
Applying information
theory to genetics can
better explain biological
phenomena

Genetic models of complex traits often rely on incorrect
assumptions that drivers of trait variation are additive
and independent. An information theoretic framework for
analyzing trait variation can better capture phenomena
like allelic dominance and gene-gene interaction.

Purpose
Genetic analysis has been one of the most powerful tools for
biological discovery, providing insight into almost every aspect of
biology, ranging from identifying mechanisms supporting the cell
cycle [1][2], to guiding selective breeding for agriculture [3], and

identifying targets for disease treatment [4]. While phenotypes can be

simple (e.g., a single gene can cause differences in pea color or lead
to a genetic disease) the vast majority are subject to more elaborate
causal mechanisms involving many genetic and non-genetic factors.
Researchers studying these phenotypes (often called "complex"
phenotypes) have relied on assumptions of additivity and
independence among the elements driving individual-to-individual
phenotypic variation. It’s widely appreciated that, in real data, these
assumptions are often violated, potentially limiting the utility of and
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accuracy of some analyses [5]. However, this broad framework is

retained for both historical and practical reasons [6][7]. Here, we

explore a different and complementary mathematical framework that
makes no assumptions about the drivers of phenotypic variation —
we apply information theory to genetic questions with the objective
of conducting system-wide analysis of large sets of genes,
phenotypes, and environmental data.

This pub is intended as a regularly updated document covering how
we are applying information theory to broad questions in genetics.
As time progresses, and we release empirical studies of different
topics, we will add sections here covering the information theory
relevant to those studies. This work should be of interest to both
geneticists and information theorists, but is primarily intended to
formalize an information theoretic approach to genetic problems
and make that approach available to geneticists. Accordingly, the
first section after the introduction is a primer on major concepts in
information theory intended for geneticists. The subsequent sections
contain information theoretic definitions for genetic concepts and
demonstrations of how these definitions provide insight into genetic
processes.

This pub is part of the platform effort, "Genetics: Decoding
evolutionary drivers across biology." Visit the platform
narrative for more background and context.

Historical background
Contemporary quantitative genetics treats genetic influences on
phenotypes as additive and independent of one another, and,
generally any one phenotype is assumed to be separate from
others [6]. The reasons for this are both historical and practical. Just

prior to the turn of the last century, the study of human phenotypic
variation (biometrics) was at its peak. Early biometric studies
observed that phenotypic distributions among humans were often
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continuous and, across generations, appeared to vary gradually and
not in jumps (e.g., [8]). Therefore, the field assumed that drivers of

this continuous variation were themselves continuous, a model
consistent with the then-new theory of evolution — phenotypes were
expected to change gradually across generations. The tools and
principles developed during the period (e.g. the mixture model, the t-
distribution, the chi-square distribution) reflect these assumptions
and, ultimately, came to form much of the theoretical backing of
modern statistical genetics [9].

Around the same time von Tischermark, de Vries, Spillman, and
Correns "rediscovered" the work of Gregor Mendel [10]. Mendel’s

observations contradicted the dogma of continuity developed by
biometrics. Through now-famous sets of experiments, Mendel found
that phenotypes can in fact vary discretely within populations and
across generations. For example, the hybridization of a yellow and a
green pea plant could produce offspring that were either yellow or
green, but not a combination of the two. Thus, some of the inherited
drivers of phenotypic differences were discrete and not continuous.
Subsequent experimental work in a variety of different organisms
has strongly reinforced this view [10] and ultimately led to the

generation of the term "gene" to describe the indivisible unit of
heritable variation [11].

The presence of discrete units of inheritance (genes) and, in some
settings, dramatic phenotypic change across generations led to a
"non-gradualistic" view of inheritance (e.g., [12] and [13]). The

"gradualists" and the "non-gradualists" were divided by a
fundamental problem: how could phenotypes — often continuous
and only gradually changing — be caused by discrete units of
inheritance? Ronald Fisher provided a reconciliation in 1918. Through
groundbreaking theoretical work, Fisher demonstrated that many
discrete, additive, independent units of inheritance of small effect
could generate continuously varying phenotypes within a
population [14]. Furthermore, these assumptions were consistent with

Mendel’s results. Fisher suggested that each trait (and the factors
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influencing that trait) could segregate independently following
mating. By elegantly providing a resolution to the
continuous/discrete paradox, Fisher thus forged the fundamental
assumptions for genetic analysis that we still rely on today [7].

