
Graph neural networks: A
unifying predictive model
architecture for evolutionary
applications

The transition from explanatory to predictive models in

evolutionary biology is a significant and challenging task. We

propose that graph representations and graph neural networks

may play a crucial role in this transition.

Purpose

Neural networks are increasingly used in evolutionary biology research. Despite

this burgeoning interest, most work uses just a few model architectures. This bias

matters: the alignment of data structure, task, and architecture influences

predictive and explanatory outcomes.

We propose that graph neural networks (GNNs), a comparatively underutilized

architecture, are uniquely well-suited for evolutionary applications. We detail how

GNNs leverage relational structures embedded in evolutionary data where other

architectures can’t. We review example applications and discuss promising

avenues where GNNs could advance evolutionary research. Our goal is to highlight

the value of GNNs and encourage other evolutionary biologists to leverage the full

extent of their utility.

All associated code and data are available in this GitHub repository.
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Explanatory vs. predictive models in
evolution

Evolutionary biologists are driven to answer fundamental questions about how the

world works. What led to the adaptive radiation of Darwin’s finches [1]? What

facilitated the repeated speciation and parallel ecological divergence between

limnetic and benthic freshwater threespine sticklebacks [2]? Does epistasis

increase or decrease phenotypic diversity [3]? Evolution is, historically speaking,

the domain of explanatory rather than predictive models.

For example, when studying macroevolution, it’s common to interpret real data by

fitting idealized models of evolution (e.g., Brownian motion (BM) or Ornstein-

Uhlenbeck (OU) [4]) to them. Doing so has helped advance our understanding of a

number of phenomena, such as resolving how species diversification along

ecological gradients can underlie adaptive radiations (e.g., Anolis lizards [5]).

However, the features driving these models’ explanatory power also restrict their

predictive utility.

Though providing valuable biological insight, explanatory model design inherently

limits their ability to predict unobserved or future outcomes. This mismatch

between model intention and application isn't a shortcoming per se — these

models were never intended to enable accurate prediction. It does mean,

however, that when explanatory models are applied to predictive tasks, they rely

on overly simplistic assumptions that maintain interpretability yet harm predictive

capabilities. This issue isn't unique to evolutionary biology (for discussions,

see [6] & [7]). For instance, phylogenetic imputation methods use explanatory

models like BM or OU to predict missing trait values, constrained by assumptions

such as constant rates of trait evolution across lineages and through time [8].

Dedicated predictive modeling frameworks tailored to evolutionary biology are

needed.

Accordingly, evolutionary biologists have increasingly turned to machine learning

frameworks more amenable to predictive tasks, particularly neural networks (NNs)

(Figure 1, A–B) [9][10][11]. By leveraging multiple interconnected layers of artificial

neurons, NNs can learn complex, non-intuitive relationships within data [12][13].

Despite challenges to interpretability, NNs' predictive capabilities make them
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highly valuable statistical tools, especially given the intricate and subtle patterns

often present in biological data.

Convolutional neural networks (CNNs: Figure 1, C–D) have become the dominant

architecture used in evolutionary biology. CNNs specialize in grid-structured data,

such as images and sequences, leveraging spatial autocorrelation through

convolutional kernels. Somewhat famously, CNNs have been shown to be

“unreasonably effective” for population genetics inference, matching or

exceeding existing explanatory models [14].

However, only some biological data are structured appropriately for CNNs, and

restructuring comes with trade-offs. For example, genetic data are often

converted into 2D "images" despite biologically irrelevant structuring in one input

dimension, potentially limiting predictive accuracy and efficiency. Data

preprocessing such as this can have an outsized impact on CNN performance [15].

While 1D CNNs offer a more natural and appropriate fit for linear genomic data —

and have been successfully applied across a range of population genetic tasks —

both 1D and 2D CNNs require input to conform to a regular grid. This requirement

restricts possible applications since biological systems are often better

represented as irregular non-Euclidean relational structures. Thus, although

effective in some cases, the widespread use of CNNs may reflect convenience

and historical precedent as much as innate architectural suitability.
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Figure 1. Trends in the use of neural networks (NNs) in ecology and evolution (data
from [9]) through 2021.

(A–B) Count of publications using each architecture type, considering all data types.

(C–D) Count of publications using each architecture type, considering only studies using molecular
data.

In all panels, any publication that used more than one architecture type is counted once per
architecture. DNN: deep neural network, CNN: convolutional neural network, RNN: recurrent neural
network, VAE: variational auto-encoder, GAN: generative adversarial network.

NOTE: The trends shown here are meant to be exemplars — we have not extended this literature
review to the present day.

