How can we biochemically
validate protein function
predictions with the
deoxycytidine kinase family?

The human deoxycytidine kinase, a member of the nucleoside
salvage pathway, has been studied extensively. We’ll use this
family to assess our structure-based protein clustering tool,
ProteinCartography. We’d love feedback on how we might work
with this protein for validation.
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Purpose

We created ProteinCartography to computationally compare protein structures
from a single family across many different species r11. ProteinCartography
identifies proteins similar to an input and compares the structures of each protein
to every other protein to produce an interactive map with clustering information
overlaid. In a previous pub, we began formulating a plan to validate
ProteinCartography by testing two foundational hypotheses: proteins within
clusters will have similar functions and proteins in different clusters will have

different functions 2.

In this pub, we outline our ProteinCartography results for one of the protein
families we've chosen to use for validation, deoxycytidine kinases, which we
selected because it's been previously biochemically studied and produced results
with many clear options for how to test our hypotheses [2;.
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We're seeking feedback regarding how we might approach in-lab validation in this
family, especially from those who've previously worked with deoxycytidine kinase
proteins.

e This pub is part of the platform effort, “Functional annotation: mapping
the functional landscape of proteins across biology.” Visit the platform
narrative for more background and context.

e This pub is part of our validation strategy series of pubs that starts with
“A strategy to validate protein function predictions in vitro.” We're also
considering Ras GTPases as an orthogonal protein family for validation. To

e The ProteinCartography pipeline used to run these analyses is available
in this GitHub repo. To create the custom overlays, we used this notebook
and added our custom color dictionaries, which can be found in the
associated Zenodo repositories.

e The data associated with this pub, including ProteinCartography results for
the deoxycytidine kinase family, can be found in this Zenodo repository.

Background

Why use deoxycytidine kinases?

Our initial validation of ProteinCartography is intended to test the two
foundational hypotheses that proteins in the same cluster have similar structures
and functions and that proteins in different clusters have differing structures and
functions. To do this rapidly and in a straightforward manner, we began with
proteins that had been previously biochemically characterized. We started with
the 200 most well-studied human proteins 41. Other factors we considered in our
protein selection decision were the length of proteins and the quality of the
available AlphaFold structures. The pLDDT (predicted local distance difference
test), computed by AlphaFold, is a per-residue measure of the confidence of a
model structure [51. This score ranges from O to 100, with higher scores indicating
greater confidence. In our case, we focused on proteins shorter than 1,280 amino
acids, a length limit set by AlphaFold, and proteins with a pLDDT score higher
than 80. Model structures in this pLDDT score range are typically considered
high-confidence.
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Taking into account each of our selection criteria 25, we chose to focus on the
human deoxycytidine kinase. As of this writing, there are 47 Protein Data Bank
(PDB) entries for this protein, which places it among the 200 human proteins with
the most solved structures. Additionally, this protein family has commercially
available assay kits and it produced ProteinCartography results with clearly
defined clusters that would allow us to test our foundational hypotheses (Figure 1).

What do deoxycytidine kinases do and why are they
important?

Deoxycytidine kinase (dCK) has an essential role as a nucleoside kinase, critical in
producing precursors for DNA synthesis 161. The enzyme is crucial in the
nucleoside salvage pathway, primarily phosphorylating deoxycytidine and
converting it into deoxycytidine monophosphate (71. The enzyme can also convert
the nucleosides deoxyadenosine and deoxyguanosine to their monophosphate
forms, albeit at a lower rate 171. In addition to these native substrates, the dCK
enzyme is essential for activating several nucleoside analog prodrugs via
phosphorylation. These analogs include anticancer drugs (cytarabine,
gemcitabine, cladribine, and fludarabine) as well as antiviral drugs (lamivudine and
emtracitabine) (e1.