However, in the following decades, extensive work on the function
and inheritance of genes established clear violations of additivity and
independence [10]. Instead, modern biology has demonstrated that

genes and their products are highly interactive and involved in
complicated, nonlinear processes such as physical complexes,
regulatory circuits, and metabolic circuits. Furthermore, these
complex interactions may drive phenotypic variation across
individuals via dependent and non-additive relationships between
genes.

A clear example of such nonlinear relationships is epistasis [15], in

which the effect of one gene can mask or modify the phenotypic
impact of another. Epistasis is a common feature of genetic systems
and is so prevalent that researchers began to use it to identify
functionally related genes [10]. Genes that, when combined, caused

no different phenotype than the individual genes alone were called
"epistasis groups." For example, in Saccharomyces cerevisiae, the
members of the RAD52 epistasis group were all individually sensitive
to irradiation, and when combined, were no more sensitive than any
one mutant. This suggests a functional relationship between the
individual genes; if a mutation in any one of the genes disrupts the
"functional unit," then further mutations in other members of that
unit will not change the phenotype [16]. Many epistasis groups were

identified through mutagenesis, but naturally occurring epistasis is
prevalent and important for evolution [17]. Fisher’s initial

reconciliation assumed no epistasis, an assumption that largely
remains in contemporary models [7]. Given the complexity of

biological systems, the resulting potential for phenomena like
epistasis, and empirical evidence that such phenomena exist, a
modeling framework that does not include gene-gene interactions
(as is common in quantitative genetics) will likely fail to account for
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key aspects of the genotype-phenotype map. Indeed, in recent years
many studies have explicitly demonstrated this problem [18].

To date, the solution has not been obvious. If we use the same
statistical framework that’s been applied historically, capturing
nonlinear relationships among genes would require data from an
enormous number of individuals. Including interactions in traditional
linear models (e.g., genome-wide association studies) would require
the number of model parameters to scale with the square of the
number of genetic or environmental factors. It’s common to conduct
human genetic analysis using hundreds of thousands of genetic loci.
Capturing interactions between even 100,000 loci would require a
model with 10 billion parameters. Fitting such a model would require
data from more humans than exist. As a result, despite increasing
computational power, the utility of these models to effectively
capture nonlinearity will always be limited by the available data.

We suggest using information theory to quantify the drivers of trait
variation. Information theory was originally developed to formalize
thinking about encoding schemes for communication [19], and to

provide answers to questions like, "What’s the minimal amount of
information required to encode a message?" or "How many bits of
information are required to store this text document?" Since its
inception, information theory has become very broad. Importantly
for genetic analysis, we can use it to partition and quantify the
impact of factors driving variation in a set of data. This allows us to
answer questions like, "How much better can I predict the phenotype
of an individual if I know that individual’s genotype?" or "How much
information does genetic data contain about disease state?" In
contrast to methods traditionally used in quantitative genetics, it
makes no assumptions about the nature of factors impacting
variation, so it may enable new, tractable, analyses capturing
nonlinear relationships and lead to better mappings between
genotypes and phenotypes.
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Entropy, divergence, and mutual
information
In this section, we review some fundamental components of
information theory and provide examples of how we might apply
them to genetic data. In subsequent sections, we’ll expand on these
examples and contrast genetically relevant information theoretic
measures to similar measures from classical statistical genetics.

Entropy
Entropy, , is the average amount of information necessary to
unambiguously encode an event from a given "source" (defined by a
probability distribution) and serves as a measure of the
"randomness" of the event and the source that generated the event.
In the context of genetics, the "source" could be a specific pair of
parents or a specific population of individuals and the "events"
would be the offspring of the cross or the members of that
population. Across a given population, you could interpret the
entropy of a phenotype as its predictability (e.g., "How reliably can
you guess the phenotype of any given individual?"). Both genetic
information (e.g., allelic state at a given locus) or phenotypic
information (e.g., disease state) could define a random variable.
Here, we provide the definition of entropy and examples of entropy
calculations, first in the simple context of coin flips and then in the
context of genes and phenotypes.

For random variable  that can take values of the alphabet  and is
distributed according to  Probability{ } for all , the
entropy, , of the discrete random variable  is

 is the average (calculated above as the weighted sum)
uncertainty of the values of . By convention , so values of
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 with probability zero contribute no entropy. The selection of base
for the logarithm determines the units of information. Here and for
the rest of this work we use base 2, which results in information
measured in bits. For reference, one bit is the amount of information
that can be encoded by a binary digit.

