Graph neural networks: A
unifying predictive model
architecture for evolutionary
applications

The transition from explanatory to predictive models in
evolutionary biology is a significant and challenging task. We
propose that graph representations and graph neural networks
may play a crucial role in this transition.
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Purpose

Neural networks are increasingly used in evolutionary biology research. Despite
this burgeoning interest, most work uses just a few model architectures. This bias
matters: the alignment of data structure, task, and architecture influences
predictive and explanatory outcomes.

We propose that graph neural networks (GNNs), a comparatively underutilized
architecture, are uniquely well-suited for evolutionary applications. We detail how
GNNs leverage relational structures embedded in evolutionary data where other
architectures can't. We review example applications and discuss promising
avenues where GNNs could advance evolutionary research. Our goal is to highlight
the value of GNNs and encourage other evolutionary biologists to leverage the full
extent of their utility.

e All associated code and data are available in this GitHub repository.



https://github.com/Arcadia-Science/2025-gnn-evo-architecture

Explanatory vs. predictive models in
evolution

Evolutionary biologists are driven to answer fundamental questions about how the
world works. What led to the adaptive radiation of Darwin’s finches 11? What
facilitated the repeated speciation and parallel ecological divergence between
limnetic and benthic freshwater threespine sticklebacks [21? Does epistasis
increase or decrease phenotypic diversity 31?7 Evolution is, historically speaking,

the domain of explanatory rather than predictive models.

For example, when studying macroevolution, it's common to interpret real data by
fitting idealized models of evolution (e.g., Brownian motion (BM) or Ornstein-
Uhlenbeck (OU) 14]) to them. Doing so has helped advance our understanding of a
number of phenomena, such as resolving how species diversification along
ecological gradients can underlie adaptive radiations (e.g., Anolis lizards [s)).
However, the features driving these models’ explanatory power also restrict their
predictive utility.

Though providing valuable biological insight, explanatory model design inherently
limits their ability to predict unobserved or future outcomes. This mismatch
between model intention and application isn't a shortcoming per se — these
models were never intended to enable accurate prediction. It does mean,
however, that when explanatory models are applied to predictive tasks, they rely
on overly simplistic assumptions that maintain interpretability yet harm predictive
capabilities. This issue isn't unique to evolutionary biology (for discussions,

see 161 & [71). For instance, phylogenetic imputation methods use explanatory
models like BM or OU to predict missing trait values, constrained by assumptions
such as constant rates of trait evolution across lineages and through time (a).
Dedicated predictive modeling frameworks tailored to evolutionary biology are
needed.

Accordingly, evolutionary biologists have increasingly turned to machine learning
frameworks more amenable to predictive tasks, particularly neural networks (NNs)
(Figure 1, A-B) rem1e1111. By leveraging multiple interconnected layers of artificial
neurons, NNs can learn complex, non-intuitive relationships within data 12j13;.

Despite challenges to interpretability, NNs' predictive capabilities make them
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highly valuable statistical tools, especially given the intricate and subtle patterns
often present in biological data.

Convolutional neural networks (CNNs: Figure 1, C-D) have become the dominant
architecture used in evolutionary biology. CNNs specialize in grid-structured data,
such as images and sequences, leveraging spatial autocorrelation through
convolutional kernels. Somewhat famously, CNNs have been shown to be
“unreasonably effective” for population genetics inference, matching or
exceeding existing explanatory models [141.

However, only some biological data are structured appropriately for CNNs, and
restructuring comes with trade-offs. For example, genetic data are often
converted into 2D "images" despite biologically irrelevant structuring in one input
dimension, potentially limiting predictive accuracy and efficiency. Data
preprocessing such as this can have an outsized impact on CNN performance r1s).
While 1D CNNs offer a more natural and appropriate fit for linear genomic data —
and have been successfully applied across a range of population genetic tasks —
both 1D and 2D CNNs require input to conform to a regular grid. This requirement
restricts possible applications since biological systems are often better
represented as irregular non-Euclidean relational structures. Thus, although
effective in some cases, the widespread use of CNNs may reflect convenience
and historical precedent as much as innate architectural suitability.


https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1371/journal.pcbi.1010979
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Figure 1. Trends in the use of neural networks (NNs) in ecology and evolution (data

from [9]) through 2021.

(A-B) Count of publications using each architecture type, considering all data types.

(C-D) Count of publications using each architecture type, considering only studies using molecular

data.

In all panels, any publication that used more than one architecture type is counted once per
architecture. DNN: deep neural network, CNN: convolutional neural network, RNN: recurrent neural
network, VAE: variational auto-encoder, GAN: generative adversarial network.

NOTE: The trends shown here are meant to be exemplars — we have not extended this literature
review to the present day.

