Creating reproducible
workflows for complex
computational pipelines

A workflow orchestration framework can streamline
repeatable tasks and make workflows broadly usable.
From several options, we chose Nextflow due to the ease
of deploying across platforms, vibrant nf-core community,
and ability to manage and monitor workflows with
Nextflow Tower.

Version 5, published Apr 2, 2025. Originally published Mar 7, 2023.

4. Arcadia Science DOI: 10.57844/arcadia-cc5j-a519

Purpose

One of our goals at Arcadia Science is to create maximally useful
computational tools, including our workflows. To increase the
usability of our science, we want to openly share as many of these
workflows as possible, while respecting the licenses of the
underlying software and our translational goals. This is challenging
in the life sciences. Computational pipelines have many individual
steps, deal with varying sizes and formats of files, and use tools from
diverse language ecosystems (e.g., Python, bash, R). This creates
complications in maintaining software dependencies and compute
environments, making workflows hard to use, reproduce, and iterate
on.



Workflow frameworks have emerged as solutions to these
challenges 2i31141. Each of these systems comes with benefits and

drawbacks. In this pub, we share our decision-making process for
selecting Nextflow as our workflow framework for standardized
computational tasks. We have explored many tools, including but not
limited to Snakemake 41, LatchBio, Nextflow 21, and Prefect. All of

these tools present different trade-offs.

In summary, we sought a general solution within our budgetary
constraints that minimized frustrations while aligning with our
scientific goals and open-science principles. We knew our selection
wouldn't necessarily meet each requirement perfectly, but we kept
our mission of maximal utility at the center of our thought process.

e This pub is part of the project, “Useful computing at Arcadia.”
Visit the project narrative for more background and context.

e Asimplified template for creating Nextflow workflows is
available on GitHub. Use the template or see how we put it
together.

Key considerations

We considered three key selection criteria. Our ideal tool for creating
open-source pipelines would be:

Easily shareable with others

We want our pipelines to be accessible to others outside of Arcadia
without substantial infrastructure or configuration on their end. The
ideal system would be deployable on any computational
infrastructure (e.g., local laptop, HPC, cloud providers, etc.). We did
not want to require community users to “buy in” to a platform that
they are not already using to access and use our workflows.


https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1038/nbt.3820
https://doi.org/10.48550/ARXIV.2105.07028
https://doi.org/10.1093/bioinformatics/bts480
https://snakemake.github.io/
https://doi.org/10.1093/bioinformatics/bts480
https://latch.bio/
https://www.nextflow.io/
https://doi.org/10.1038/nbt.3820
https://www.prefect.io/
https://research.arcadiascience.com/useful-computing
https://github.com/Arcadia-Science/nextflow-template-repository/releases/tag/v1.1.0
https://github.com/Arcadia-Science/nextflow-template/tree/v1.0.0
https://github.com/Arcadia-Science/nextflow-template/tree/v1.0.0

Reasonably cost- and time-effective

Our software team is currently small with a particular focus on
building useful, focused products. We have limited bandwidth to
tackle DevOps challenges, so we wanted a simple solution that:

1. Allowed us to run our pipelines easily on Amazon Web
Services (AWS), our default data storage and compute tool.

2. Had a straightforward integration with AWS Batch, which
would allow us to run pipelines in parallel (fast) on AWS Spot
instances (cheap).

Flexible for Arcadians to learn and use

We aim to keep computation in the hands of scientists, each an
expert in their respective domains. Forcing them to learn a new
language would create a huge barrier to entry. Not only do
bioinformatics tools span multiple languages in general, but our
scientists have a diverse background of languages they are familiar
with. Overall our scientists are familiar with bash, R, and Python —
languages that are popular for computing in the life sciences. Our
workflow solution therefore had to be able to execute code in these
languages.

Which workflow systems did we
consider?