Example 1: Coin tosses
Consider two coins: one fair, Pr{heads = 0.5}, and one biased,
Pr{heads = 0.9}. The degree of uncertainty about the outcome of a
coin toss is higher for the fair coin as compared to the biased coin. A
toss of the fair coin is equally likely to result in heads or tails. The
biased coin is more likely to turn up heads. Entropy captures this
intuition. The entropy for the fair coin is

Whereas the entropy of the biased coin is

Thus, entropy is lower for the more predictable (biased) coin than for
that of the less predictable (fair) coin. Indeed, the fair coin, with
equivalent probability for all states, has the maximum entropy (1 bit)
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for a random variable with two states. For any random variable, a
probability distribution that is uniform across states results in the
maximal entropy.

Example 2: Allelic state at a single locus
Now consider two different genes,  and , with variation in allelic
state across a population of diploid organisms. One gene  has two
alleles  and , resulting in three allelic states, , , and , for
any individual in this population. Similarly, gene  has two alleles
and three allelic states, , , and . The allelic states of gene 
are distributed uniformly across the population such that 1/3
individuals are , 1/3 are , and 1/3 are . In contrast, gene  is
distributed such that 8/10 individuals are , 1/10 are , and 1/10
are . The entropy of the allelic state of gene  is

As compared to the fair coin, with only two possible outcomes, the
"fair" (equal probability of each allelic state across individuals) gene,
with three possible states, has an increase in entropy:  bit vs 
bits. This is consistent with an increase in uncertainty for variables
with more possible states. The entropy of , with non-uniform
probability of allelic states, is
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Thus, the difference between  and  is the difference in
randomness between those two variables. As with the coin example,
the gene with a uniform probability distribution over possible states
has more entropy (is more random) than the gene with a non-
uniform probability distribution over states.

Example 3: Single phenotype
Similar to allelic state, we can calculate the entropy of a phenotype in
a population. Unlike allelic state, phenotypes are often continuous
(e.g., height) and not discrete (e.g., disease state). Throughout this
work, for simplicity of exposition, we will only examine equations for
discrete phenotypes. However, there are tools for estimating the
information theoretic values we describe for continuous variables as
well. Consider a disease trait  that can have two conditions, sick 
and healthy , and  is distributed according to probability mass
function . Across the population, 1/10 individuals are sick and
9/10 individuals are healthy. The entropy of  is

Joint entropy
We can extend the definition of entropy stated above to more than
one random variable. Given genes  and  with a joint distribution
over allelic states of  their joint entropy is
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where the joint entropy is less than or equal to the maximal entropy
of  and , , with equality, ,
if and only if  and  are independent. Two examples of
"independent" genes would be genes that are unlinked (e.g. two
genes on different chromosomes) in a family or genes that have no
correlated structure in a more complex population. The joint entropy
of these genes would simply be the sum of their individual entropies.
A corollary is that genes that are linked or genes that are correlated
in a larger population will have a joint entropy that is less than the
sum of their individual entropies.

As we will discuss later, the comparison between the maximal
entropy and the joint entropy of a set of variables (such as
phenotypes) is the decrease in randomness caused by relatedness
among those variables. For a pair of traits,  and , 

 is the decrease in randomness in the set of variables
caused by knowing their joint distribution. Similarly, for a gene, ,
and a disease, , that is partially caused by that gene, the
distribution of  and the distribution of  are not independent.
Therefore  will be positive and, if there is no
other population structure, is a measure of the amount of variation
in disease state that is caused by the gene, .

Conditional entropy
For two variables  and , conditional entropy is the remaining
randomness of  if  is known and is defined as
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If  and  are genes whose allelic state is evenly distributed across a
population and are completely linked, then knowing the allelic state
of  would tell you the allelic state of  and . In contrast,
in a similar population, if  and  are completely unlinked then

; knowing the allelic state of  tells you nothing about
the allelic state of . Here is a less deterministic example: for a gene,

, and a disease,  that is partially caused by that gene,  is
the amount of variation in disease state that is caused by factors
other than .

Furthermore, . In the context of genetics, if gene 
has three allelic states in a population and gene  has two allelic
states, but  and  are completely linked, then . If you
know the allelic state of , you know the allelic state of  (
), but, knowing the allelic state of B does not completely specify the
allelic state of ; .

