
A structurally divergent actin
conserved in fungi has no
association with specific
traits

We outline a comparative approach to investigate protein

function by correlating the presence or absence of a protein with

species-level phenotypes. We applied this strategy to a novel

actin isoform in fungi but didn’t find an association with any of

the phenotypes we considered.

Purpose

We were curious to see if phylogenetic trait mapping might be a reliable way to

uncover the function of structural variants of actin that we identify via our

ProteinCartography pipeline [1]. ProteinCartography leverages recent advances in

protein folding prediction [2] to identify structurally similar proteins, independent

of their sequence similarity. Actin is an ancient and highly conserved protein in

eukaryotes and is essential to multiple cellular processes. In previous work [3], we

identified a set of actin proteins that are present in a large number of fungi yet

are structurally distinct from the primary cytoskeletal actin, suggesting these

proteins may serve a different function.

We wondered if the presence or absence of these non-canonical, divergent

fungal actins (DFAs) correlates, across species, with biologically relevant fungal

traits. A strong correlation would suggest that this actin isoform is related to a
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given trait, potentially suggesting a novel structure-function relationship within

this protein family. We identified six fungal traits, available in public databases,

that we thought DFAs might influence. However, we found that none of these

traits predicted the presence of a DFA.

While we decided not to continue this project, we believe it could spark interest

in many audiences (e.g., fungal ecologists, evolutionary biologists, cell biologists).

At the end of this pub, we discuss potential follow-up directions for anyone

interested in studying DFAs.

This pub is part of the platform effort, “Annotation: Mapping the
functional landscape of protein families across biology.” Visit the platform
narrative for more background and context.

Data, including the inputs and outputs from our ProteinCartography run,
are available on Zenodo.

All associated code, plus lists of divergent actins, associated species, and
trait information, is available in this GitHub repository.

Background and goals

Actins are some of the most conserved proteins among eukaryotes and support

essential functions including cell division, cellular trafficking, cell shape, and

motility [4]. In fungi, primary actin is known to be essential to many cellular

processes (apical growth, endocytosis, exocytosis, cellular trafficking, cytokinesis,

and possibly pathogenicity in pathogenic species) [5]. While investigating the

structural similarity of actin, actin-like proteins, and actin-related proteins with

ProteinCartography (a tool for clustering structurally similar proteins across

diverse organisms [1]), our functional annotation team identified a well-defined

and distinct cluster that contained around 290 proteins [3] (Figure 1). The vast

majority of the proteins in this cluster are fungal, annotated as Actin-2 or actin-

like proteins, and are found in species that also possess another, structurally

canonical actin (Figure 1). We therefore refer to these as “divergent actins.”
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Figure 1. UMAP plot for the human cytoplasmic actin (ACTB).

(A) Cluster overlay. Leiden cluster identity (LC number) is indicated by color for each of the proteins
in the study.

(B) Broad taxon overlay. Color indicates the taxon to which each protein belongs.

The black circles indicate the cluster (LC14) that contains the divergent fungal actins. The star
represents the human actin structure we used to seed the ProteinCartography run.

It’s not rare for organisms to possess multiple actin isoforms (for instance,

humans have six nearly identical actin isoforms [6] and Arabidopsis thaliana has at

least 10 isoforms [7]). However, some species, like the malaria-causing parasite

Plasmodium, have structurally divergent isoforms known to have functions that

are distinct from their canonical isoform [8][9].

Identifying a class of structurally similar actin isoforms that diverge from

canonical actin and are present in more than 200 fungal species raises a

question — what function(s) do these divergent actins perform in fungi? The

proteins in this cluster of divergent actins have conserved ATP-binding residues,

but the residues required for polymerization are not well-conserved [1]. These

residues are important for the biochemical functions of actin and contribute to

the overall role that the protein plays in the cell. We wondered whether these

divergent actins have an uncharacterized function or role required by some

shared biological feature of the fungi that possess them. Thus, we sought to

identify biologically relevant fungal traits that predicted the presence or absence

of these divergent actins within species, a pattern that would hint at the function
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of these actins. To do so, we tested for statistical associations between the

presence or absence of a divergent actin and each selected phenotype using the

workflow outlined in Figure 2 (and detailed in the next section, “The approach”).

