An interactive visualization
tool for Amblyomma
americanum differential
expression data

We analyzed RNA-seq data from Amblyomma americanum to
explore gene expression linked to skin manipulation during tick
feeding. We built an interactive app to explore the differential
expression results and find patterns related to tick sex, tissue,
and time in blood meal.

Version 2, published Feb 4, 2025. Originally published Jan 2, 2025.

4. Arcadia Science DOI: 10.57844 [arcadia-6833-4117

Purpose

Ticks have evolved to feed on host blood undetected. Female ticks take long
“blood meals” that can last over a week. These ticks use molecules in their saliva
to manipulate host pathways and evade the immune system. Some of these
molecules may have therapeutic benefits for humans, particularly in managing
itch and inflammation. These molecules are likely produced in the female tick
salivary glands, potentially at higher levels than in males or other tissues.
Investigating differential gene expression could help identify anti-itch or anti-

inflammatory molecules.

We re-analyzed public RNA-seq data from A. americanum ticks, focusing on

variables such as sex, tissue type, and feeding time. Though batch effects and a
lack of replicates limited the number of samples we could analyze, we were able
to compare 20 of 56 RNA-seq samples using two differential expression models.



The first model compared different tissues within and between sexes, while the
second also included time since the start of a blood meal. We developed an
interactive application to explore the results, aiming to identify tick molecules
that manipulate skin pathways.

Our primary audience is researchers interested in identifying new therapeutic
proteins or molecules in female tick salivary glands. We envision these
researchers using this tool as a complement to other genetic or molecular
discovery approaches. For example, a researcher who's identified protease
inhibitor genes in the A. americanum genome could narrow this list down to those
most likely to interact with the host by using the app to identify which protease
inhibitors are expressed in the salivary gland.

e This pub is part of the project, “Ticks as treasure troves: Molecular
discovery in new organisms.” Visit the project narrative for more
background and context.

e You can find code for the creation of the differential expression models
and for the Shiny app, along with usage instructions, in this GitHub repo.

The context

Ticks (order Ixodida) are parasitic arachnids that feed on the blood of animals.
There are over 800 recognized species of ticks on the planet 1. Ticks have
evolved many ways to evade host detection during a blood meal 25. The blood
meal can last up to a week in hard-bodied, slow-feeding ticks. Only females
participate in these long blood meals — males may feed intermittently from a host
but primarily seek out hosts to mate with females 3.

Prolonged female feeding requires many adaptations for the tick to remain
attached to the host undetected and to maintain blood flow throughout the meal.
These include strategies to maintain blood supply by overcoming platelet
aggregation and blood coagulation and to hide from the host by blocking itch,
pain, and some immune system activities [21. Saliva delivers molecules and

proteins that achieve these actions.
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While ticks use these adaptations to get host blood, we expect that many of the
molecules they use to manipulate host pathways would have therapeutic benefits
if we could co-opt them for use in humans. At Arcadia, we're particularly
interested in molecules or proteins that manipulate skin pathways involved in itch
and inflammation. Examples of tick saliva molecules that manipulate skin
pathways include votucalis, which sequesters histamine to attenuate itch (a4,
evasin P991_AMBCA, which binds to inflammation-causing chemokines (s}, and a
carboxypeptidase that cleaves the vasodilator and pain-inducing peptide
bradykinin e1.

We expect the salivary glands of female ticks to express the most proteins with
potential therapeutic activities. These organs produce saliva, which is secreted at
the feeding site and manipulates the biology of the host. Given that the biology of
tick feeding varies during feeding (371 — manipulating distinct biological
pathways at different points — the temporal expression of a gene may offer
insights into its functional role. Similarly, for candidate proteins of therapeutic
interest, understanding a gene’s expression pattern can guide us in determining

the optimal time to harvest tick tissues if this is relevant to the experiment.

Taken together, gene expression in female tick salivary glands may offer clues for
uncovering the molecules that manipulate human skin pathways.

