How can we biochemically
validate protein function
predictions with the Ras
GTPase family?

We’re using the well-studied superfamily of small monomeric
GTPases, the Ras GTPases, to evaluate our structure-based
clustering tool, ProteinCartography. We’re seeking feedback on
working with this protein family and determining which
individual proteins to study.
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Purpose

ProteinCartography is a tool for computational comparison of protein structures
across species r11. It uses the sequence and structure of an input protein to
identify similar proteins. It then produces clusters of structurally similar proteins,
displayed in an interactive map. We’ve outlined a rough plan to biochemically
validate the two foundational hypotheses underlying the pipeline 2.

The first step of this plan was to select protein families for analysis. We selected
the Ras GTPase superfamily because it's previously been biochemically analyzed
and because it presented many opportunities to test our foundational
hypotheses [21. Here, we present our ProteinCartography results for the Ras
GTPases.
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We'd like feedback on how we should select individual clusters and proteins and
how we might test the function of this protein across species in vitro. We'd
particularly love to hear from those who've studied Ras GTPases.

e This pub is part of the platform effort, “Functional annotation: mapping
the functional landscape of proteins across biology.” Visit the platform
narrative for more background and context.

e This pub is part of our validation strategy series of pubs that starts with
“A strategy to validate protein function predictions in vitro.” We're also
considering deoxycytidine kinases as an orthogonal protein family for

e The ProteinCartography pipeline used to run these analyses is available
in this GitHub repo. To create the custom overlays, we used this notebook
and added our custom color dictionaries, which can be found in the
associated Zenodo repositories.

e The data associated with this pub, including the full ProteinCartography
analysis for the Ras GTPase family, can be found in this Zenodo repository.

Background

Why use RasGTPases?

For our first round of validation, we want to focus on protein families that will help
us test our foundational hypotheses in a straightforward way. We started our
search for candidate protein families by looking at the 200 most-studied human
proteins in the Protein Data Bank, as these have likely been purified and
biochemically studied previously (41. We first narrowed down this list by looking for
proteins under 1,280 amino acids, as this is the cutoff that AlphaFold uses (as
listed in the FAQ at the time of writing), and ProteinCartography uses structures
from the AlphaFold database s161. Each AlphaFold structure has per-residue
confidence scores in the form of pLDDT scores, which approximate the amount of
disorder in a protein’s structure 171. We chose to focus only on proteins with a
mean pLDDT score over 80, which implies that the proteins are generally
modeled well. Given that the ProteinCartography pipeline relies on AlphaFold for
structural comparison, these cutoffs increased the chances that our structural
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predictions would be high-confidence. We next narrowed down the list by looking
for proteins with commercially available assay kits.

We found that the Ras GTPases, namely HRas and KRas, not only fit these
criteria (21 but also result in a ProteinCartography map that revealed clearly

defined clusters that should let us test our hypotheses (Figure 1).

What do RasGTPases do and why are they
important?

Ras GTPases are a well-studied superfamily of small monomeric GTPases that are
key participants in myriad signal transduction pathways, including membrane
trafficking, apoptosis, and cell differentiation [s1. In these processes, they function
as binary molecular switches controlled by the action of GAPs (GTPase-activating
proteins), which facilitate cleavage of the phosphate in GTP molecules, and GEFs
(guanine exchange factors), which allow for rapid dissociation of the bound

GDP [91. The Ras superfamily includes the Ras, Rab, Ran, Rho, and Arf

subfamilies rs81. Our analysis includes members from each of these subfamilies, but
we're primarily focused on the Ras subfamily. The name Ras comes from the
cancer-causing Rat sarcoma viruses from which these genes were first
sequenced r1e]. Three human Ras genes encode Ras subfamily members: HRas,
KRas, and NRas [111. HRas and KRas are ranked 28th and 29th (respectively) in a list

of the most-studied human proteins, so we've chosen to focus on them here (4.