Ultimately, we didn’t identify any correlations between the divergent actin and

these traits. Thus, the function of these actins remains mysterious (described in

“The results”), but we hope our trait-mapping strategy offers a useful approach for

future functional annotation efforts or that others in the community with a

particular interest or expertise in this space can make additional progress.
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Figure 2. Workflow for generating hypotheses about protein function using
ProteinCartography.

Step 1: Enrich the initial set of divergent fungal actins

Step 2: Identify a working set of fungal species with known DFA status

Step 3: Curate trait data

Step 4: Statistically model the association of DFAs and fungal traits

The approach

To investigate the functions of these divergent fungal actins (DFAs) [3], we

decided to test the association of a trait and the presence or absence of DFAs to

generate hypotheses about their role(s). For example, if all of the fungal species

that possess a DFA also possess a specific spore-bearing structure, we might
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guess that DFA is involved in spore storage and/or release. To be successful, we’d

need both trait information and genomic information about the presence or

absence of DFA across as many species as possible.

Our approach consisted of four main steps (Figure 2). First, we expanded the set

of fungal species in our analysis by running a new ProteinCartography analysis

focused on these divergent actins and removing non-fungal species. While this

allowed us to confidently identify fungal species that possess a divergent actin, it

was also necessary to be able to confidently identify fungal species that don’t

possess one. Therefore, in step two, we defined our working set of species: the

set of fungal species for which we could determine whether or not they possess a

DFA (for details on how we determined the presence or absence of a DFA, jump to

the section, “Identifying a working set of fungal species”). Third, we curated

public fungal databases to gather trait and phylogenetic information for as many

species as possible in our working set. The last step then consisted of running

statistical models to test for the correlation between the presence or absence of

the DFA and six different fungal traits: growth form, trophic mode, ascus

dehiscence, presence of an auxin-responsive promoter, spore length, and spore

width.

We discuss each of these four steps below. Keep reading or skip straight to the

results.

1) Enriching the initial set of divergent fungal actins
We identified six representative divergent actins from an initial

ProteinCartography run (available on Zenodo in “actin_older_version.zip”). We then

performed a single ProteinCartography analysis with these six proteins as the

input to capture as many structurally similar DFAs as possible.

Clustering the original set of divergent actins and selecting
representatives
We first identified divergent fungal actins when we ran human ß-actin (UniProt

ID: P60709) through ProteinCartography and noticed a cluster, LC14, that was

distinct within the map and mostly contained fungal proteins [3] (note that this

original run used ProteinCartography version v0.4.0-alpha, available on Zenodo).

In this work, we clustered all 292 protein sequences from cluster LC14 using
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MMseqs2 (version 14.7e284) and the clustering module [10][11]. This generated six

clusters with sizes ranging from one sequence to 281 sequences. From each

cluster, we extracted the longest sequence as the representative sequence

(cluster 1: A0A401L4A6, cluster 2: A0A0C9N219, cluster 3: A0A2N1JBK3, cluster

4: A0A5B0SCN5, cluster 5: A0A226D8X1, cluster 6: A0A7J6TT41).

Running ProteinCartography
We aimed to expand the existing LC14 cluster by running ProteinCartography

(version v0.4.0-alpha) on our six representative proteins listed above. We used

each of the six divergent fungal actins as inputs for “search mode” in the pipeline.

Full details on the ProteinCartography pipeline can be found in the associated

GitHub repository and pub.

Briefly, ProteinCartography “search mode” starts with an input protein(s) and

searches for proteins with either similar sequences using BLAST [12], or structures

using Foldseek [13]. The pipeline downloads all available structures from the

AlphaFold database and compares every downloaded structure to every other

downloaded structure, creating an all-v-all matrix of structural similarity scores [13]

[2][14]. The pipeline then uses Leiden clustering on this similarity matrix to group

these proteins [15]. In our ProteinCartography analysis, we used “search mode”

with standard parameters on these six divergent actins [1]. We requested 3,000

Foldseek hits per input protein and 6,000 total proteins per input. The run

generated 3,596 unique structure hits grouped into 17 clusters.