So, is there a model architecture better suited for evolutionary data? This is an

important question. Model architectures often act like Bayesian priors, each with
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unique inductive biases. Architectures can impose constraints on what models

expect to see and, ultimately, what and how they learn. Effective alignment can

simplify the learning task and improve predictive performance, particularly in

small datasets common in biology. CNNs have succeeded in population genetic

applications because genetic autocorrelation is amenable to convolution. But is

there an alternative architecture better suited to the relational structures that

evolution produces?

Evolution: It’s graphs on graphs

We think the answer may be graphs. From phylogenies (bifurcating graphs) to

ancestral recombination graphs (ARGs) to interaction networks and genotypic

fitness landscapes, a vast swath of biology can be meaningfully represented as

graphs. Moreover, graphs may provide the key to spanning from microevolution to

macroevolution by drawing connections between biological scales. This puts on

the table the possibility of a universal evolutionary representation, from proteins

to genes and species, even ecological communities, each represented as

hierarchically nested graphs (Figure 2).
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Figure 2. Graphs are a unifying biological data structure across scales, from
macroevolution to microevolution.

(Top) Species trees (phylogenies) are fully bifurcating graphs that represent the relationships
among extant species (terminal nodes) and their common ancestors (internal nodes) through
descent with modification.

(Middle) A gene family tree — structured similarly — depicts the relationships among homologous
gene copies possessed by the same species as in the species tree.

(Bottom) Proteins encoded by each homologous gene copy (and their common ancestors) in this
gene family can be meaningfully and richly represented as protein residue graphs, where nodes
correspond to amino acids, and edges correspond to interacting or spatially proximal residues,
capturing detailed structural and physicochemical information.

Why is this the case? Because evolution through descent with modification

induces a graph-like relational structure in biological data. We often represent

these relationships as phylogenetic trees wherein each species or gene
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corresponds to a node interconnected through edges representing common

ancestry. Ultimately, a phylogeny is inherently a regular, fully bifurcating graph.

Similarly, genetic structures such as ARGs explicitly capture the complex histories

of genomic segments across populations and recombination events [16].

Furthermore, ecological networks depicting species interactions like predation,

mutualism, competition, or gene regulatory networks depicting complex genetic

pathways are also naturally expressed as graphs. This ubiquity underscores graph

representations' inherent suitability and explanatory power for evolutionary and

ecological questions.

Given the inherent suitability of graph structures to address questions in ecology

and evolution, we’re thus prompted to ask: Is there a predictive model

architecture capable not only of handling such non-Euclidean, graph-structured

data but also managing — and even exploiting — the complex nested hierarchical

structures induced by evolutionary processes? After all, it’s previously been shown

that CNN architectures aligned to image data markedly outperform non-

convolutional NNs [17][18], and architectures specialized for non-Euclidean data

lead to improved outcomes by inherently respecting the data’s geometry [19].

Could leveraging graph-based approaches thus bridge explanatory and predictive

paradigms, harnessing the inherent relational structure of evolutionary data to

improve both biological understanding and predictive accuracy?

Introducing graph neural networks

Yes! The solution we propose lies in graph neural networks (GNNs: [20]). Graph

neural networks are exactly what they sound like — a neural network architecture

specifically designed to process and learn from graph-structured data comprising

nodes (individual entities or observations) and edges (Box 1). GNNs can be used

for a variety of prediction tasks: node regression/classification (e.g., variant effect

prediction), edge prediction (e.g., phylogenetic inference), and graph

regression/classification (e.g., gene-regulatory network functional classification).

Given that graph-structured data is abundant in biology, the potential of GNNs is

vast.
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Why might GNNs work so well? For one, all GNNs use message passing to

aggregate information from neighboring nodes along edges, thus allowing the

model to learn complex local relationships in the data in a manner explicitly

informed by graph structure [21]. In effect, this assumes that nodes that are closer

to and more connected to one another in a graph are more similar to each other.

Why might we care about this as evolutionary biologists?

Because this message-passing mechanism functionally leverages something

that's both the bane and boon of any evolutionary comparative study —

evolutionary non-independence. Descent with modification renders biological

samples statistically non-independent "evolutionary pseudoreplicates," as

demonstrated compellingly in Felsenstein's seminal 1985 publication

"Phylogenies and the Comparative Method" [22]. Thankfully, there now exists a

wealth of statistical methods based on explanatory models that explicitly use the

inferred phylogeny to account for evolutionary non-independence [4]. Just as

accounting for evolutionary non-independence is essential to the adequacy and

performance of explanatory models, so will it be for predictive models. In fact,

we're likely to push these models even further by explicitly making the model

aware of that evolutionary non-independence by baking it into the model

architecture and data representation. GNNs provide us with the key to do so.