Mutual information
Mutual information, , is the amount of information shared between
two random variables.  between two random variables  and 
is the decrease in randomness in  if you know , or  if you know .

For two random variables  and , which can take values from
alphabet  and  respectively, and are distributed according to

 Probability { } for all  and  Probability { }
for all , the mutual information between  and  is

 is always positive, or is zero if and only if  and  are
independent, and . An alternative definition is
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In other words, it is the degree to which dependency between  and
 reduces the joint entropy, , below the maximum possible

joint entropy. For two completely linked genes,  and , with the
same number of alleles that are evenly distributed in a population,

. For similar but unlinked genes, . In the
context of a disease, , and a gene, ,  is the decrease of
uncertainty about disease state because you know the allelic state of

.

Conditional mutual information
For three random variables, , , and , we can define conditional
mutual information as the shared information between  and  if we
also know .

 with equality if and only if  and  are independent if
you know . The conditional mutual information is the reduction in
the uncertainty of  with knowledge of  if we then add knowledge
about . For example, we have a population where two genes, 
and , and a trait, , are segregating. The distribution of allelic state
of  is unrelated to the distribution of allelic state of  (i.e.,

), but variation in  combined with allelic variation at 
causes all of the variation in . In this case, even though  tells you
nothing about  on its own, if conditioned on knowledge of , 
can tell you something about . In other words, 
even though . Furthermore, conditional mutual
information provides an extension to more than two variables, a
property we will take advantage of later.
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Kullback-Leibler divergence
Kullback-Leibler divergence, , (also called relative entropy) is a
quantification of the difference between two probability
distributions. The  between distributions  and  using the same
alphabet  is the extra information needed to encode a set of data
distributed according to  using . It is defined as

 is always positive, and zero if and only if . It is a
critical component of information theory and is used (in addition to
the highly related cross-entropy) extensively in machine learning
when the goal is to approximate an unknown probability distribution.
We include it here because examining the equivalency below can
provide intuition not only about , but also mutual information. An
alternate definition for mutual information is

In other words, the mutual information between  and  is the
information lost by assuming that  and  are distributed
independently when, in fact, they are not.

Equivalencies
We note here a series of useful equivalencies. Throughout the rest of
this pub, we will use  to refer to genes and  to refer to traits or
phenotypes.
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Extension to multiple genes and multiple
phenotypes
Thus far we have mostly discussed individual random variables (e.g.,
single genes or phenotypes), but we can extend entropy, mutual
information, and Kullback-Leibler divergence to cover the joint
distribution of many variables, like a set of genetic loci or
phenotypes. This results from the chain rule for probability and is
most readily seen for entropy, where we have already defined joint
and conditional entropy.

Chain rule for entropy
The joint entropy of  and  can be written as

Or, the joint entropy of  and  is the entropy of  plus the residual
entropy in  if you know . Repeated application of this method
provides

In other words, the joint entropy of a set of variables is the sum of
their conditional entropies. For , , and , or any other set of
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variables that are independent, their joint entropy is equal to the
sum of their individual entropies. Or,

if , , and  are independent.

Chain rule for mutual information
We can apply a similar chain rule for mutual information, letting us
extend to multiple random variables. We will not expand on this
here, but, essentially, the variable expansion done previously to
define conditional mutual information (jump to that equation) can be
repeatedly applied to show that

Essentially, the mutual information between a set of variables and
another set of variables is the sum of the conditional mutual
information values.

Given the ability to extend these measures to an arbitrary number of
variables, we will indicate sets of variables with a sub bar. For
example, we will denote sets of genes, phenotypes (or traits), and
environments as , , and , respectively.

Applying information theory to
genetics
Having established some of the fundamental measures in
information theory and examples of their application, we now
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expand on these definitions and apply them to broader genetic
questions. Where appropriate, we compare the information theory-
based assessments with classical statistical genetic measures.

Polyphenotypic analysis
Genetic analysis has most often focused on individual phenotypes,
e.g., "How tall are the members of a population?", or, "Do cells pause
at a particular stage of the cell cycle?" But considering multiple
phenotypes simultaneously may provide more insight into overall
organismal features than focusing on any one phenotype. For
example, an organism’s height is likely linked to other organismal
features (e.g., mass and metabolic rate) both causally and otherwise,
so studying both height and metabolic rate together may enable
more accurate predictions than studying height alone. However, the
quantitative genetic infrastructure for simultaneous analysis of
multiple phenotypes is poorly developed.