ProteinCartography compares pairs of protein structures using the TM-align

algorithm [13] to calculate their structural similarity [1]. This comparison yields a

TM-score (template modeling score) between zero and one. A TM-score above

0.5 suggests structural similarity, while a score below 0.17 indicates unrelated

proteins. For a given protein cluster, the "cluster compactness" score reflects the

average TM-score for all pairs of compared proteins within the cluster. Increasing

“cluster compactness” scores (on the diagonal of the similarity matrix (Figure 3,

B)) indicates increasing similarity within a cluster. The average cluster

compactness (average of the diagonal) indicates how well protein structures have

been sorted, and thus represents the overall quality of the results. In previous

work [1], 25 different runs of ProteinCartography yielded cluster compactness

scores ranging from 0.35–0.86. Considering this range, we consider that the
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average cluster compactness of our run, 0.6, is a reasonable score, underlying an

overall useful clustering of the proteins. For this study specifically, we considered

any cluster whose compactness is greater than 0.6 to be “well-defined.” We

identified eight well-defined clusters: LC01, LC03, LC04, LC10, LC11, LC12, LC14,

and LC15.

Defining the extended set of divergent actin proteins
We identified two clusters that contained the divergent actin structures used as

input, LC04 and LC11, representing a total of 407 proteins. We then combined

this set of proteins with cluster LC14 from the original human actin

ProteinCartography analysis and obtained an extended set of structurally similar

actin proteins containing 436 proteins, spanning 412 strains.

Taxonomic analysis of the extended set of divergent actins
and selection of the fungal divergent actin set
For each protein that ProteinCartography identifies, it returns a set of metadata,

including the organism in which the protein is found and the associated

information on taxonomy or lineage.

For each protein in our extended set of divergent actins, we determined the

kingdom, phylum, and order of its species. As some proteins belong to organisms

that do not have a kingdom reported in UniProt, we manually curated them and

added corresponding clade information instead. This includes Discoba, SAR,

Amoebozoa, and Opisthokonta.

We removed all proteins associated with kingdoms other than fungi, leaving us

with 406 DFA proteins.

These 406 DFAs were present in a total of 385 unique strains. Among them, 16

strains contained two or more DFA hits: one strain with six DFA hits, one strain

with three DFA hits, and 14 strains with two DFA hits. We aimed to verify whether

these strains really possess multiple DFAs in their genomes or if this is an artifact

of inaccurate protein annotation or low genome sequencing and assembly quality.

For half of the strains, a single protein sequence had been annotated by different

groups and thus resulted in multiple entries into the PDB. In these cases there

was clearly only one DFA in the species. For the other strains, protein-to-

nucleotide BLAST (tBLASTn) alignments failed to identify discrete genomic
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locations. We believe this could be because of low genome sequencing coverage

and low-quality genome assembly. Nevertheless, the great majority (≥ 95%) of the

fungal species associated with divergent actin seem to possess only one DFA in

their genome.

2) Identifying a working set of fungal species
To test for any correlation between fungal traits and DFAs, we needed to establish

a “working set” of species where we confidently knew the presence or absence of

DFAs. While ProteinCartography allowed us to expand the set of species in which

we knew a DFA was present, we had to identify other fungal species from which

DFAs were absent.

There are two possible reasons a species was not present in the output of

ProteinCartography: 1) the species encodes the protein but that information was

not available in UniProt or the AlphaFold database, and 2) the species truly does

not have a DFA. Studies have shown that some fungi have as few as 6,000

proteins and a typical fungal genome contains 10,000 protein-coding genes [16]

[17]. We considered DFAs to be absent in any species that didn’t have a DFA hit if

that species also had more than 6,000 proteins in UniProt. Our selection criteria

are liberal and are likely to cause false negative errors where we determine DFA to

be absent when it is actually present. This is particularly true for those fungal

species that possess large numbers of proteins (i.e. ≫ 6,000 proteins). That is, we

likely will have underestimated the prevalence of these DFAs across the fungal

tree of life for species with typical fungal genome sizes (i.e., ~10,000 genes [18],

and thus > 10,000 proteins), a fact that may have limited our ability to recover

DFA–trait associations.

To identify the fungal species with 6,000 or more protein structures in the

UniProtKB and AlphaFold databases, we first conducted an advanced search in

UniProt using the following query: “Fungi” in the “Taxonomy” field and “*” for the

field “AlphaFoldDB cross-reference” (found within the “Cross reference/3D

structure” field), to obtain all the fungal proteins with available structures in

AlphaFold. We then counted the number of proteins per fungal species from this

search. Finally, after filtering for fungal species that have more than 6,000

proteins with available structures, we obtained their taxonomic classification from

NCBI. This yielded 853 total fungal species. Among them, 346 species were also
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present in our extended set of species that possess a DFA (41%) and the 507

remaining species don’t possess a DFA (59%).