What expression data do we have to work with

The relative affordability of next-generation sequencing combined with
publishing mandates for open data have produced an abundance of public
sequencing data. RNA sequencing in particular is a popular modality in part
because it does not require a reference genome to gain insight into an
organism’s gene expression. While RNA-seq data is often generated to answer
specific research questions, the comprehensive nature of the data means it can
be reanalyzed or repurposed to investigate other biological questions beyond the
scope of the original research. This makes RNA-seq data valuable and reusable for
different studies. At the same time, RNA-seq data often have strong batch effects
(non-biological dataset-to-dataset variation) from things like sample handling,
RNA extraction protocol or kit, sequencer, and genomic heterozygosity of a
species [81. No matter their source, major batch effects prevent comparison

between samples. Biological replicates (minimum two) and balanced experimental
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designs are also necessary to compare many samples with differential expression.
For example, we have to discard some samples if a condition doesn’t have a
replicate or we don’t have a mirrored condition sample to compare it to (e.g., male

vs. female).

RNA-seq experiments have been popular in Amblyomma americanum, the lone
star tick emneiri2l. A. americanum has a range that covers most of the Eastern
United States and is in part responsible for the doubling of tick-borne diseases
from 2004-2016 n3)141151. Given the potential importance of tick saliva in the
transmission of tick-borne pathogens and its role in the development of alpha-gal
syndrome, many of these RNA-seq studies include samples from female salivary
glands as well as other tissues, such as the mid-gut and samples from male ticks.
Contrasting these samples may highlight gene expression profiles specific to
female salivary glands and uncover key mechanisms of host manipulation.
However, batch effects may prevent unified analysis because these samples
originated from different studies. This is particularly true for A. americanum,
which has high genetic diversity that clusters by population 6.

We wanted to assess whether we could use public data to investigate the genes A.
americanum expresses when interacting with a host. Focusing on variables such
as sex, tissue type, and time during the blood meal, our goal was to develop
differential expression models with DESeq2. Differential expression models make
statistical comparisons between normalized gene counts to determine which
genes are induced or repressed in different conditions. These models may help
us identify specific tick molecules expressed in the salivary glands of females,
which likely manipulate host skin pathways at different feeding stages [3j7),

providing insights into tick biology and host manipulation.

Our approach to visualizing tick differential
expression

We re-analyzed public RNA-seq data from A. americanum for differential
expression analysis. We identified samples that clustered according to biological
variables rather than the originating study. These samples allowed us to perform
differential expression modeling based on variables like sex, tissue, and time in
blood meal (the number of hours the sample was taken after feeding began). We
then developed an interactive R Shiny app to make it easy to explore these
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results. The application includes key RNA-seq analyses and visualizations like
principal component analysis plots, volcano plots, MA plots (log ratio mean
average plots), and gene plots, as well as tools to summarize gene expression by
condition. Users can control differential expression results by metrics like log;
fold change, p-value, or average gene count per gene.

The resource

Building differential expression models

Finding samples
We started our analysis by identifying publicly available Illumina RNA-seq samples.
Using the NCBI Taxonomy page, we searched for “Amblyomma americanum” in

August 2023 and followed the Entrez records link to SRA Experiments. We then

used the SRA filtering tools to limit the results to RNA-seq sequencing data from
Illumina sequencing chemistries: txid6943[0rganism:noexp] AND "biomol
rna" [Properties] AND "platform illumina"[Properties] AND
"strategy RNA-Seq"[All Fields].A summary of the samples is included in
Table 1.
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Number of samples

Number of included in differential

SRA study accession samples expression analysis Reference
SRPO51699 4 4 [71
SRPO91404 6 2 (replicates) [12]
SRP052078; SRP852091; 8 O (batch effects) Arthropod
SRP052108; SRPO52106; cell line

SRP052114; SRP052123;
SRP052145; SRP052154
SRPO32795 14 14 [10]

SRP446981 24 O (batch effects) [91

Table 1. Summary of publicly available RNA-seq data analyzed in this project.

In cases where we had to omit samples from our analysis, we've noted the reason for omission in
parentheses in the third column.

View the complete set of samples and metadata analyzed in this project.

Creating gene counts

We next processed these RNA-seq samples into gene counts.

We first downloaded reads with SRA Tools (version 3.0.6) fasterq-dump and
quality- and adapter-trimmed reads with fastp (version 0.23.4) 1171.