Very little is known about non-human dCK homologs but they’re intriguing to
investigate because they could have distinct properties that might improve
cancer and antiviral therapies that rely on human dCK. There’s already evidence
that novel human dCK homologs improve the efficacy of gene-directed enzyme
prodrug therapies for cancer 81. For example, a nucleoside kinase encoded by the
fruit fly Drosophila melanogaster has broader substrate specificity, better catalytic
efficiency, and improved stability (91 relative to its human counterpart. A truncated
version of the fruit fly dCK successfully re-sensitized a drug-resistant breast
cancer cell line to treatment with an anticancer nucleoside analog 91. Another
example is a tomato (Solanum lycopersicum) thymidine kinase that is highly
active and less sensitive to negative feedback regulation by its reaction

products re1. Researchers used a combination of an anticancer prodrug and the
tomato thymidine kinase to successfully treat malignant glioma (brain tumor) cells

in vitro and brain tumors in mice 1.


https://doi.org/10.57844/ARCADIA-CAE9-96C4
https://doi.org/10.1016/j.jmb.2008.02.061
https://pubmed.ncbi.nlm.nih.gov/1406603/
https://pubmed.ncbi.nlm.nih.gov/1406603/
https://doi.org/10.1016/j.jmb.2008.02.061
https://doi.org/10.1016/j.jgg.2015.01.003
https://doi.org/10.1074/jbc.273.7.3926
https://doi.org/10.1074/jbc.273.7.3926
https://doi.org/10.1080/15257770.2013.853781
https://doi.org/10.1093/neuonc/nop067

Diving into the ProteinCartography
results for the deoxycytidine kinase
family

Running ProteinCartography on deoxycytidine
kinases

To explore the biochemical function of non-human dCK homologs, we used the
ProteinCartography pipeline to find proteins that are structurally similar to the
human dCK protein and group them into clusters based on that similarity.
ProteinCartography uses BLAST and Foldseek to identify proteins similar to the
input (1211131, It compares the structures of each protein to every other protein to
produce TM-scores, or structural similarity scores where a “one” indicates
identical proteins 1141. Using these scores, the pipeline performs Leiden clustering
to separate similar proteins into clusters and reduces dimensionality to create
interactive UMAP and t-SNE projections with overlays for further exploring the

protein family 1si1610171.

In our analysis, we used “search mode” with standard parameters and with the
human dCK structure as input (UniProt ID: P27707). We requested 3,000
Foldseek hits and 7,000 BLAST hits — a total of 10,000 structures. Our run
generated 2,418 unique structure hits that grouped into 12 clusters (LCOO-LC11)
(Figure 1). Our input protein, human dCK, is in LCO4 (Figure 1 and Figure 2, A).
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Figure 1. Interactive protein space with metadata overlays for proteins similar to human

dCK.

UMAP generated by ProteinCartography for proteins identified as similar to the human dCK. Our
input protein (human dCK) is in LC®4, indicated by a four-pointed star. You can select different

overlays via the drop-down “color” menu.

A full list of all the proteins in this analysis, plus all the aggregated information

from the pipeline can be found in the aggregated features file linked below:



Deoxycytidine_kinase_aggregated_features_pca_umap.tsv Download

Assessing compactness and overall quality

We started our analysis by exploring the Leiden cluster similarity matrix (Figure 2,
B) to evaluate the quality of the protein space ProteinCartography generated. The
similarity matrix displays scores calculated by comparing the mean TM-score of
every structure in each cluster to every other structure in the analysis r11. By
looking at the similarity scores along the diagonal of the matrix, we get an idea of
how tightly grouped the proteins are within each individual cluster. The average of
the diagonal values is a measure we’ve previously described as “cluster
compactness” (1. The clusters in our analysis had a mean compactness score of
0.73 (average of the diagonal values in the similarity matrix). Most of the
individual clusters also appear compact (a score above 0.6), in particular LCO4
(score: 0.91; cluster with our input protein), LCO9 (score: 8.92), and LC11 (score:
0.94) had some of the highest compactness scores (Figure 2, B). Cluster
compactness represents a basic quality-control check of how well the proteins
have grouped. However, given its nonlinear relationship with a number of other
ProteinCartography outputs, we decided to include several clusters with low
compactness in our downstream analyses to better understand the utility of
cluster compactness.

As a preliminary check of the quality of the structures, we explored the
distribution of mean pLDDT scores (structural confidence) and TM-scores
(structural similarity) across all clusters. The pLDDT scores tell us how confident
the AlphaFold structural prediction is and often low scores point to disordered
regions. A score of 100 is a highly confident structure (5. The majority of the
structures in our dCK analysis had a pLDDT score greater than 80, except for the
structures in LCO2, which we discuss further below (Figure 2, A). These high
scores suggest that we can be confident in the accuracy of the structural
predictions. When we looked at TM-scores, which tell us how similar two
structures are to each other, we saw that some structures are very similar to the
input protein (TM-scores close to one), but some structures are only distantly
related (TM-scores between 0.4 and 0.5) (Figure 1 and Figure 2, A). The broad
spectrum of relatedness represented enables us to more thoroughly investigate
the relationship between structural similarity and function.
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Figure 2. ProteinCartography outputs reveal interesting clusters of proteins with
structural similarity to human dCK.