To assess whether our 6,000-protein threshold introduced a sampling bias

(independent of taxonomy), we varied the count threshold from 6,000 proteins to

25,000 proteins and compared the proportions of species with and without a

DFA. We found that the ratio of species with vs. without a DFA does not drastically

change across this threshold range (ratio for a threshold at 10,000 proteins:

40%:60%; ratio for a threshold at 20,000 proteins: 44%:56%; ratio for a

threshold at 25,000 proteins: 42%:58%).

Distribution of divergent fungal actins in the fungal kingdom
We obtained the phylogenetic relationships of the fungal orders represented in

our working set of species from the TimeTree database’s web interface

[timetree.org; [19] (Figure 4)]. The resulting tree represented 85 fungal orders. We

next investigated the distribution of DFAs in the fungal kingdom by calculating

and visualizing the distribution of DFAs at the order level.

We were able to recover the order for 783 of the 853 species. For each order, we

calculated the fraction of associated species that possess a DFA and mapped this

information onto the tree (Figure 4, B).

3) Curating trait data
We used the database Fun  as the source of fungal trait information [20]. This

database contains a large amount of species-level information compiled from

different studies. In addition to FUNGuild information (classification of fungi

based on their ecological function and classification of fungi based on their

trophic mode) [21], it includes ecological, cellular, and biochemical traits.

We decided to focus on six traits: growth form, trophic mode, ascus dehiscence,

auxin-responsive promoter, spore length, and spore width. We chose these traits

specifically to maximize the overlap between the species for which we could

obtain trait information and for which we could determine DFA status, and to

include biological features for which actin was relevant. We extracted information

on these traits for the species present in the database that were also in our

working set.

Fun

10

https://timetree.org/
https://doi.org/10.1093/molbev/msac174
https://doi.org/10.1111/brv.12570
https://doi.org/10.1016/j.funeco.2015.06.006


A total of 143 species from our working set had information for at least one of the

six selected traits in Fun . Of these species, 36 had multiple strains in the

ProteinCartography DFA dataset. However, we do not have trait information for

individual strains, just species. For 23 of these species, a DFA was present in all of

the strains. For the 13 species where DFA status varied across individual strains,

we attempted to determine whether this variation across strains resulted from real

biology or was caused by some bioinformatic error — e.g., a strain was incorrectly

identified as not possessing a DFA when it actually did. For all the strains that

don’t possess a DFA, we conducted a protein BLAST (BLASTp) search in NCBI as

well as a protein-to-nucleotide BLAST (tBLASTn) to identify whether there was

evidence that a DFA was encoded in the genome of the strain. However, these

attempts proved uninterpretable and the variation in DFA status across strains

may have resulted from undersampling the genetic material from some of these

species and noisy assembly data. We thus removed these 13 species from the

study. Intersecting the remaining species with those in our phylogeny led to the

removal of an additional 28 species not present in TimeTree.

Altogether, we were able to collect DFA status, trait information, and phylogenetic

relationship information for a total of 102 species.

4) Statistical modeling of the association of DFAs
and fungal traits
To test whether each of our six traits predicted the presence of DFAs, we applied

several statistical models, including generalized linear models for continuous

traits and discrete-state Markov models for categorical/binary traits. These

approaches are described in more detail below.

For discrete traits, we used a model selection approach comparing the likelihoods

of two models: one where the evolutionary trajectory of DFA (i.e., its

presence/absence in any given species across evolutionary time) and the similar

trajectory of another trait are the same, and a second model where DFA and the

trait of interest evolved independently. For continuous traits, we estimated the

portion of variation in the presence or absence of a DFA that can be accounted

for by variation in the trait of interest while controlling for shared evolutionary

history. For a summary of the input data, see Table 1.

Fun
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Trait Data type

Number of categories with ≥ 4

species

Number of

species

Growth form Discrete 3 (agaricoid, microfungus, yeast) 24

Trophic mode Discrete 3 (saprotroph, pathotroph,

symbiotroph)

63

Ascus dehiscence Discrete 2 (deliquescent, poricidal) 13

Auxin-responsive

promoter

Discrete 2 (present/absent) 71

Spore length Continuous – 10

Spore width Continuous – 10

Table 1. Description of the data used for statistical modeling of DFA presence/absence
and fungal traits.