We quantified transcripts using Salmon (version 1.10.2) 1s] against an A.

americanum transcriptome assembly

(“Amblyomma_americanum_transcriptome_assembly_data.tar.gz”) (191 to quantify

read counts.

While Salmon produces transcript (isoform) counts, differential expression results
are more accurate when comparing gene counts [2e]. The most common way to
assign transcript isoform-level counts to their parent genes is to use a transcript-
to-gene mapping file. The R package tximport uses a tx2gene file to sum the
counts for all transcripts that encode the same gene and to report the gene-level
counts [2e).


https://doi.org/10.1371/journal.pntd.0007758
https://doi.org/10.1016/j.aspen.2018.05.009
https://www.ncbi.nlm.nih.gov/bioproject?term=238805%5Btop+bioproject%5D+NOT+238781%5Buid%5D
https://www.ncbi.nlm.nih.gov/bioproject?term=238805%5Btop+bioproject%5D+NOT+238781%5Buid%5D
https://doi.org/10.1186/1471-2164-15-518
https://doi.org/10.3389/fcimb.2023.1236785
https://github.com/Arcadia-Science/2023-amblyomma-americanum-diffex/blob/main/inputs/metadata.tsv
https://github.com/ncbi/sra-tools
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1038/nmeth.4197
https://zenodo.org/records/10870487
https://zenodo.org/records/10870487
https://zenodo.org/records/10870487
https://doi.org/10.57844/ARCADIA-9602-3351
https://doi.org/10.12688/f1000research.7563.2
https://doi.org/10.12688/f1000research.7563.2

To generate a transcript-to-gene map (tx2gene file) for gene-level quantification,
we first mapped the reference transcripts back to the genome using uLTRA
(version 0.1) [21.

Next, we assigned a gene name to a transcript when it overlapped with part
of the gene’s interval as annotated in the A. americanum genome annotation

GFF3 (“Amblyomma_americanum_annotation_data.tar.gz”) r191. After making these
files, we imported transcript counts and summarized them to gene counts using
the tximport package (version 1.28.0) function tximport () with the parameter

type = salmon [26].

Picking samples to include in the differential expression
analysis

We next assessed which samples we could compare via differential expression
analysis. Using the gene counts generated above, we assessed similarities
between samples as well as conditions captured in the metadata. Our exclusion
criteria included samples without replicates (minimum of n = 2 per condition) and
batch effects that led to samples clustering more strongly by study than by
condition (as determined by eye).

We first eliminated four samples from study SRPO91404 r1125. This study
investigated changes to the transcriptome of A. americanum during infection with
Ehrlichia chaffeensis 1123, a tick-borne pathogen primarily transmitted by A.
americanum [22). Two of the six samples captured whole, uninfected ticks while
the other four captured infected ticks. Since no RNA-seq samples in other studies
were exposed to this pathogen, we could not account for infection with E.
chaffeensis as a variable in a differential expression model, so we eliminated
these four samples. Further, these samples didn't have replicates within the study,
which also prevented analysis by differential expression.

We next used principal component analysis to determine if batch effects led to
samples clustering more by study than by biological condition (Figure 1). This
analysis excluded 32 samples from two studies (SRP446981 and “Arthropod cell
line”).
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Figure 1. Principal component analysis of normalized gene counts for the top 500 genes
by variance across RNA-seq samples.

Sample color corresponds to the original study that published the RNA-seq data (see Table 1)
while sample shape corresponds to the type of tick tissue from which the sample originated.
“Arthropod cell line” and SRP446981 data group by study accession instead of by tissue type,
while other samples group by tissue type. PC: Principal component. The percentage of the
variance explained by PC1 and PC2 is reported in each axis label.

We eliminated all 24 samples from SRP446981 [91. This study analyzed the
transcriptome response of A. americanum to Escherichia coli challenge. Initially
used for differential expression analysis, it featured unfed female ticks injected
with either phosphate-buffered saline or E. coli and analyzed whole (i.e., sampling
all tissues). All samples from the study clustered tightly together and away from
whole-tick samples from other studies, indicating the batch effects were too
strong to make cross-study comparisons. It's possible that the injections caused a
biological impact that led to these batch effects, but we can’t evaluate this with

the available data.