Mutations in Ras genes are implicated in up to 30% of cancers, as constitutively
active Ras results in uncontrollable cell proliferation r121. As such, many studies
have aimed to reverse the constitutive activity of oncogenic Ras mutants. Despite
a long-term reputation as “undruggable,” recent focus on allele-specific inhibition
of Ras has led to multiple promising cancer therapeutics 1131. In 2021, the FDA
approved the first KRas inhibitor, sotorasib, which binds mutated KRas as a
therapy for KRas-related non-small cell lung cancer 14]. Alternative work has
focused on inhibiting Ras-effector interactions and preventing activation of the
signaling cascade 1131. Looking at Ras proteins across species could give us more
information about the function of this master regulator, and a deeper structural
and functional understanding of Ras proteins might inform further therapeutic

avenues.
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Diving into the ProteinCartography
results for the Ras GTPase family

Running ProteinCartography on Ras GTPases

To identify similar proteins to our inputs and explore the structural variation in this
protein family, we ran ProteinCartography analysis in “search mode” using human
HRas and KRas as inputs (UniProt IDs: PO1112 and P81116). ProteinCartography
fetches similar proteins based on structure and sequence. It compares every

structure to every other structure and generates TM-scores, or structural similarity
scores, between each pair of structures 11s1. It uses these to create interactive
UMAP and t-SNE projections with overlaid Leiden clusters and metadata for
exploration pei17i181. To learn more about how ProteinCartography works, visit our

ProteinCartography pub r11.

For this analysis, we requested 3,000 Foldseek hits, 7,000 BLAST hits, and
10,000 total structures for both inputs combined. This run generated 5,421
unique structure hits that the pipeline grouped into 12 clusters (Figure 1 and
Figure 2, A). Both HRas and KRas are in LCOO (Figure 1 and Figure 2, A). Since
HRas and KRas are very similar, we focus on just HRas in our downstream
discussion. When we refer to the structural similarity of clusters to an input
protein, we perform those calculations by comparing them to HRas alone (Figure
2, E).
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Figure 1. Interactive protein space with metadata overlays.

UMAP projection generated with ProteinCartography for human HRas. Our input protein, human
HRas, is in LCOO® and indicated by a four-pointed star. The overlays can be changed via the drop-
down “color” menu.

A full list of all the proteins in this analysis, plus all the aggregated information
from the pipeline is available in the aggregated features file linked below:

GTPase_HRas_KRas_aggregated_features_pca_umap.tsv Download
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Assessing compactness and overall quality

Our first step was to assess the cluster similarity matrix (Figure 2, B) for inter- and
intra-cluster similarity. This can help us understand how well the clustering
approach separated the proteins. These values are determined by calculating the
mean TM-score of each protein in each cluster compared to every other protein
in every cluster. The TM-score tells us how similar two protein structures are, with
a score of 1indicating the structures are identical (151. The diagonal of the matrix
represents how similar the structures of a cluster’s constituent proteins are to
each other, and the average of the diagonal is the “cluster compactness” score for
the run. For the Ras GTPases, that value is 0.68. This indicates that most clusters
are quite compact — in fact, all clusters except LCO2, LCO7, and LC10 have
compactness scores over 0.6 (Figure 2, B). Additionally, some clusters show cross-
cluster similarity (i.e., they have a high between-cluster mean TM-score), but many
clusters appear distinct.

Next, we did a few quality checks on these outputs (Figure 1 and Figure 2). We
first used the structural confidence, or mean pLDDT, overlay to assess the
structure quality and the level of disorder of our output protein structures. In this
case, the majority of the structures have mean pLDDT scores around 80 (Figure
1). This value gave us reasonably high confidence in the predicted structures and
tells us that they likely don’t contain large regions of disorder.

We next explored the TM-score overlay, which tells us the similarity of the fold of
each output protein to the fold of the input protein (here, human HRas). This can
also serve as a confidence metric. If our 5,421 hits were all very structurally similar
to the input (only high TM-scores), we might lack enough variation to find
functional differences between clusters. Conversely, if our hits were all extremely
dissimilar (only low TM-scores), it might suggest that we haven’t captured closely
related proteins. We found a range of TM-scores, but overall this protein family
had high TM-scores across the board. In this case, the lowest TM-scores were
around 0.5 (found in LCO4, the Arfs), which suggests even these structures adopt
the same fold as our input (Figure 1 and Figure 2, E). LCO® has, on average, quite
high TM-scores (around 0.92) — an encouraging sign, as this cluster contains the
input protein itself (Figure 1 and Figure 2, E). Once we confirmed that the outputs
could yield informative results, we moved on to assessing the distribution of

taxonomic origins, lengths, and annotation scores across clusters.
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Figure 2. ProteinCartography outputs reveal interesting clusters for proteins with
structural similarity to human HRas.