GNNs are also exceptionally flexible. For example, message-passing can

incorporate convolution (as in graph convolutional networks; GCNs [23]) or

attention mechanisms (as in graph attention networks; GATs [24]) to more fully

learn complex relationships present in the data at both local and global scales.

Furthermore, many common neural architectures are special cases of GNNs: CNNs

are a special case of GCNs on regular grids, RNNs are a special case of GNNs on

sequential chain graphs, and transformers [25] are a special case of GATs with fully

connected attention graphs.

Thus, while CNNs have been undeniably useful — particularly in population

genetic contexts with spatially or sequentially structured (i.e., Euclidean) genomic

data — GNNs offer even broader flexibility. This flexibility is reassuring. Biological

data frequently exhibit relational complexity beyond simple adjacency or grid-like

structures. GNNs inherently accommodate these complexities, making them

highly versatile tools. In the following section, we discuss several applications that
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have been particularly fruitful and propose a couple of promising future

applications.

GNNs in practice

Population genetic inference
As discussed previously, an early application of neural networks to evolution was

the use of CNNs for population genetics. How do GNNs stack up here? Recent

work [26] has found that a GCN matches and often exceeds CNN performance on

population genetic tasks, particularly at identifying genomic regions under

selective sweeps. Notably, the GCN achieves this performance with nearly two

orders of magnitude fewer parameters than the CNN (~200 thousand parameters

compared to ~21 million). This disconnect between model size and performance

supports our earlier suspicion: that using an architecture aligned with the data

structure indeed helps to learn more, and from less.

What about GNNs makes them suited for these tasks? The data used here — tree

sequences — are highly efficient representations of genomic data that capture

the changing evolutionary relationships among samples while walking along the

genome [27]. These tree sequences approximate ARGs, complex graph structures

capturing recombination and coalescent histories [16]. The message-passing

framework inherent to GNNs allows for adaptive weighting of neighbors, enabling

them to selectively integrate relevant local signals such as lineage-specific

demographic events or recombination hotspots that are otherwise obscured by

fixed receptive fields in CNNs. Indeed, recent studies have applied GNNs directly

to ARGs, proving helpful in estimating demographic histories and identifying

regions subject to selection under complex population scenarios [28].

Thus, using evolutionarily meaningful, graph-structured data, GNNs can infer

everything from demographic history to the genomic landscape of natural

selection and introgression/horizontal gene flow. While CNNs remain useful for

specific structured genomic data tasks, the flexibility and general applicability of

GNNs position them as a potentially superior choice across a broader range of

population genetic and evolutionary biology problems. Despite these initially

promising demonstrations, we emphasize that we have only begun to scratch the

surface of GNN's potential for population genetic problems.
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Diversification dynamics
GNNs may also be helpful for the inference of diversification dynamics using

phylogenetic trees (e.g., for understanding speciation/extinction or mapping

pathogen transmission dynamics [29][30][31]). Historically, this work has

disproportionately relied upon birth–death (BD) and coalescent models. Both

model types are highly interpretable. For instance, BD models employ just two

primary parameters: birth (λ), corresponding either to speciation or transmission

events, and death (µ), corresponding either to extinction or loss of infected

individuals, respectively.

The interpretability of these models has had immense practical value. During the

COVID-19 pandemic, BD and coalescent models applied to SARS-CoV-2

phylogenies provided early and critical insights into the epidemiology of this

novel infectious disease, directly informing public health decisions [32][33][34][35].

Beyond COVID-19, the application of these models has long been a critical

component of coordinated responses to infectious disease outbreaks [36]. For

example, they've historically been instrumental in identifying emerging seasonal

influenza strains around which vaccines are developed and assessing vaccine

efficacy (e.g., [37]).

So, how can GNNs propel the field forward? Phylodynamics is a field where many

explanatory models have been useful for prediction tasks almost by coincidence.

We can move beyond this, however. For instance, GNNs could explicitly leverage

the temporal structure of pathogen phylogenies to simultaneously model shifts in

transmission dynamics and predict the emergence of epidemiologically important

variants, something traditionally challenging for simpler models.

Initial applications of GNNs to phylodynamic problems have demonstrated

substantial promise, notably in classifying transmission clusters [38][39]. However,

there are several immediate areas where GNNs could be refined for this

application, such as comprehensive epidemiological parameter estimation.

Interestingly, a comparative study evaluating macroevolutionary diversification

parameter estimates (speciation and extinction) noted that other neural network

architectures often outperformed GNNs [40]. However, these GNNs lacked features

that improve performance, such as skip connections or attention-based graph

convolutional layers. Thus, given the inherent flexibility of GNN implementations,
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a more comprehensive exploration of possibilities will be of interest here (as

elsewhere).