Last, we eliminated eight samples from the “Arthropod cell line” sequencing

effort. These eight samples originate from two A. americanum cell lines. The
samples all cluster tightly together and away from other samples. Since we have
no other cell line data from other studies, there’s no way to evaluate whether
these samples cluster alone because they have different expression or strong

batch effects.
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Building the differential expression models

After filtering the data, samples from different tissues, sexes, and taken at
different times during a blood meal remained. We next performed a differential
expression analysis so we could compare these samples. We built differential
expression models using the DESeq2 package (version 1.40.2) using commands
DESegDataSetFromTximport () and DESeq() 231 We experimented with
different model structures using the design parameter to maximize the number
of samples and conditions that we could compare. In the end, we were able to
optimize these two factors with two models. In both cases, we combined the
variables we included in the model. In DESeq2 analysis, the model matrix must be
"full rank" to prevent variables from being redundant, which can skew the results.
We simplified the model by combining variables, ensuring each variable is
distinct. This lets DESeq2 accurately calculate and attribute effects to each
variable independently [23).

We were able to include all samples when we combined the variables “sex” and
“tissue” (Table 2).

Model “sex_tissue” Number of samples
female_x_midgut 3
female_x_salivary_gland 7
female_x_whole 5
male_x_whole 5

Table 2. The variables and number of samples included in the “sex_tissue” model.

The combined variables are separated by an “x.”

While this model included all samples that we could compare, it gives no insight
into how gene expression varies based on time in the blood meal. Given this, we
built a second model that included time in the blood meal (by hour), only

including samples with replicates for different times in the blood meal (Table 3).
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Model “sex_tissue_blood_meal_hour” Number of samples

female_x_midgut_x_72_144 2
female_x_salivary_gland_x_12_48 2
female_x_salivary_gland_x_72_144 3
female_x_whole_x_72_144 2
male_x_whole_x_72_144 3

Table 3. The variables and number of samples included in the
“sex_tissue_blood_meal_hour” model.

The combined variables are separated by an “x.” The numbers in the condition names indicate the
range of hours in the blood meal from which samples were taken.

In general, it's better to analyze all samples in a single model, but given the
limitations of working with this data, we worked within the bounds of what was
statistically possible in order to achieve the most biological insight.

We don’t present detailed results here as they change based on filtering and the
specific conditions compared. However, we include a summary of the number of
differentially expressed genes using default filters (log, fold change = 2, false
discovery rate = 0.05, base mean count = 10), focused on differential expression
in female salivary glands (Table 4). We observed expected ranges of expression
and genes with larger expression differences across more distinct conditions,
giving us confidence that our models are useful.



Condition 1 Condition 2 Induced Repressed

Female salivary gland Female midgut 183 358
Female salivary gland Female whole tick 240 631
Female salivary gland Male whole tick 256 946
Female salivary gland, 72-144 h Female salivary gland, 12-48 h 5 1
Female salivary gland, 72-144 h Female whole tick, 72-144 h 12 48
Female salivary gland, 72-144 h Male whole tick, 72-144 h 31 190

Table 4. The number of differentially expressed genes in female salivary glands when
compared to different conditions.

The first three contrasts are from the “sex_tissue” model while the last three are from the
“sex_tissue_blood_meal_hour” model. Induced

and repressed genes have positive and negative log, fold changes, respectively. Only genes with a
base mean count greater than 10 and a false discovery rate less than 0.05 are included.

Interactive application for exploring gene
expression in A. americanum

We built the above differential expression models to facilitate insights into A.
americanum gene expression. We included the maximum number of variables and
conditions possible given what is available in public data. However, we wanted to
let others explore these results with different biological questions in mind. For
example, researchers could use our data to identify the conditions under which
their gene of interest is most highly expressed. Likewise, it could be used to
evaluate whether a gene of interest exhibits stronger sex-associated or time-
associated effects. These individual biological applications would be difficult to
anticipate and share in written pub format. To give researchers flexible access to
this data, we wrote an interactive Shiny app to explore the gene count and
differential expression results. Instructions for using the app are available on the
GitHub repository along with a mapping table

(shiny/mapped_gene_names_GCA_030143305.2.csv) that enables conversion of

GenBank protein IDs from the A. americanum assembly to the gene names used
in the app.