So, is there a model architecture better suited for evolutionary data? This is an
important question. Model architectures often act like Bayesian priors, each with
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unique inductive biases. Architectures can impose constraints on what models
expect to see and, ultimately, what and how they learn. Effective alignment can
simplify the learning task and improve predictive performance, particularly in
small datasets common in biology. CNNs have succeeded in population genetic
applications because genetic autocorrelation is amenable to convolution. But is
there an alternative architecture better suited to the relational structures that
evolution produces?

Evolution: It’s graphs on graphs

We think the answer may be graphs. From phylogenies (bifurcating graphs) to
ancestral recombination graphs (ARGs) to interaction networks and genotypic
fitness landscapes, a vast swath of biology can be meaningfully represented as
graphs. Moreover, graphs may provide the key to spanning from microevolution to
macroevolution by drawing connections between biological scales. This puts on
the table the possibility of a universal evolutionary representation, from proteins
to genes and species, even ecological communities, each represented as
hierarchically nested graphs (Figure 2).
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Figure 2. Graphs are a unifying biological data structure across scales, from
macroevolution to microevolution.

(Top) Species trees (phylogenies) are fully bifurcating graphs that represent the relationships
among extant species (terminal nodes) and their common ancestors (internal nodes) through
descent with modification.

(Middle) A gene family tree — structured similarly — depicts the relationships among homologous
gene copies possessed by the same species as in the species tree.

(Bottom) Proteins encoded by each homologous gene copy (and their common ancestors) in this
gene family can be meaningfully and richly represented as protein residue graphs, where nodes
correspond to amino acids, and edges correspond to interacting or spatially proximal residues,
capturing detailed structural and physicochemical information.

Why is this the case? Because evolution through descent with modification
induces a graph-like relational structure in biological data. We often represent
these relationships as phylogenetic trees wherein each species or gene



corresponds to a node interconnected through edges representing common
ancestry. Ultimately, a phylogeny is inherently a regular, fully bifurcating graph.
Similarly, genetic structures such as ARGs explicitly capture the complex histories
of genomic segments across populations and recombination events [1s.
Furthermore, ecological networks depicting species interactions like predation,
mutualism, competition, or gene regulatory networks depicting complex genetic
pathways are also naturally expressed as graphs. This ubiquity underscores graph
representations' inherent suitability and explanatory power for evolutionary and
ecological questions.

Given the inherent suitability of graph structures to address questions in ecology
and evolution, we're thus prompted to ask: Is there a predictive model
architecture capable not only of handling such non-Euclidean, graph-structured
data but also managing — and even exploiting — the complex nested hierarchical
structures induced by evolutionary processes? After all, it's previously been shown
that CNN architectures aligned to image data markedly outperform non-
convolutional NNs 1711181, and architectures specialized for non-Euclidean data
lead to improved outcomes by inherently respecting the data’s geometry 191
Could leveraging graph-based approaches thus bridge explanatory and predictive
paradigms, harnessing the inherent relational structure of evolutionary data to
improve both biological understanding and predictive accuracy?

Introducing graph neural networks

Yes! The solution we propose lies in graph neural networks (GNNSs: [2e]). Graph
neural networks are exactly what they sound like — a neural network architecture
specifically designed to process and learn from graph-structured data comprising
nodes (individual entities or observations) and edges (Box 1). GNNs can be used
for a variety of prediction tasks: node regression/classification (e.g., variant effect
prediction), edge prediction (e.g., phylogenetic inference), and graph
regression/classification (e.g., gene-regulatory network functional classification).
Given that graph-structured data is abundant in biology, the potential of GNNs is
vast.
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Why might GNNs work so well? For one, all GNNs use message passing to
aggregate information from neighboring nodes along edges, thus allowing the
model to learn complex local relationships in the data in a manner explicitly
informed by graph structure 211. In effect, this assumes that nodes that are closer
to and more connected to one another in a graph are more similar to each other.
Why might we care about this as evolutionary biologists?

Because this message-passing mechanism functionally leverages something
that's both the bane and boon of any evolutionary comparative study —
evolutionary non-independence. Descent with modification renders biological
samples statistically non-independent "evolutionary pseudoreplicates," as
demonstrated compellingly in Felsenstein's seminal 1985 publication
"Phylogenies and the Comparative Method" [22). Thankfully, there now exists a
wealth of statistical methods based on explanatory models that explicitly use the
inferred phylogeny to account for evolutionary non-independence [41. Just as
accounting for evolutionary non-independence is essential to the adequacy and
performance of explanatory models, so will it be for predictive models. In fact,
we're likely to push these models even further by explicitly making the model
aware of that evolutionary non-independence by baking it into the model
architecture and data representation. GNNs provide us with the key to do so.