(A) The structure of human HRas, where orange indicates regions of higher disorder, alongside
the UMAP projection with Leiden cluster overlay. Black diamonds indicate the locations of the
input proteins (top, human HRas; bottom, human KRas). Note that LCO4 is cropped out. Below the
projection are violin plots showing the distribution of key values for each of our clusters of
interest where the circle indicates the median value. White dots mean the median is below the
threshold for significance, while filled-in dots denote significance in a Mann-Whitney U test.
“Broad taxon” indicates taxonomic groups that are represented in each cluster. “Annotation” is
the UniProt annotation score, or the relative confidence in each functional annotation (scale: 1-
5). “pLDDT” is the confidence in the AlphaFold structural prediction for each structure (scale: O-
100). “Length” is the number of amino acids in each protein. “TM-score” is the similarity of each
structure to that of human HRas (scale: 0-1).

(B) Cross-cluster similarity matrix. Each box represents the average TM-score (structural
similarity) when comparing all structures in one cluster to all structures in another, where a
higher score means the structures are more similar. The input cluster is marked with an asterisk
(*) and our clusters of interest are marked with dots (e).

(C) UMAP projection with custom overlay showing existing annotation. Annotations were
manually sorted into the known subfamilies of the Ras GTPase superfamily.

(D) UMAP projection with taxonomic origin overlaid.

(E) UMAP projection with TM-scores (compared to the input protein) overlaid. TM-scores
indicate higher structural similarity to human HRas.

(A, C-E) Dashed boxes mark our clusters of interest.

In the following subsections, we walk through the most interesting clusters from
our ProteinCartography analysis. We use the metadata overlays and semantic
analysis to learn more about these clusters and to find proteins we can use to test
our two foundational hypotheses about ProteinCartography (that proteins within a
cluster function similarly and those in different clusters function differently).

LCOO0: How does our input protein cluster?

We began by exploring LCOO, which contains our input proteins, to assess if the
outputs of ProteinCartography seem reliable and match what we’'d expect.
Taxonomically, LCO® mostly comprises metazoa, vertebrates, and arthropods
(Figure 2, D). The average TM-score, or structural similarity, of proteins in this
cluster compared to human HRas is 0.92 (Figure 2, A), which suggests these
proteins have extremely similar structures. Though the length of human HRas is
only 189 amino acids, the average length for proteins in this cluster is 236 amino
acids (Figure 2, A). This means that at least some proteins in this cluster are



longer than the human protein. We could investigate whether these length
differences within a cluster have meaningful effects on biochemical function.
Although LCOO contains both of our well-annotated input proteins, the average
annotation score for this cluster is 1.96 (Figure 2, A), which is still quite low and
indicates plenty of room for discovery even within the input-protein-containing
cluster. If we find that representative proteins from this cluster indeed share a
function, it would support annotating all the proteins in the cluster as Ras
GTPases.

LCO3: Fungal homologs close in structure to human HRas

Our next focus cluster was LCO3. While most of the clusters contain some
combination of taxonomic origins, LCO3 comprises entirely fungal proteins
(Figure 2, A and Figure 2, D). The average TM-score (structural similarity to the
input) for proteins in this cluster is quite high, at 0.93, implying that most of them
adopt a highly similar fold to human HRas (Figure 2, A and Figure 2, E). The
majority of these proteins are annotated as “Ras-like proteins” or “small
monomeric GTPases,” though the average annotation score for the cluster is low
— only 1.4 (Figure 2, A and Figure 3). The average length of proteins in this cluster
is 226 (Figure 2, A). This is closer to the length of human HRas (189 amino acids)
than the average length of the proteins that co-clustered with both HRas and
KRas. The mean pLDDT, or structural confidence, for proteins in this cluster is
81.4, suggesting that these proteins have some regions of disorder (Figure 2, A).
While this is within what we consider an acceptable range, it's lower than our
other clusters of interest and it could point to these proteins having disordered
regions and it may result in lower-confidence functional predictions.
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Figure 3. Interactive semantic analysis plot from ProteinCartography analysis of human
HRas, showing the relationship between clustering and protein annotations.