Testing the association of DFAs with discrete or binary traits
We re-defined categorical trait data from the Fun  database to maximize the

number of categories containing four or more species, as categories with fewer

than four species would not have enough data to accurately model the association

between DFA status and the trait:

For “growth form,” we collapsed the categories “yeast” and “facultative
yeast” into a single level: “yeast.” We removed the categories ergot,
cordyceptoid, rust and xylaroid.

For “trophic mode,” we defined three levels: “saprotroph,” “pathotroph,”
and “symbiotrioph,” and parsed any species with multiple trophic modes
into each individual mode (for instance, if a species was labeled as
“saprotroph-pathotroph,” we counted it as “saprotroph” and “pathotroph”).

For “ascus dehiscence,” we removed the categories fissitunicate and
rostrate.

For “auxin-responsive promoter,” we transformed the number of auxin-
responsive promoters into a simple binary variable: presence or absence of
promoters.

To determine whether DFA status and a discrete trait are associated, we used an

evolutionary model selection procedure. As mentioned above, we fit two classes

of models to the data: a “correlated” model in which we assumed the evolution of

Fun
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DFA presence/absence correlates with the trait of interest and an “independent”

model where we assumed a DFA and the trait of interest evolved independently.

We then compared the likelihood of these models using the Akaike information

criterion (AIC), a measure of likelihood that penalizes for model complexity. Under

this paradigm, if the correlated model was more likely, we would take this as

evidence that the evolution of DFA could be explained in part by the trait of

interest, and conversely, if the independent evolutionary model was more likely, it

would suggest that DFA and that particular trait evolved independently.

We used this model selection procedure for two classes of models, a discrete-

time Markov model (DTMM) and a hidden Markov model (HMM), both commonly

used for modeling the evolution of discrete traits over time [22]. DTMMs assume

that the evolutionary rate of change for a trait is constant independent of the

state of that trait. For example, the probability that a DFA will be lost as a function

of evolutionary time is the same as the probability that a DFA will be gained in

that same amount of time. Alternatively, HMMs allow for multiple evolutionary

rates dependent on the current trait status (e.g., DFA presence or absence). Our

HMMs allowed for two different evolutionary rates for each observed trait status.

Altogether, using the R corHMM package (version 2.8) [22], we fit four models for

each trait: DTMM with assumed independent evolution of DFA and trait (labeled as

“independent_model_fit” in the package output), DTMM with assumed correlated

evolution of DFA and trait (labeled as “correlated_model_fit” in the corHMM

package output), HMM with assumed independent evolution of DFA and trait

(labeled as “hidden_Markov_independent_model_fit” in the package output), HMM

with assumed correlated evolution of DFA and trait (labeled as

“hidden_Markov_correlated_model_fit” in the package output).

Testing the association between DFA and continuously
variable traits
We evaluated the correlation between DFA presence with continuously variable

traits (e.g. spore size) using phylogeny-corrected generalized linear mixed models

(pglmm). Specifically, the pglmm_compare function from the R package phyr

(version 1.1.2) [23].
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These models test whether variation in the trait (i.e., the predictor variable) can

account for variation in DFA status while controlling for the evolutionary non-

independence among species due to their shared evolutionary history.

Specifically, they implement a linear model (a logistic regression) to determine

whether changes in the continuous predictor trait account for the presence or

absence of a DFA. The model equation is typically structured as follows:

Where:

logit(P(DFA​=1)) is the logit transformation of the probability that DFA equals
one (i.e., the probability that DFA is present in a species). The logit link
function is used to model the relationship between the probability of the
binary outcome and the continuous predictor, ensuring that the predicted
probabilities lie between zero and one.

β0 is the intercept: the predicted log odds of the DFA outcome when the
continuous trait is at zero.

β1 (or slope) is the unknown coefficient for the continuous trait indicating
the effect size of the trait on the log odds of DFA being one.

Trait is the known vector of continuous trait values (e.g., spore length or
spore width).

Z is the known evolutionary variance-covariance matrix capturing the
average relatedness among species. It represents the random effects due
to phylogenetic relatedness among observations, capturing the unobserved
phylogenetic variance.

u is the vector of unknown coefficients on the Z matrix.

ϵ is the residual error term.

