFAs. We've identified a handful of limitations and weaknesses in
our study that may have contributed to this negative result.

Our failure in identifying a correlation between DFAs and any fungal trait most
likely stems from the fact that we have only investigated six traits, and did not
include traits that were biologically relevant to the DFAs in our work. The
restricted scope of this work is a direct consequence of one of the main
challenges in any trait mapping project: collecting a large amount of accurate
data. We only explored a small number of traits because of the limited availability
and quality of the data we could obtain. Furthermore, these trait data were not
originally collected with the goals of the present study in mind, and thus are likely
limited in relevance for DFAs.

The scarcity of reliable trait information not only limited the breadth of our
investigation but also impacted the depth to which we could explore the
relationships between DFA and fungal traits, as it significantly reduced our
statistical power. For instance, starting from 36,253 fungi with at least one protein
structure in UniProt, we were only able to gather reliable trait information (DFA
status, one of the six fungal traits, and phylogeny) for an average of 34 fungi.

Finally, our ability to link a phenotype and the presence or absence of a DFA is
limited by our ability to determine whether DFAs are present or absent. While we
can accurately identify species that have a DFA, our determination of DFA
absence is impacted by the quality and coverage of genomic sequence data.
Errors in the assessment of DFA status reduce our ability to identify significant
associations between DFAs and phenotypes.

Key takeaways

We hoped to use trait mapping and evolutionary modeling as a way to generate
hypotheses about the potentially undiscovered, new function of the divergent
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fungal actin (DFA) discovered in our previous work. We found that the distribution
of this DFA is variable within the fungal kingdom, suggesting DFA has a more
adaptive function compared to canonical actin, which is highly conserved in the
fungal kingdom. We tried an evolutionary modeling strategy to see if we could
correlate the presence or absence of this actin variant with a set of fungal traits,
since any correlation could provide insight into the function of DFAs.

Our results showed no correlation between any of the tested traits and DFAs, so
the function of this variant remains unknown. While we didn’t find anything
conclusive, we're still excited by the potential to use trait mapping to generate
hypotheses about unknown protein functions in the future.

Next steps

We've decided to put this project on ice. We think there may be interesting
biology underlying divergent fungal actins, but the approach we took here to
elucidate it was limited by the availability of relevant trait information.
Nevertheless, we would greatly appreciate any feedback and comments on this

work.

While we're not pursuing this topic, several investigative paths are possible for
others. To keep investigating the function of DFAs, one obvious follow-up is to
expand the range of traits to test for correlation with the presence of DFAs. This
would require more complete datasets, including information for multiple species
whose DFA status can be established. Fungal ecology groups and mycologists may
have the tools and knowledge to generate such information. Another approach
would be to focus on genetic traits and rely on public genomic information. One
could use available genomes of fungal species that we're confident either have or
don’t have a DFA and search for any correlation with the presence/absence of

gene families.

Someone could also probe DFA function by using molecular biology techniques to
knock out the DFA in a given species and characterize the resulting phenotype(s),
though this would require genetically tractable organisms and technical
knowledge.
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