
Equivalent linear mappings of deep
networks are a promising path for biology

Deep networks make accurate predictions, but their nonlinearity makes
them a black box, hiding what they have learned. Here, we look inside the
black box and analyze the exact relationships they learn for UMAP
embeddings and epistasis in a genotype–phenotype dataset.

Purpose
Deep networks are increasingly popular in biology, but their fundamental
nonlinear character makes it difficult to extract what input–output relationships
they have actually learned. We describe a method for finding an equivalent linear
mapping for a deep network given a specific input, and apply this to UMAP
embeddings and epistasis in genotype–phenotype relationships.

The equivalent linear mapping method enables the use of powerful deep networks
to accurately learn complex relationships, while also allowing for the
straightforward interpretation of which gene features give rise to specific output
representations.

This perspective piece is intended for both practitioners interested in
interpretability for machine learning and biologists skeptical of the scientific utility
of machine learning methods. We would be pleased to receive feedback from
anyone who could make use of this approach for their own datasets, and
especially whether it results in deeper insights into the structure of the data itself
or the biological processes that underlie the system of interest.

Check out companion pubs showing how to use equivalent linear mappings
for interpreting globally nonlinear models for gene expression [1] and
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https://arcadia-science.github.io/glass-box-umap-notebook-pub/
https://doi.org/10.57844/arcadia-tnr4-7n9h


genotype–phenotype data [2].

Introduction: Black-box models
A fundamental challenge in machine learning is the black-box nature of nonlinear
models. Models can be optimized to make accurate predictions across a wide
range of datasets and problems, but we cannot always understand the
relationship a model has learned between the input features and the output
prediction. There has been constant progress on feature importance methods that
capture approximate contributions, including Grad-CAM [3], Integrated

Gradients [4], LIME [5], and SHAP [6]. While useful, these methods always come with

the “approximate” warning flag, as nonlinear functions can behave differently than
their linear approximations.

Globally nonlinear but locally linear
In parallel, there have been less visible efforts toward local linear descriptions of
deep-network models that capture the exact relationship between input features
and output predictions as equivalent linear mappings (ELMs). “Analysis of deep
neural networks with the extended data Jacobian matrix” [7] identified and explored

this intriguing property. For simple deep networks consisting of only linear layers
with zero bias and ReLU activations, the Jacobian for a particular input, computed
numerically with autograd, yields a linear system that exactly reproduces the
output of the globally nonlinear deep network. The manifold of the output in the
input space is piecewise linear. This method has been extended to convolutional
networks with ReLU activations for image generation [8][9] and to large language

models with Swish or GELU activations and softmax attention [10], although these

gated activations make the model “point-wise” linear as opposed to piecewise
linear.

The ELM method leverages the full expressive power of deep networks but does
not sacrifice quantitative interpretation of input features. If a linear model is held
up as one ideal for interpretability (which itself is open to debate [11]), then the
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Jacobian method for a piecewise or pointwise linear network is a solid step in this
direction. Instead of interpreting a nonlinear network, we must interpret a large
collection of linear models for each input of interest. This is a shift from an
extremely difficult mathematical problem to a challenging data problem.

Equivalent linear mappings for biology
We recently posted two new publications, “From black box to glass box: Making
UMAP interpretable with exact feature contributions” and “A quantitative-genetic
decomposition of a neural network”. While there are many techniques for
quantifying the contributions of genes in linear genotype–phenotype models and
for computing approximations of this in nonlinear models, the ELM approach
used in these publications maps the prediction of a deep network to an equivalent
set of linear weights for a given input point.

We used standard deep networks with some simple constraints such that the
network is locally linear with respect to the input features. By holding the bias
terms of each linear layer to zero and using ReLU or leaky ReLU activations, the
Jacobian matrix for a specific input (computed numerically with autograd) exactly
reconstructs the network output, with reconstruction error approaching machine
precision. This class of networks is linear at a given input point, but nonlinear
between input points, which allows for both predictive power and clear feature
interpretations from the Jacobian reconstruction. This is a technique that has not
yet been widely used for genotype–phenotype prediction.

Exact feature contributions for UMAP
In “From black box to glass box: Making UMAP interpretable with exact feature
contributions,” we used the Jacobian to quantify how a trained deep network
transformed a cell’s normalized expression levels to a position in the embedding
space. The conventional approach to quantifying feature contributions is to carry
out differential expression on a given cluster formed from a UMAP embedding,
but with the ELM method, we can directly measure what gene features the UMAP
network uses to embed each cell’s expression vector. These features are
computed for individual cells but can be averaged over labels to identify which
genes drive the formation of clusters labeled with categories such as cell type.
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ELMs and quantitative genetics
In “A quantitative-genetic decomposition of a neural network,” we used simulated
data to show how the feature contributions captured by the Jacobian of a neural
network through ELM can be used to estimate classical quantitative genetics
parameters. We first demonstrated that by averaging the Jacobian over all test set
points, we can accurately back out the ground truth additive effect sizes. This was
encouraging, but given that we have a method that identifies different sets of
linear features for each input point, could it also reveal pairwise epistatic
interactions? We found that by iterating over pairs of loci and averaging the
Jacobian over all possible genotypic combinations, we could infer epistatic
interaction coefficients with high fidelity. This was true for phenotypes with a
variety of genetic architectures and environmental noise levels, suggesting that
this method should be broadly applicable to genotype–phenotype mapping.

Conclusion
By constraining a few aspects of the deep network architecture with no cost to its
performance, we use the Jacobian to reveal equivalent linear relationships for
each point in the dataset. This augmentation of the modeling pipeline enables a
straightforward and principled approach to uncovering both locally linear and
globally nonlinear relationships.

Looking ahead
Beyond genotype–phenotype mappings, we hope to apply this technique to other
areas of interest to Arcadia, including the interpretation of protein language
models and the analysis of high-dimensional phenotypic data.
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