The colors in the plot correspond to the colors of the Leiden clusters. For each cluster, the plot
contains a ranked bar chart and a word cloud. The chart includes the top ten full annotation strings,
while the word cloud shows the top individual words that appear in the annotations. Hovering over a
bar in the chart displays the full annotation string and the number of proteins with that annotation.

LCO6 and LCO9: Taxonomically diverse homologs with generic

annotations

11

After LCO3, we explored LCO6. This cluster contains proteins of mixed taxonomic
origins, including fungi, vertebrates, and even a few archaea (Figure 2, A and



Figure 2, D). Despite this apparent diversity, there are no plants or bacteria
represented. The average TM-score for this cluster is 0.88; though lower than that
of LCO3, this still indicates that the proteins adopt the same general fold (Figure
2, A and Figure 2, E). The average length is 208 amino acids, slightly closer to the
length of human HRas (189 amino acids) than either LCOO® or LCO3 (Figure 2, A).
Interestingly, this cluster has an average annotation score of 2.0 (Figure 2, A),
which is higher than we expected. This is because there are quite a few well-
annotated proteins mixed in with many that are vaguely characterized or even
entirely uncharacterized. The top annotation for this cluster is simply “small
monomeric GTPase,” a descriptor shared by all members of the Ras superfamily
(Figure 2, A and Figure 3).

Our final cluster of interest is LCO9. The average length of proteins in this cluster
is 188 amino acids, similar to the 189 amino acids length of human HRas (Figure
2, A). In many ways, LCO9 is similar to LCO6. This cluster, too, comprises proteins
from mixed taxonomic origins, with especially high representation from
arthropods and other ecdysozoans (Figure 2, A and Figure 2, D). There are two
fungal proteins and quite a few proteins from rotarians, but no representation of
plants or bacteria. Similar to LCO6, the average TM-score of these proteins is
0.88 and their average annotation score is 2.1, suggesting the proteins share a
fold with the input protein and that many proteins in this cluster have confident
annotations (Figure 2, A). However, the top annotation for this cluster is the
general annotation, “small monomeric GTPase” (Figure 2, A and Figure 3).
Interestingly, the cross-cluster compactness matrix indicates that proteins in
LCO3 (all fungal proteins) and LCO9 have highly similar folds to each other (Figure
2, B).

Overlaying annotation data

We produced custom metadata overlays to visualize trends between clusters. As
mentioned, the Ras family is part of the Ras superfamily, alongside the Ras, Rab,
Ran, Rho, and Arf families (s1. Did our clusters separate proteins into these well-
known groups simply based on structural comparisons? We first assessed the
semantic analysis, an output of the ProteinCartography pipeline that provides the
top annotations by cluster along with their counts. We saw that clusters tend to be
composed primarily of a single subfamily (Figure 3). We then went through and
manually categorized each protein into its subfamily (for example, we’d categorize
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a protein annotated as “mitochondrial Rho GTPase (EC 3.6.5.-)” as simply “Rho”).
The file with manual annotation groups can be found here. Overlaying these
general annotations on top of our Leiden clusters, we recognized some patterns
that support this clustering strategy. First, each of the subfamilies cluster together
quite well (Figure 2, C). For example, the Arf GTPases form a distinct cluster,
LCO4 (Figure 2, C). This is expected, as Arfs are generally less related to the other
Ras GTPase family members (s1. Inspecting these more closely reveals that the
Ran family clusters with the Rab family; this is also expected because Rans are
generally considered part of the Rab family (81 (Figure 2, C). We also noticed
“uncharacterized proteins” and vague annotations like “GTP-binding protein”
throughout the map.