Phylogenetic imputation and ancestral state reconstruction
Finally, GNNs may be uniquely well-suited to common tasks in comparative

biology, such as trait imputation and ancestral state reconstructions. For example,

ancestral state reconstruction is one of the most common use cases of

phylogenetic comparative methods in evolutionary studies. Writ large, this

includes the inference of everything from geographic ranges [41] and quantitative

or discrete phenotypes [42] to even protein sequences [43] of the common

ancestors of extant species.

Many of these tasks are built on a common methodological approach we

stereotype here (for a review, see [44]). First, an explanatory model of how a trait

has evolved is fit to a reconstructed phylogeny and trait data for a set of species.

The fitted model is then used to probabilistically reconstruct trait values at the

internal (ancestral reconstruction) or terminal (phylogenetic imputation) nodes,

returning the most likely values based on the model parameters. Although

intuitive, this approach can lead to biased or incorrect trait estimates, as

commonly used models make unrealistic assumptions, such as constant

evolutionary rates through time and shared rates across species.

GNNs, on the other hand, have the potential to model more realistic evolutionary

scenarios. For instance, using a combination of graph convolution and graph

attention, GNNs may be capable of flexibly and accurately modeling the

underlying heterogeneity of evolutionary rates. Additionally, if modeling the

evolution of multiple traits, GNNs may be able to capture additional complexity

and nuance in patterns of correlated trait evolution that are typically out of reach

of standard models. Last, mechanisms like jumping knowledge [45] may help GNNs

to flexibly integrate information from both local and global phylogenetic

neighborhoods to model and learn where saltational jumps in trait evolution

occur. Fortunately, sophisticated simulation tools are readily available, enabling

researchers to create realistic evolutionary scenarios for effective GNN training

(e.g., [46][47][48][49]). Thus, while simulation quality remains essential, GNNs are an

optimally structured architecture to handle these predictive tasks efficiently and

accurately.
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Tip of the iceberg

We have only begun to scratch the surface of the potential utility of GNNs for

application to questions and subjects in evolutionary biology. Entire publications

could be written about each. From the potential of GNNs to directly infer

phylogenetic trees themselves (e.g., [50]) from genetic sequence data to

predicting protein–protein interactions (e.g., [51]) and facilitating the inference of

orthology at deep evolutionary time scales, the number and diversity of

prospective use cases are vast. Excitingly, in many cases, we're beginning to see

this exploration unfold, though we emphasize that it's just that — only the

beginning. Ultimately, the creativity of implementation and thoughtful application,

more than innate architectural limitations, will likely determine the success of

GNNs in evolutionary biology.

Although outside of the scope of this pub, we encourage readers to familiarize

themselves more with the technical details of how GNNs are implemented and

how different individual architectural components may play key roles in their

success and performance for any given application [20]. For instance, just as we've

seen with the rampant success of the transformer architecture [25] in the context

of large language models, it seems incredibly likely that GNN architectures that

incorporate some form of attention mechanism will be vitally important to capture

the complexity inherent to biological data. Furthermore, we emphasize that

models needn't rely on a single architectural type. For instance, one recent study

successfully combined protein language models with GNNs to enable the

prediction of essential genes in metazoans [52].

In many cases, the primary utility of GNNs may be in bridging across

architectures — explicitly building in the hierarchical relationships induced by

evolution through descent with modification (e.g., Figure 2). Building

sophisticated, complex hierarchical models such as these spanning biological

scales is undoubtedly challenging, but GNNs present an explicit means by which

to do so (e.g., [53][54]). Still, the value gained from more completely building in the

evolutionary structure we know to exist in our models may be transformative.

Ultimately, the boundary to GNN success in evolutionary biology lies primarily in

our creativity and ingenuity in leveraging this powerful architecture.
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Methods

We downloaded the supplementary table from Borowiec et al., 2022 [9] (found

here) and converted it to a tab-separated text file. We loaded these data into R

(v4.3.3), processed them, and visualized outputs with the following packages:

readr (v2.1.5), dplyr (v1.1.4), tidyr (v1.3.1), stringr (v1.5.1), ggplot2 (v3.5.1) [55],

reshape2 [56] (v1.4.4), cowplot (v1.1.3), and arcadiathemeR (v0.1.0) [57]. We excluded

publications for which the entry for Architecture (i.e., the NN architecture used in

the study) was “NA,” as these corresponded to review articles, as well as studies

for which the architecture was "unknown." We counted each type once when

multiple architecture types were used in a single study. For example, if a study

used both a convolutional neural network and a recurrent neural network, we

incremented the count for both architectures by one for that year.

We used ChatGPT to help write code and provide suggestions to restructure

writing.

Contributors (A–Z)

Audrey Bell: Visualization

Austin H. Patton: Conceptualization, Software, Visualization, Writing

Ryan York: Supervision, Validation
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