We considered a range of solutions but mostly centered our
conversations around Snakemake, Nextflow, LatchBio, and Prefect.
The former two are well-known workflow solutions in the life
sciences used in both academic and industrial settings, whereas
LatchBio is a new bioinformatics platform company providing
compute solutions for scientists. The software/data engineering
space also developed many tools to tackle the challenge of
orchestrating the deployment of high-throughput computational
pipelines. This is why our comparison included Prefect, an open-



source workflow management tool commonly used for ETL (extract,
transform, load) jobs. We compared these solutions, keeping in mind
our key considerations:



Cost

Open source

Easy-to-learn
language that

life scientists

are familiar
with

Multi-
language

support

Easy resource

management

Integrates
with AWS
Batch

Easily
deployable

across diverse

platforms

Actively used

by the life
sciences

community

Nextflow

Free, paid
license for

Tower*

Steep
learning

curve

Tower*
makes this
more

streamlined

Snakemake

Free

Make-like
DSL

Support with
AWS
Genomics
CLI, but has

l[imitations

Sort of

LatchBio

Free for
academics,
pay per
usage for

industry

Python

decorators

Yes, but
using
Python
subprocess

calls

Must use
their

platform

Must use
their

platform

Not

yet/growing

space

Prefect

Free, paid
license for
Prefect
Cloud

Python

decorators

Yes, but
using
Python
subprocess

calls

Yes, but
challenging

Sort of



Table 1. *Seqgera Labs offers Nextflow Tower (also referred to as Tower), a
monitoring and management system for launching Nextflow workflows on a variety
of platforms.

What made Nextflow + Tower the
right solution for us

Taking our criteria into consideration, we chose to move
forward with writing workflows in Nextflow and deploying
through AWS Batch via a paid license for Nextflow Tower.

This solution ultimately won out because:

e Nextflow integrates nicely with containerization technologies
like Docker and Singularity to encourage easy deployability
across platforms

e Vibrant open-source community where individuals test,
develop, and share building blocks for workflows

e Straightforward to run on AWS Batch with or without Nextflow
Tower

e Works across languages and varying compute needs, although
this comes at the cost of a steep learning curve of a new
Domain-Specific Language (DSL) and programming paradigm

We did not pursue the other options listed above for various
reasons. Although Snakemake is widely used in the life sciences
community, there were several logistical challenges to integrating
Snakemake workflows with AWS Batch to take advantage of cost
savings with parallelizing spot EC2 instances. LatchBio had a very
streamlined development and user experience. However, using
LatchBio would require us to ask downstream users to “buy in” to
their platform to be able to test and use our pipelines. This was a
dealbreaker for us. Finally, similar to LatchBio, Prefect's development
experience was great. But the lack of adoption in the bioinformatics
space, coupled with the inability to specify compute resource
requirements at the task level made Prefect a nonviable option for

6



us. As these tools and constraints evolve, we may reconsider our
choice.

Easily deployable workflows on any platform

The Nextflow workflow system is open source and has an active
community maintaining it and providing support. By design,
Nextflow encourages containerization leveraging Docker or
Singularity images. This facilitates deployment on a variety of
platforms (e.g., in the cloud, locally, or on an institution’s HPQC),
making our workflows usable by others with various setups. For
users who cannot use Docker or Singularity, workflows can also
specify their environments with conda.

Seamless monitoring and management of
AWS Batch jobs with Tower

The main draw of Nextflow was the ability to use Nextflow Tower, an
intuitive GUI that provides seamless integration with AWS Batch and
built-in monitoring and management of AWS Spot instances. Note
that Tower is not required to use any workflows — it is just a
complementary layer that facilitates the execution and distribution of
workflow processes across a variety of systems, not just AWS Batch.
By using Tower, we can more easily integrate with AWS Batch and
tap into cost savings with spot instances without a lot of overhead,
all while enabling non-expert users to interactively launch pipelines
through the Tower GUI.