To evaluate whether a given continuous fungal trait is a predictor of DFA status,

we focused on the coefficient for the continuous trait (or slope β1) that a fitted

pglmm returns. Any slope that is significantly different from zero indicates that

changes in trait values change the probability of the DFA outcome, indicating

that, to some degree, the continuous trait is a predictor of DFA status.

logit(P(DFA​= 1)) = β0​+ β1​∗ Trait​+ Zu​+ ϵ
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Additional methods
We used ChatGPT to help write some code.

The results

ProteinCartography identifies clusters of divergent
actins
We expected the initial set of divergent actins identified in our original work to be

incomplete. Thus, we first aimed to look for other proteins that are structurally

similar to our proteins of interest using ProteinCartography.

We identified six representative divergent actins to seed ProteinCartography,

which generated 3,596 unique hits grouped into 17 clusters (Figure 3, A), eight of

which were well-defined (LC01, LC03, LC04, LC10, LC11, LC12, LC14, and LC15 —

Figure 3, A and B). These clusters contain hits from three main kingdoms:

Metazoa, Fungi, and Viridiplantae (Figure 3, C). Semantic analysis shows that they

are mainly associated with the actin family, and they contain proteins with similar

length distribution. Together, these findings indicate that the well-defined

clusters contain proteins that belong to the actin protein family but are

sufficiently structurally different to cluster separately, suggesting that these are

structurally distinct isoforms.
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Figure 3. ProteinCartography analysis of six representatives of the divergent actin.

(A) UMAP of the ProteinCartography clustering output with cluster identity indicated by color. Black
stars indicate the six proteins that were the input.

(B) Similarity matrix for the clustering of the divergent actins. For each cluster pair, we calculated
the mean TM-score of the structures in a cluster vs. structures of proteins in the other cluster.

(C) Kingdom distribution of the proteins within clusters.

(D) Distribution of protein lengths within clusters.

(E) Semantic analysis of keywords describing proteins in each cluster.

We next examined the proteins that co-clustered with our representative

divergent actin proteins. The representative divergent actin proteins fell into two

well-defined (high within-cluster compactness score in similarity matrix; Figure 3,

B) clusters, LC04 and LC11. Proteins in both clusters are largely fungal and are

annotated as “Actin-like protein” (Figure 3, C and E). Therefore, we considered

any protein in these two clusters to be a divergent actin similar to the divergent

actins used in this search, which inspired this project. Altogether, clusters LC04

and LC11 represent 407 proteins, 144 of which were not part of the original set of

divergent actins, and they span 139 additional strains and species. Combining the

original set and the new hits generated an extended set of 436 divergent actins

spanning 412 strains.

The extended set of divergent actins still contains
mainly fungal proteins
What caught our attention in the original set of divergent actins was the fact that

nearly all (285/292) are fungal proteins. We analyzed the kingdom or clade

distribution (as defined by NCBI Taxonomy when kingdom rank was not available)

for the proteins in the extended set of divergent actins (Figure 4, A) to see if we

were still looking at mostly fungal proteins. While the percentage of non-fungal

proteins is higher, more than 93% of the proteins are found in fungal species.

The second-most represented kingdom is Metazoa, which represents just 2% of

the proteins. This confirms that these divergent actins are mostly found in fungi.

We therefore refer to them as divergent fungal actins (DFAs). Additionally, most of

the fungi seem to possess only one divergent actin in their genome, suggesting

that there is usually only one DFA per species (in addition to a more conserved

primary actin).
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The distribution of DFAs across species is highly
variable
We next investigated the distribution of DFA within the fungal kingdom. We

examined how consistently DFAs are present in orders or phyla and if they were

gained and lost frequently across the fungal tree. The latter is a characteristic

pattern of an evolutionarily labile trait (in contrast to a conserved trait). The

distribution of DFA across species in the fungal kingdom will indicate whether

DFA is associated with fundamental, conserved traits or if it is more evolutionarily

labile and potentially important for adaptive responses to the environment.

We started by determining a working set of fungal species for which we could

reliably determine whether a DFA is present or absent (see “The approach”). This

working set is composed of 853 fungal species: 346 species that possess a DFA

(these are from the extended set of divergent actin species) and 507 species that

don’t possess a DFA. These species span eight fungal phyla: Ascomycota (611

species), Basidiomycota (186 species), Mucoromycota (30 species),

Blastocladiomycota (two species), Chytridiomycota (16 species), Zoopagomycota

(13 species), Microsporidia (two species), and Cryptomycota (one species). We

visualized the phylogeny of fungal orders and mapped the fraction of species that

possess a DFA in each fungal order (Figure 4, B).