(A) The structure of human dCK, where orange indicates regions of higher disorder, alongside the
UMAP projection with Leiden cluster overlay. Black diamond indicates the input protein. Note
that LCO1 is cropped out. Below the projection are violin plots showing the distribution of key
values for each of our clusters of interest where the circles indicate the median value. White
dots mean the median is below the threshold for significance, while filled-in dots denote
significance in a Mann-Whitney U test. “Broad taxon” indicates taxonomic groups represented in
each cluster. “Annotation” is the UniProt annotation confidence score, (scale: 1-5). “pLDDT” is
the confidence in the AlphaFold structural prediction for each structure (scale: 8-100). “Length”
is the number of amino acids in each protein. “TM-score” is the similarity of each structure to
that of human dCK (scale: 0-1).

(B) Cross-cluster similarity matrix. Each box represents the average TM-score (structural
similarity) when comparing all structures in one cluster to all structures in another, where a
higher score means the structures are more similar. The input cluster is marked with an asterisk
(*) and our clusters of interest are marked with dots (e).

(C) UMAP projection with custom overlay showing existing gene annotations. We manually sorted
annotations into seven major groups based on the nucleoside or nucleoside derivative they act
on and created a custom color overlay.

(D) UMAP projection with broad taxonomic groups overlaid.

(E) UMAP projection with TM-scores (compared to the input protein) overlaid. Higher TM-scores
indicate higher structural similarity to human dCK.

(A, C-E) Dashed boxes mark our clusters of interest.

To better understand the composition of our clusters and guide our selection
process, we explored ProteinCartography’s metadata overlays (Figure 1 and Figure
2, A). The metadata that we found particularly interesting for our analysis shows
the distribution of taxa (broad taxonomy overlay) (Figure 2, D), length of proteins
(length overlay), TM-scores (TM-score_v_input overlay) (Figure 2, E), pLDDT scores
(pLDDT overlay), and UniProt annotation scores (annotation overlay), across all of
the proteins in each Leiden cluster (Figure 1).

In the following subsections, we walk through the most interesting clusters.

LCO4: How does our input protein cluster?

We began by analyzing the metadata overlays for LCO4, which contains our input
protein, to see whether the results seem reliable and match what we’d expect for
the cluster containing the input protein. We started with the broad taxonomic
group overlay. ProteinCartography assigns proteins into taxonomic groups that



allow for the best readability, but the taxonomic depth isn’t uniform. Cluster LCO4
contains two dominant taxonomic groups, mammals and other vertebrates.
Because our input protein is a human protein, this is reasonable. The mean length
of proteins in LCO4 is ~270 amino acids, which is very close to our input protein
(260 amino acids), and the mean TM-score is 0.9, indicating that the proteins in
this cluster adopt a fold that’s highly similar to our input protein (Figure 1 and
Figure 2, A). The mean pLDDT score for proteins in LCO4 is 87, which confirms
that the quality of the structural predictions is high and that the proteins are
generally well-structured (Figure 1 and Figure 2, A). Last, the most common
annotation score in this cluster is two (132 proteins out of 233 total in LCO4)
followed by one (78 proteins) (Figure 1 and Figure 2, A), which both suggest that
existing UniProt protein annotations are of low confidence. We often observe
these two annotation scores as the most common because the majority of the
proteins in the UniProt database have not been biochemically characterized.
Overall, these results are fairly typical for a ProteinCartography run and there were
no surprises, so we're reasonably confident that the pipeline worked as we’d
hoped.