We purchased a license for Nextflow Tower that enables us to have
three power users and three launchpad users, where power users
can both configure compute environments and launch workflows,
and launchpad users can only launch workflows. Originally, our idea
was to enable all scientists at Arcadia to launch their own workflows
using the Tower GUI. However, this was extremely cost-prohibitive.
Instead, we now use the Tower APl and Tower launch hooks to
automate the launch of our workflows while maintaining Tower for
management and monitoring purposes. You can find an example
implementation of this on Seqgera’s blog or our seqqc pipeline [s).



https://help.tower.nf/22.4/pipeline-actions/overview/#tower-launch-hooks
https://seqera.io/blog/workflow-automation/
https://github.com/Arcadia-Science/seqqc/tree/master/cron
https://doi.org/10.57844/ARCADIA-CXN6-CH62

Vibrant nf-core community and resources

Nextflow has a vibrant community and resources like trainings,
hackathons, and a Slack space for peer learning, all available through
nf-core 6. Most importantly, nf-core provides helper tools for setting

up new workflows with a template and integrating community-
sourced modules to streamline the development process. Nextflow
modules are typically individual steps used in a larger workflow, so
having a community-maintained repository of repeatedly used
modules to integrate into different workflows is a nice feature.
Similarly, community-developed and maintained workflows (such as
nf-core/MAG [71 and nf-core/viralrecon (g make it easy to apply quick,

existing solutions to data.

This wealth of resources signaled active use of Nextflow by the
broader community, suggesting that our workflows could be useful
to others outside of our organization.

Challenges and lessons learned

Overall, we grappled with choosing a workflow system for quite a
while before eventually deciding to dive into using Nextflow and
Tower. However, we leaned on our operating principles, including
“When in doubt, just try the experiment” and “No decision is truly
irreversible,” and moved forward since this solution met most of our
requirements. We have already started to write and launch Nextflow
workflows with Tower using AWS cloud computing for our
standardized work.

As mentioned above, no tool is perfect and its usage is context-
dependent. Here, we'll describe some challenges that we've run into
building Nextflow pipelines and how we've solved them.


https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1093/nargab/lqac007
https://doi.org/10.5281/ZENODO.6827984
https://research.arcadiascience.com/useful-computing#operating-principles

Navigating learning curves

One of the greatest challenges to institutionalizing the use of
Nextflow at Arcadia has been its relatively steep learning curve. We
know this because we ran a small experiment with one of our target
scientists to assess exactly how steep that curve could be, time-wise.
In short, this took a lot of time for several reasons.

First, stitching together distinct modules requires the developer to
know both the workflow logic as well as all relevant coding
languages. Most of our computational scientists are familiar with
bash, R, and Python programming languages for data exploration
and formal analysis, whereas Nextflow is written in Groovy, a
superset of Java. Although you don't have to know all of the ins and
outs of Groovy to write Nextflow workflows, it can be extremely
challenging to learn a new programming paradigm (flow-based
programming via channels) and a DSL.

Second, implementing this solution with our AWS setup requires
workflows to be containerized via Docker or Singularity, which
requires our scientists to adopt a different mental model for putting
together workflows than they might previously be used to. Granted,
most cloud-based solutions require containerization, not just
Nextflow. We have plans to address some of these topics so any
scientist can eventually feel comfortable with these tasks through
our internal Arcadia Users’ Group (AUG) for peer-led teaching and
learning of computational skills.

While there was a time cost for navigating the above problems, more
guantitatively defining that cost did provide a helpful constraint for
thinking about when this effort might be worthwhile.

Highly flexible, once configured

One of the biggest reasons we chose Nextflow was the numerous
resources available through the nf-core community. We mostly find
the nf-core helper tools useful for our work, but there are issues
we've had to grapple with. We were initially thrilled with how


https://training.arcadiascience.com/

seemingly fast one could get up and going with a new Nextflow
workflow by using the nf-core tools to create a template workflow
and add premade modules. However, we realized that there are
significantly more options that the nf-core helper tools give a user to
make a Nextflow workflow than what the average user of Nextflow
wants to do. Although this complexity may be helpful for developers
familiar with Nextflow, it can also be intimidating to new users.

This led us to build a pruned, simplified template to reduce the
cognitive load on our scientists in developing their workflows. This
approach allows us to deploy smaller additions in shorter time
periods.

Making this decision for yourself

There are so many workflow systems to choose from that it can feel
impossible to narrow it down to one solution. Even though Arcadia
has unique open-science constraints, our decision ultimately wasn't
influenced by this alone. Being able to reproduce computational
work internally is an important part of performing rigorous scientific
research.

If you are weighing options, consider some lessons we have learned
that you could take into consideration for your team or organization:

1. What are your available computing resources and
constraints?
These can include how much physical space you have, cost
restrictions, the size of your team, time available to spend on
DevOps, etc.