GNNs are also exceptionally flexible. For example, message-passing can
incorporate convolution (as in graph convolutional networks; GCNs [23]) or
attention mechanisms (as in graph attention networks; GATs [24]) to more fully
learn complex relationships present in the data at both local and global scales.
Furthermore, many common neural architectures are special cases of GNNs: CNNs
are a special case of GCNs on regular grids, RNNs are a special case of GNNs on
sequential chain graphs, and transformers [25] are a special case of GATs with fully

connected attention graphs.

Thus, while CNNs have been undeniably useful — particularly in population
genetic contexts with spatially or sequentially structured (i.e., Euclidean) genomic
data — GNNs offer even broader flexibility. This flexibility is reassuring. Biological
data frequently exhibit relational complexity beyond simple adjacency or grid-like
structures. GNNs inherently accommodate these complexities, making them
highly versatile tools. In the following section, we discuss several applications that
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have been particularly fruitful and propose a couple of promising future
applications.

GNNs in practice

Population genetic inference

As discussed previously, an early application of neural networks to evolution was
the use of CNNSs for population genetics. How do GNNs stack up here? Recent
work 261 has found that a GCN matches and often exceeds CNN performance on
population genetic tasks, particularly at identifying genomic regions under
selective sweeps. Notably, the GCN achieves this performance with nearly two
orders of magnitude fewer parameters than the CNN (~200 thousand parameters
compared to ~21 million). This disconnect between model size and performance
supports our earlier suspicion: that using an architecture aligned with the data
structure indeed helps to learn more, and from less.

What about GNNs makes them suited for these tasks? The data used here — tree
sequences — are highly efficient representations of genomic data that capture
the changing evolutionary relationships among samples while walking along the
genome [271. These tree sequences approximate ARGs, complex graph structures
capturing recombination and coalescent histories [161. The message-passing
framework inherent to GNNs allows for adaptive weighting of neighbors, enabling
them to selectively integrate relevant local signals such as lineage-specific
demographic events or recombination hotspots that are otherwise obscured by
fixed receptive fields in CNNs. Indeed, recent studies have applied GNNs directly
to ARGs, proving helpful in estimating demographic histories and identifying
regions subject to selection under complex population scenarios [2s].

Thus, using evolutionarily meaningful, graph-structured data, GNNs can infer
everything from demographic history to the genomic landscape of natural
selection and introgression/horizontal gene flow. While CNNs remain useful for
specific structured genomic data tasks, the flexibility and general applicability of
GNNs position them as a potentially superior choice across a broader range of
population genetic and evolutionary biology problems. Despite these initially
promising demonstrations, we emphasize that we have only begun to scratch the
surface of GNN's potential for population genetic problems.
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Diversification dynamics

GNNs may also be helpful for the inference of diversification dynamics using
phylogenetic trees (e.g., for understanding speciation/extinction or mapping
pathogen transmission dynamics r2933e]311). Historically, this work has
disproportionately relied upon birth-death (BD) and coalescent models. Both
model types are highly interpretable. For instance, BD models employ just two
primary parameters: birth (A), corresponding either to speciation or transmission
events, and death (u), corresponding either to extinction or loss of infected
individuals, respectively.

The interpretability of these models has had immense practical value. During the
COVID-19 pandemic, BD and coalescent models applied to SARS-CoV-2
phylogenies provided early and critical insights into the epidemiology of this
novel infectious disease, directly informing public health decisions [32)33]1341(35].
Beyond COVID-19, the application of these models has long been a critical
component of coordinated responses to infectious disease outbreaks [363. For
example, they've historically been instrumental in identifying emerging seasonal
influenza strains around which vaccines are developed and assessing vaccine
efficacy (e.g., [371).

So, how can GNNs propel the field forward? Phylodynamics is a field where many
explanatory models have been useful for prediction tasks almost by coincidence.
We can move beyond this, however. For instance, GNNs could explicitly leverage
the temporal structure of pathogen phylogenies to simultaneously model shifts in
transmission dynamics and predict the emergence of epidemiologically important
variants, something traditionally challenging for simpler models.

Initial applications of GNNs to phylodynamic problems have demonstrated
substantial promise, notably in classifying transmission clusters [3sj391. However,
there are several immediate areas where GNNs could be refined for this
application, such as comprehensive epidemiological parameter estimation.
Interestingly, a comparative study evaluating macroevolutionary diversification
parameter estimates (speciation and extinction) noted that other neural network
architectures often outperformed GNNs [461. However, these GNNs lacked features
that improve performance, such as skip connections or attention-based graph
convolutional layers. Thus, given the inherent flexibility of GNN implementations,
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a more comprehensive exploration of possibilities will be of interest here (as
elsewhere).