In a companion pub [20], we argue that examining multiple
phenotypes simultaneously can provide better insight into the nature
of individual phenotypes. Across a population, phenotypes are often
correlated. That correlation could result from shared, causal, genetic
variation, or from non-causal correlation like genetic drift or
migration. We’ve shown that incorporating the correlational
relationships between phenotypes into predictive models can
increase prediction accuracy. We further showed empirically that
increasing pleiotropy among a fixed set of genes ( ) and phenotypes
( ) decreases the joint phenotypic entropy. If we measure the total
phenotypic entropy as , then the joint entropy must be less than
or equal to the maximum entropy
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with equality if, and only if, all phenotypes are independent of one
another. Thus, the difference between the maximal phenotypic
entropy and the total joint phenotypic entropy is the reduction in
uncertainty caused by correlations (additive or otherwise) across
phenotypes. In other words, we can quantify the amount of
phenotype-phenotype structure by estimating the difference between
the joint entropy and the maximal entropy. Importantly, this
quantification provides examination of the relatedness (or lack
thereof) among phenotypes without genetic or environmental
information. Phenotypes with maximal entropy share no common
cause or non-causal drivers of correlation. Thus, absent
environmental variation or phenotypic correlations that are created
by population structure, pairs of phenotypes with less than
maximum entropy share a cause and those causes are, to some
degree, epistatic.

Examination of many phenotypes likely provides
information about any one phenotype
Given dependence among phenotypes, examining one phenotype
should provide information about other phenotypes. In other words,
conditioning the entropy of one set of phenotypes, , on another
phenotype, , will reduce the entropy (except in the case of
independence).

Theorem:

Proof:
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This shows that, given some correlated structure among traits,
examining many phenotypes will be useful in predicting any one
phenotype; something we have empirically demonstrated in our
companion pub [20]. Furthermore, in the same pub we show that
examining increasing numbers of phenotypes doesn’t reduce the
amount of information about any one phenotype. However, we often
estimate information theoretic values using numerical methods and,
as a result, there is a limit to the number of phenotypes it is practical
to examine.

Pleiotropy decreases total trait entropy
Pleiotropy is the observation that allelic state at any one genomic
location impacts multiple phenotypes. Intuitively, for any fixed set of
phenotypes and genes impacting those phenotypes, increasing
pleiotropy will increase co-variation among phenotypes and thus
decrease the total trait entropy. For traits  and  and gene , we
can define the pleiotropy as

This is the amount of information shared between  and  that can
be accounted for if  is known. This is an extension of mutual
information to multiple variables, known as interaction information.
Unlike mutual information, interaction information can be negative.
However, if , , and  form a Markov chain such that  and  are
independent, conditional on , then  and this reduces
to . With this definition of pleiotropy, we can show that the
presence of pleiotropy will decrease the joint phenotypic entropy.

Theorem:
If , , and  form a Markov chain such that  and  are
independent conditional on , then increasing pleiotropy will lead to
decreased joint trait entropy.
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Proof:

where  is the maximum possible entropy if  and  are
totally independent and  is the joint entropy of  and .

In this section, we’ve shown several ways in which we can apply
information theory to the analysis of multiple phenotypes. First, we
showed that the deviation between the maximal phenotypic entropy
and the joint phenotypic entropy provides a quantification of the
relational structure of a set of phenotypes, which may result from
shared causes. Importantly, we can use this to show that some
phenotypes are unrelated from others, a situation that would only
result if there was no shared causation among those phenotypes.
Second, we show that increasing the number of phenotypes in an
analysis should increase our understanding of other phenotypes.
And finally, we provide a mathematical definition of pleiotropy and
show that increasing pleiotropy should, in some circumstances,
decrease overall phenotypic entropy. While also demonstrating these
findings empirically in a companion pub [20], these formalisms
provide certain guarantees about such analyses.

Key takeaways
We provide formalisms for the analysis of cohorts of
phenotypes ("polyphenotypes") using information theory.

Analysis of individual phenotypes will benefit from examining
a polyphenotype.
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Polyphenotypic analysis does not require genetic or other
causal information.

We can identify sets of phenotypes that are causally
independent.

What’s next?
We’ve presented a few examples of information theory applied to
genetic questions. We view this as a work in progress and will, along
with empirical and numerical studies in other pubs, expand these
ideas into other areas of genetics and genetic analysis as our work
progresses.
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