LCO2: Plant homologs close in structure to human dCK

By exploring the taxon distribution across the other clusters in our analysis, we
found that all proteins in LCO2 are in the clade Viridiplantae (Figure 1; Figure 2, A;

and Figure 2, D). The proteins in this cluster have a mean length that is much
higher (512 amino acids) compared to our input protein (260 amino acids) (Figure
1 and Figure 2, A). Even though the proteins in LCO2 have a slightly lower mean
TM-score (0.8), they should still adopt the same fold as our input

protein 181 (Figure 1 and Figure 2, A). The extra length of the proteins in this
cluster may contribute to their lower TM-score and lower mean pLDDT score of
67. We explored the structures of a few of the individual proteins and noticed that
they all have a core region with a high pLDDT score (90) that structurally aligns
well with our input protein. However, that core region is flanked by unstructured
portions on both the N- and C-termini, which may also contribute to the low
pLDDT score for the entire protein. Similar to LCO4, almost all proteins in this
cluster have an annotation score of one (317 proteins out of 321 total in LC02),
indicating an overall poor quality of the annotations in this cluster (Figure 1 and
Figure 2, A).


https://doi.org/10.1093/nar/gki524

LCO8 and LCO9: Taxonomically diverse homologs that diverge
in structure from human dCK

When we explored the broad taxonomy overlay for LCO8 and LCO9, we found that
there are highly diverse taxa represented in LCO8, including Vertebrata, Bacteria,
Archaea, Viridiplantae, and Arthropoda, while LCO9 contains exclusively bacterial
proteins (Figure 1 and Figure 2, D). The proteins in LCO8 are on average longer
compared to our input protein (319 amino acids vs. 260 amino acids), and this
cluster also contains some very long proteins (> 1,000 amino acids) (Figure 1 and
Figure 2, A). The mean length of proteins in LCO9 is very uniform and most
proteins are shorter than our input protein (220 amino acids vs. 260 amino acids).
Finally, both LCO®8 and LCO9 show low mean TM-scores of 8.5 and 0.4,
respectively, suggesting that the proteins in these clusters have adopted a fold
that is more distantly related to our input protein (Figure 1 and Figure 2, E). For
both clusters, the structure quality is high, with mean pLDDT scores of 83 and 93
for LCO8 and LCO9, respectively, and the vast majority of the proteins (74%) have
an annotation score of one or two (Figure 1 and Figure 2, A), so their annotations

are lower confidence.

Overlaying annotation data

In addition to all of the overlays that the ProteinCartography pipeline outputs
automatically, we can also create custom overlays to display any metadata. We
manually noted which type of deoxynucleoside or deoxynucleoside derivative
each protein was annotated to act on in UniProt since we noticed that not all the
proteins in our maps are kinases that are annotated as proteins that act on
deoxycytidine. We overlaid this annotation data onto our Leiden cluster map
(Figure 2, C).

We were curious to see if proteins annotated as acting on the same substrate
would cluster together, or if perhaps proteins with certain annotations would be
distributed across multiple clusters. In the case of LCO4, the vast majority of the
proteins were annotated as dCK (deoxycytidine kinase), the same annotation as
our input protein (Figure 2, C). For LCO2, the most prevalent annotation was the
general annotation, “deoxynucleoside kinase,” or dNK, which could mean these
proteins act on several nucleosides or that this broad annotation was used
because the substrate specificity was unknown (Figure 2, C). While LCO8
contained very mixed annotations, all of the proteins in LCO9 were annotated as



acting primarily on cytosine or cytosine derivatives (Figure 2, C). In addition to
overlaying the protein annotations across the Leiden cluster map, we used
ProteinCartography to generate a semantic analysis of the annotations that
provides a more granular view of their distribution throughout clusters (Figure 3).
For example, we can see that while the input cluster LCO4 is primarily annotated
as “deoxycytidine kinase,” LCO9 is primarily “cytidylate kinase” (Figure 3).
Additionally, we can get more detail about the mixed annotations in LCO8, and

” o«

see that the primary annotations are “dephospho-CoA kinase,” “uridine kinase,”

and “guanylate kinase” (Figure 3).
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Figure 3. Interactive semantic analysis plot of the dCK proteins, showing the relationship
between clustering and protein annotations.

The colors in the plot correspond to the colors of the Leiden clusters. For each cluster, the plot
contains a ranked bar chart and a word cloud. The chart includes the top ten full annotation strings,
while the word cloud shows the top annotation words. Hovering over a bar in the chart displays the
full annotation string and the number of proteins with that annotation.