2. What types of pipelines do you plan to implement?
Will these pipelines use a single language? Will they need
varying amounts of compute power? How often will you want
to run these pipelines?

3. How broadly reusable do you want your pipelines to be?
For example, Nextflow is highly parameterized and modular so

10


https://github.com/Arcadia-Science/nextflow-template-repository

that little pieces can be reused across different workflows,
which differs from other solutions, such as Snakemake.

4. Who is the intended audience for your workflows?
Different solutions make sense depending on the usage needs
of your resulting pipelines.

5. What are the people around you at your organization
already familiar with or comfortable picking up?
Successfully implementing a new workflow system in your
organization is partly dependent on being able to find support
from others around you when you run into issues.

What's next?

Overall, itis an exciting time for bioinformatics tooling with multiple
options in this space for streamlining standardized workflows and
many up-and-coming solutions. Watch this space as we release
workflows to meet the needs of our current science. We designed
our first workflow to perform quality checks and analyze sequencing
data to ensure basic standards are met before making our data
publicly available and continuing with downstream analyses is).

Acknowledgements

We thank Kelsey Florek at the Wisconsin State Lab of Hygiene for
early discussions about Nextflow and Nextflow Tower that helped
kickstart our work!

Contributors (A-2)

Feridun Mert Celebi: Conceptualization, Editing, Software, Supervision
Seemay Chou: Editing
Jase Gehring: Critical Feedback

Megan L. Hochstrasser: Editing


https://research.arcadiascience.com/useful-computing
https://research.arcadiascience.com/pub/resource-seqqc
https://doi.org/10.57844/ARCADIA-CXN6-CH62

Elizabeth A. McDaniel: Conceptualization, Writing
Austin H. Patton: Critical Feedback
Taylor Reiter: Conceptualization, Editing

Dennis A. Sun: Validation

References

1. Reiter T, BrooksT PT, Irbert L, Joslint SEK, Reidt CM, Scottt C, Brown
CT, Pierce-Ward NT. (2021). Streamlining data-intensive biology with
workflow systems. https://doi.org/10.1093/gigascience/giaa140

2. DiTommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E,
Notredame C. (2017). Nextflow enables reproducible computational
workflows. https://doi.org/10.1038/nbt.3820

3. Crusoe MR, Abeln S, losup A, Amstutz P, Chilton J, Tijani¢ N, Ménager
H, Soiland-Reyes S, Gavrilovic B, Goble C. (2021). Methods Included:
Standardizing Computational Reuse and Portability with the Common
Workflow Language. https://doi.org/10.48550/arxiv.2105.07028

4. Koster J, Rahmann S. (2012). Snakemake—a scalable bioinformatics
workflow engine. https://doi.org/10.1093/bioinformatics/bts480

5. Chou S, Reiter T. (2023). Speeding up the quality control of raw
sequencing data using seqqc, a Nextflow-based solution.
https://doi.org/10.57844/arcadia-cxn6-ch62

6. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU,
Di Tommaso P, Nahnsen S. (2020). The nf-core framework for
community-curated bioinformatics pipelines.
https://doi.org/10.1038/s41587-020-0439-x

7. Krakau S, Straub D, Gourlé H, Gabernet G, Nahnsen S. (2022). nf-
core/mag: a best-practice pipeline for metagenome hybrid assembly
and binning. https://doi.org/10.1093/nargab/lqac007

8. Patel H, Varona S, Monzdén S, Espinosa-Carrasco J, Heuer ML, Bot N-C,
Underwood A, Gabernet G, Ewels P, Migueljulia , Kelly S, Wilson S,
Erika ,, Sameith K, Garcia MU, Jcurado , Menden K. (2022). nf-
core/viralrecon: nf-core/viralrecon v2.5 - Manganese Monkey.
https://doi.org/10.5281/zen0do.6827984



https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1038/nbt.3820
https://doi.org/10.48550/arxiv.2105.07028
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.57844/arcadia-cxn6-ch62
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1093/nargab/lqac007
https://doi.org/10.5281/zenodo.6827984