Overall, the distribution of DFAs is highly variable across fungal orders. For many

orders, the fraction of species possessing one or more DFA is neither zero (i.e., no

species have a DFA) nor one (i.e., all species have a DFA), indicating that DFA

distribution is also variable within orders. Thus, DFA seems evolutionarily labile.

This lability suggests that DFA could have an alternative function to the canonical

actin, which is extremely evolutionarily conserved. It’s possible that the

presence/absence of a DFA can rapidly change in response to

natural/environmental pressures, and thus DFAs may be associated with specific

adaptive fungal traits. Our next step was to look for any such associations. We

note, however, that these findings may be impacted by our definition of DFA

absence defined earlier. That is, by potentially overestimating the number of

species for which DFAs are absent, we may have in turn overestimated the

evolutionary lability of the trait.
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Figure 4. Taxonomic analysis of the organisms possessing the divergent actin form of
interest in the extended set.

(A) Kingdom (or clade) analysis. Each branch is one representative species from a given
clade/kingdom.

(B) Phylogenetic tree that highlights, for each fungal order, the fraction of species that possess a
DFA (heatmap) and the number of species analyzed per order (bar plot). Bar and tree tip color
indicate their phylum.

None of the six tested fungal traits correlate with
DFA status
We then took an evolutionary modeling approach to identify biological processes

that DFA may be involved in. We looked for evidence that DFA and specific

adaptive traits are correlated. We started by curating public databases to gather

trait information that we believe to be relevant to the protein we are investigating.

For this project, we chose to use Fun  [20], a recently established database that

aggregates trait information from multiple databases.

We chose to focus on six available traits (Figure 5). Four traits are discrete traits

that take on categorical values: growth form, trophic mode (source from which a

fungus derives its nutrients), ascus dehiscence (mechanism to release the

ascospores), and the number of auxin-responsive promoters (the ability to

respond to auxin-based signals from the environment [24]. The two other traits are

continuous traits associated with spore morphology: spore length and spore width.

Fun
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We chose to look at these traits because each one is associated with either

morphological structures, cell architecture, cell dynamics, or cell trafficking — all

areas where actin could play a pivotal role. Furthermore, these traits are widely

distributed across the fungal species in our working set. Thus, we believe that

DFA could be associated with one of these traits (see below).

Altogether, we were able to collect high-confidence DFA status, phenotypic data

for at least one trait, and phylogeny information for a total of 102 species, allowing

us to pursue statistical modeling of the evolutionary trajectory of DFA status and

traits in these species [24].

Figure 5. Tree representation of the fungal species for which we looked for a correlation
between DFA status and specific traits.

Tree branches are colored based on phylum. The row “DFA present” indicates whether the species
possesses a DFA (purple) or not (empty). In subsequent rows, a grey square indicates that
information on a given trait is available for the species.

Next, we developed an evolutionary modeling strategy to find evidence of

correlated evolution between DFA and one of these traits. For the discrete traits

(Figure 6, A–D), we compared statistical models that assumed either correlated or

independent evolution of the trait and DFA for two classes of model: the discrete-
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time Markov model (DTMM) and the hidden Markov model (HMM). We used the

Akaike information criterion (AIC) to evaluate the models, where the model that

describes the best association of a trait and DFA is the one with the lowest AIC

(Table 2). For all discrete traits, we found the model in which DFA and a trait of

interest did not have correlated evolutionary histories to be more likely.

Figure 6. Distribution of DFA status within trait data.

For each trait, we’re showing the number of species that have (purple) and don't have (light purple)
DFAs. For discrete traits (A) we show the number of species in each trait category. For continuous
traits (B), we show the trait value for each species.

For continuous traits (Figure 6, E–F), we used a generalized linear mixed effects

model that accounts for the evolutionary non-independence of species and their

traits, and quantifies the degree to which a continuous variable explains the

presence or absence of DFA. It provides a statistical test for the influence of a

trait on DFA status, and a significant p-value (≤ 0.05) indicates a correlation

between the trait and DFA (Table 3). None of the continuous traits explained the

presence or absence of DFA in a given species.
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In conclusion, we did not detect a correlation between the presence of a DFA and

the traits investigated in this study.