Aside from the cluster with our input protein, LCO4, we find LCO2, LCO8, and

LCO9 most interesting because they contain proteins from diverse taxa and close,
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as well as distant, structural homologs of our input protein. We plan to use



proteins from these clusters to test whether the two foundational hypotheses
underlying ProteinCartography are accurate (that proteins with similar functions
cluster together and those with dissimilar functions cluster separately), but we
want to hear your thoughts!

What do you think?

Testing hypothesis 1: Do proteins within clusters
function similarly?

Here are our ideas about how we might test this.

1. We could characterize uncharacterized proteins from the cluster
containing our input protein to determine if they have the same function
as the input protein (in LCO4). Specifically, we plan to test the ability of
proteins to phosphorylate deoxynucleoside substrates using ATP.

2. We could refine the current annotations of proteins that are annotated too
broadly. In the cluster with our input protein, some proteins are annotated
as the generic “deoxynucleoside kinase.” We could make this more
specific by testing how these proteins interact with different substrates.

Testing hypothesis 2: Do proteins in different
clusters have different functions?

Here are the clusters we're considering to test this question. Each seems distinct
in a different way, so we suspect that we’ll find functional differences between
proteins from these clusters and between these and our human input protein,
which is in LCO4.

1. LCO2 contains exclusively plant proteins with an overall low quality of
annotations. The proteins in this cluster are also longer than our input
protein and contain a disordered region at each end. We could investigate
whether there are functional differences between our input protein and
proteins in LCO2, which could be caused by the disordered region.

2. The proteins in LCO8 span several distinct taxonomic clades and are only
distantly related structural homologs of our input protein.

3. LCOQ9 contains exclusively bacterial proteins that adopt a different fold
from our input protein based on our structural comparisons.

14



How should we approach working with dCK proteins
in vitro?

Once we select individual clusters and proteins, we'll bring them into the lab for
biochemical characterization. We plan to purify each protein we select and test its
ability to act on its possible substrates.

Additional methods

We used ChatGPT to help critique, clarify, and streamline text that we wrote.

Next steps

Now that we've selected deoxycytidine kinases as a protein family to test, we hope
readers will provide feedback on the interesting clusters we identified and how to



choose individual proteins for further analysis. Once selected, we’ll bring these
proteins into the lab for functional assays. We're planning to purify our selected
proteins and run basic activity assays on each one.

While our biochemical efforts are in progress, we have a few additional
computational ideas to gain insights into what we can learn from
ProteinCartography clustering. We discuss these potential next steps below.

Align functional data in the literature with
ProteinCartography clustering

While we plan to directly compare the function of diverse proteins from each
family in our own hands, we might also be able to check our ProteinCartography
clustering against empirical functional data in the literature. Do proteins with
similar functional profiles cluster together? Do those known to work differently
cluster apart?

This analysis should be doable, as several homologs of the human dCK enzyme
have biochemical data available, including proteins from chicken 11911263, frog 191261
[21], worm [22], arabidopsis [23), fruit fly 911241, mosquito [253, moth 21, amoeba (263,
and bacteria [2711281129113013111321(331. There’s also a review that summarizes the

biochemical activity of enzymes from this family from multiple organisms [s1.

Learn more about clusters and individual proteins
by studying specific, conserved structural features

We're broadly interested in leveraging comparative structural biology to annotate
protein function. While ProteinCartography analyses rely on comparing the global
protein structure, there are many other structure-based characteristics that we
might consider in trying to predict function across protein families. Some of these
features include secondary structural elements (like {-helices or (3-sheets),
surface area, hydrophobicity, electrostatics, topology, inter-protein contact
networks, active sites, and potentially predicted binding sites. We're interested in
comparing these features across proteins to provide more specific and accurate
protein function predictions.

For example, if we start with the human dCK enzyme and determine the
conservation of its structural features across many structural homologs, we may
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be able to predict with a higher accuracy which of these proteins have a similar
function. We know that the human dCK enzyme acts not only on deoxycytidine
(dC), but also on deoxyguanosine (dG) and deoxyadenosine (dA). Could we predict
which other proteins act on these three nucleosides? Might we predict which
proteins act on just one?

Summary

We hope that by combining our fold-based structural clustering, more specific
information on structural features, and functional data from the literature, we can
start to develop a more complete and predictive framework to understand protein

function.
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