Summary

We'll be testing the hypotheses that proteins clustered together function similarly
and proteins in different clusters have different functions. We can do so by
comparing proteins within LCO®, which contains our input protein HRas, and by
comparing proteins from various additional clusters to those in LCOO. Three
candidate clusters jumped out at us for this analysis due to their high TM-scores
and low annotation scores — LCO3, LCO6, and LCO9. The high TM-scores suggest
these clusters have captured proteins with strong structural similarity to human
HRas, while their low annotation scores indicate that they are under-studied
(particularly experimentally). If we can confirm their function in the lab, these are
strong candidates for additional functional annotation. You’'ll have the opportunity

to vote on a favorite research direction or comment with any further ideas below.

What do you think?

Do proteins within clusters function similarly?

Here are our ideas about how we might answer this question.

1. We could characterize uncharacterized proteins from the cluster
containing our input protein to see if they have similar functions (in LCOO).
To start, we'll be testing their GTPase activity compared to human HRas.
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2. We could also refine the current annotations of proteins that are annotated
too broadly. Many proteins throughout the analysis are annotated as “GTP-
binding protein” or “small monomeric GTPase.”

Do proteins in different clusters have different
functions?

Here are the clusters we're considering to answer this question. We plan to
compare proteins from these clusters to our input protein, which is in LCOO. This
cluster primarily contains metazoa, vertebrates, and arthropods.

1. LCO3 contains all fungal proteins with a highly similar fold to human HRas.
The top annotation for this cluster is “Ras-like proteins” or “small
monomeric GTPases,” but these annotations rank poorly in terms of quality
and experimental support. By studying this cluster, we might learn why
these proteins cluster separately from the input protein even though their
fold is so similar.

2. LCO6 has mixed taxonomic origins, but lacks plants and bacteria. The
structures of proteins in this cluster are also highly similar to human HRas,
although slightly less than those in LCO3. Though the annotations in this
cluster have slightly higher confidence than LCO3, there are still many
proteins that are uncharacterized or vaguely annotated. Like LCO3, we’'d be
interested in understanding why these structurally similar proteins cluster
separately from the input protein.

3. LCO9 has mixed taxonomic origins but includes many arthropods. The
structures of proteins in this cluster are about as similar to human HRas as
those in LCO6. Additionally, these proteins are generally shorter than the
other two clusters, similar in length to human HRas. The proteins in this
cluster are primarily annotated as “GTP-binding protein” or something
similarly generic. In addition to learning why these proteins cluster
separately from the input cluster, we could look into why LCO3 and LCO9
cluster separately from each other even though they seem to share a fold.



How should we approach working with Ras GTPase
proteins in vitro?

Once we select individual clusters and proteins, we’'ll purify each protein and test
its GTPase activity using an in vitro assay.

Additional methods

We used ChatGPT to suggest wording ideas and then chose which small phrases

or sentence structure ideas to use.

Next steps

We're seeking feedback on selecting individual clusters and protein families for
further analysis in vitro. We aim to characterize the biochemical activity of a
handful of these proteins to test our overall hypotheses about how



ProteinCartography clusters proteins. However, there are additional analyses we
can tackle in the meantime that might tell us more about this protein family.

Align functional data in the literature with
ProteinCartography clustering

Because this protein family has been studied extensively, we wondered if we
might find information in the literature about the biochemical function of the
proteins in our analysis. Could we use the available data to help validate
ProteinCartography and to help narrow down which proteins we bring into the
lab?

There are several annotated, biochemically characterized Ras superfamily proteins
that fit into the families we found in our analysis. We plan to curate available
experimental data on Ras GTPase homologs and see how well this info aligns with
our clustering.

Learn more about clusters and individual proteins
by studying specific, conserved structural features

While ProteinCartography compares global protein structures, there’s much we
could learn by comparing specific aspects of the structures in this analysis. For
example, we could look at surface vs. buried residues, electrostatics, topology,
hydrophobicity, secondary structural elements, and more.

We know that the function of these Ras GTPases depends on binding GTP, GAPs,
GEFs, and effectors. Because we know the regions responsible for each of these
functions, we can look for conservation of these structural features across the
family. By doing so, can we predict which GAPs and GEFs a given Ras GTPase
interacts with? Can we predict if proteins from certain organisms are more or less

susceptible to mutations that cause cancer in humans?

Summary

While we prepare for in vitro validation of ProteinCartography with Ras GTPases,
we hope to use additional information from the literature and from the structures
themselves to help us better understand the relationship between clustering and

function.
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