Trait Model class Evolution of DFA and trait AIC

Growth form DTMM Independent 69.34

HMM Independent 87.13

DTMM Correlated 86.65

HMM Correlated 125.62

Trophic mode DTMM Independent 211.79

HMM Independent 222.46

DTMM Correlated 224.42

HMM Correlated 256.31

Ascus dehiscence DTMM Independent 30.06

HMM Independent 41.02

DTMM Correlated 37.49

HMM Correlated 57.15

Auxin-responsive promoter DTMM Independent 144.88

HMM Independent 146.13

DTMM Correlated 149.33

HMM Correlated 159.73

Table 2. Akaike information criterion (AIC) for the different models used to model the
evolution of DFA and discrete fungal traits.

Trait Parameters Values p-values

Spore length Intercept 0.8882429 0.41

Length 0.0060128 0.64

Spore width Intercept 1.003899 0.35

Width 0.0045372 0.71

Table 3. Results of the phylogeny-corrected generalized linear mixed models for
continuous traits.
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Limitations

We did not find a correlation between the presence of a DFA in a fungal species

and any fungal traits. Thus, we failed to support any preliminary hypotheses about

the function of DFAs. We’ve identified a handful of limitations and weaknesses in

our study that may have contributed to this negative result.

Our failure in identifying a correlation between DFAs and any fungal trait most

likely stems from the fact that we have only investigated six traits, and did not

include traits that were biologically relevant to the DFAs in our work. The

restricted scope of this work is a direct consequence of one of the main

challenges in any trait mapping project: collecting a large amount of accurate

data. We only explored a small number of traits because of the limited availability

and quality of the data we could obtain. Furthermore, these trait data were not

originally collected with the goals of the present study in mind, and thus are likely

limited in relevance for DFAs.

The scarcity of reliable trait information not only limited the breadth of our

investigation but also impacted the depth to which we could explore the

relationships between DFA and fungal traits, as it significantly reduced our

statistical power. For instance, starting from 36,253 fungi with at least one protein

structure in UniProt, we were only able to gather reliable trait information (DFA

status, one of the six fungal traits, and phylogeny) for an average of 34 fungi.

Finally, our ability to link a phenotype and the presence or absence of a DFA is

limited by our ability to determine whether DFAs are present or absent. While we

can accurately identify species that have a DFA, our determination of DFA

absence is impacted by the quality and coverage of genomic sequence data.

Errors in the assessment of DFA status reduce our ability to identify significant

associations between DFAs and phenotypes.

Key takeaways

We hoped to use trait mapping and evolutionary modeling as a way to generate

hypotheses about the potentially undiscovered, new function of the divergent
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fungal actin (DFA) discovered in our previous work. We found that the distribution

of this DFA is variable within the fungal kingdom, suggesting DFA has a more

adaptive function compared to canonical actin, which is highly conserved in the

fungal kingdom. We tried an evolutionary modeling strategy to see if we could

correlate the presence or absence of this actin variant with a set of fungal traits,

since any correlation could provide insight into the function of DFAs.

Our results showed no correlation between any of the tested traits and DFAs, so

the function of this variant remains unknown. While we didn’t find anything

conclusive, we’re still excited by the potential to use trait mapping to generate

hypotheses about unknown protein functions in the future.

Next steps

We’ve decided to put this project on ice. We think there may be interesting

biology underlying divergent fungal actins, but the approach we took here to

elucidate it was limited by the availability of relevant trait information.

Nevertheless, we would greatly appreciate any feedback and comments on this

work.

While we’re not pursuing this topic, several investigative paths are possible for

others. To keep investigating the function of DFAs, one obvious follow-up is to

expand the range of traits to test for correlation with the presence of DFAs. This

would require more complete datasets, including information for multiple species

whose DFA status can be established. Fungal ecology groups and mycologists may

have the tools and knowledge to generate such information. Another approach

would be to focus on genetic traits and rely on public genomic information. One

could use available genomes of fungal species that we’re confident either have or

don’t have a DFA and search for any correlation with the presence/absence of

gene families.

Someone could also probe DFA function by using molecular biology techniques to

knock out the DFA in a given species and characterize the resulting phenotype(s),

though this would require genetically tractable organisms and technical

knowledge.
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