Phylogenetic imputation and ancestral state reconstruction

Finally, GNNs may be uniquely well-suited to common tasks in comparative
biology, such as trait imputation and ancestral state reconstructions. For example,
ancestral state reconstruction is one of the most common use cases of
phylogenetic comparative methods in evolutionary studies. Writ large, this
includes the inference of everything from geographic ranges 1411 and quantitative
or discrete phenotypes [42] to even protein sequences [43] of the common

ancestors of extant species.

Many of these tasks are built on a common methodological approach we
stereotype here (for a review, see [44)). First, an explanatory model of how a trait
has evolved is fit to a reconstructed phylogeny and trait data for a set of species.
The fitted model is then used to probabilistically reconstruct trait values at the
internal (ancestral reconstruction) or terminal (phylogenetic imputation) nodes,
returning the most likely values based on the model parameters. Although
intuitive, this approach can lead to biased or incorrect trait estimates, as
commonly used models make unrealistic assumptions, such as constant
evolutionary rates through time and shared rates across species.

GNNs, on the other hand, have the potential to model more realistic evolutionary
scenarios. For instance, using a combination of graph convolution and graph
attention, GNNs may be capable of flexibly and accurately modeling the
underlying heterogeneity of evolutionary rates. Additionally, if modeling the
evolution of multiple traits, GNNs may be able to capture additional complexity
and nuance in patterns of correlated trait evolution that are typically out of reach
of standard models. Last, mechanisms like jumping knowledge 1451 may help GNNs
to flexibly integrate information from both local and global phylogenetic
neighborhoods to model and learn where saltational jumps in trait evolution
occur. Fortunately, sophisticated simulation tools are readily available, enabling
researchers to create realistic evolutionary scenarios for effective GNN training
(e.g., 1461147114811491). Thus, while simulation quality remains essential, GNNs are an
optimally structured architecture to handle these predictive tasks efficiently and
accurately.
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Tip of the iceberg

We have only begun to scratch the surface of the potential utility of GNNs for
application to questions and subjects in evolutionary biology. Entire publications
could be written about each. From the potential of GNNs to directly infer
phylogenetic trees themselves (e.qg., 1561) from genetic sequence data to
predicting protein-protein interactions (e.g., [511) and facilitating the inference of
orthology at deep evolutionary time scales, the number and diversity of
prospective use cases are vast. Excitingly, in many cases, we're beginning to see
this exploration unfold, though we emphasize that it's just that — only the
beginning. Ultimately, the creativity of implementation and thoughtful application,
more than innate architectural limitations, will likely determine the success of
GNNs in evolutionary biology.

Although outside of the scope of this pub, we encourage readers to familiarize
themselves more with the technical details of how GNNs are implemented and
how different individual architectural components may play key roles in their
success and performance for any given application [2e). For instance, just as we've
seen with the rampant success of the transformer architecture (251 in the context
of large language models, it seems incredibly likely that GNN architectures that
incorporate some form of attention mechanism will be vitally important to capture
the complexity inherent to biological data. Furthermore, we emphasize that
models needn't rely on a single architectural type. For instance, one recent study
successfully combined protein language models with GNNs to enable the

prediction of essential genes in metazoans [s2].

In many cases, the primary utility of GNNs may be in bridging across
architectures — explicitly building in the hierarchical relationships induced by
evolution through descent with modification (e.g., Figure 2). Building
sophisticated, complex hierarchical models such as these spanning biological
scales is undoubtedly challenging, but GNNs present an explicit means by which
to do so (e.qg., 1531541). Still, the value gained from more completely building in the
evolutionary structure we know to exist in our models may be transformative.
Ultimately, the boundary to GNN success in evolutionary biology lies primarily in
our creativity and ingenuity in leveraging this powerful architecture.
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Methods

We downloaded the supplementary table from Borowiec et al., 2022 191 (found
here) and converted it to a tab-separated text file. We loaded these data into R
(v4.3.3), processed them, and visualized outputs with the following packages:
readr (v2.1.5), dplyr (v1.1.4), tidyr (v1.3.1), stringr (v1.5.1), ggplot2 (v3.5.1) ss),

reshape?2 se] (v1.4.4), cowplot (v1.1.3), and arcadiathemeR (v0.1.0) (571. We excluded
publications for which the entry for Architecture (i.e., the NN architecture used in
the study) was “NA,” as these corresponded to review articles, as well as studies
for which the architecture was "unknown." We counted each type once when
multiple architecture types were used in a single study. For example, if a study
used both a convolutional neural network and a recurrent neural network, we
incremented the count for both architectures by one for that year.

We used ChatGPT to help write code and provide suggestions to restructure

writing.

Contributors (A-Z)

Audrey Bell: Visualization
Austin H. Patton: Conceptualization, Software, Visualization, Writing

Ryan York: Supervision, Validation
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