The application features several analytical tools separated into different tabs.
Users first select which model they want to explore (Figure 2). They can then
visualize the samples in the model in a metadata table and a principal component

"
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analysis plot colored by variables from the model (Figure 2). The “Differential
Expression (DE) Analysis” tab offers filtering capabilities based on log, fold
change, p-value, and mean count of the gene, supporting detailed comparisons
across different conditions (Figure 2). Users can also upload their data in this tab
to highlight whether specific genes of interest are differentially expressed.

Figure 2. Preview of the “Differential Expression Explorer” for Amblyomma americanum.

The Shiny app allows users to explore two differential expression models: one built on the variables
sex and tissue and one built on the additional variable time since blood meal started. Users can
toggle between the two models using a drop-down menu. Four tabs present different information
from these models. The first, “PCA Plot,” gives an overview of the samples included in each model
using a principal component analysis and a metadata table with information about each sample.
The second tab, “DE Analysis,” includes the differential expression analysis capabilities and
visualizations. Users can select which conditions to contrast and thresholds for filtering results. The
differentially expressed genes are then plotted in interactive plots. The third tab, “Gene,” allows
users to visualize normalized counts per gene. These plots are helpful to determine if a few outlier
samples drive differential expression of a gene of interest. The last tab, “Expression by Condition,”
allows users to see which genes are expressed in each condition. The toggle on this tab allows
users to highlight genes that have higher relative expression.

The application includes functionality for gene-specific inquiries where users can
input a gene name to generate a boxplot displaying expression across different
conditions, offering a granular view of gene activity (Figure 2). Furthermore, the
“Expression by Condition” tab provides a table that reports gene expression

12



thresholds and percentiles, allowing users to filter and download gene expression
data (Figure 2). This tab is particularly useful for identifying genes that are
consistently or exclusively expressed in specific tissues like salivary glands.

Currently, the transcript and gene names used in our pipeline are the bespoke
annotations assigned by intermediate tools in different pipelines. However,
GenBank recently accepted our genome gene-boundary annotations r191. Given

this, we have also provided a mapping table that can be used to map NCBI protein
identifiers to the names used in our app. The mapping table is available in the
GitHub repository.

Additional methods

We used ChatGPT as a starting point to put our code into a Shiny app and
adjusted ChatGPT's outputs. It also suggested wording ideas and edits, and we
picked and chose which bits to use.

We also provided Notion AI with starting text and had it rearrange that text to fit
the structure of one of our pub templates, and then edited that output.

Key takeaways

1. Re-analyzing public RNA-seq data from the tick species Amblyomma
americanum let us construct two distinct models for assessing differential
gene expression, though major batch effects and lack of sufficient
replicates limited the number of samples we could include in our analysis.

2. Our differential expression models let users compare variables like sex
(male, female), tissue type (whole tick, midgut, and salivary gland), and
timing in the blood meal. Users can identify gene expression patterns
potentially linked to skin pathway manipulation by comparing these
variables.

3. Our interactive Shiny app provides a user-friendly platform for exploring
differential expression experiments. This application features tools for
visualization and analysis, including principal component analysis, volcano
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plots, and gene count plots, and allows for results-filtering based on
significance or expression levels.

Next steps

We'd like to improve this resource in two specific ways:

1. Updating the analysis and Shiny app to include A. americanum gene
GenBank identifiers: Currently, the transcript and gene names used in
our pipeline are the bespoke annotations assigned by intermediate tools in
different pipelines. However, GenBank recently accepted our genome-
gene boundary annotations 191. Given this, we may update the Shiny app to
include these identifiers to make the analysis experience more consistent
across public resources. As a quick fix, we provide a mapping_file that
allows a user to correspond NCBI gene identifiers to our internal gene
names.

2. Adding new RNA-seq samples to the models: In March 2024, the
National Institute of Allergy and Infectious Disease released 21 new RNA-
seq samples from the mid-gut of A. americanum. As more RNA-seq
samples are released, or if we sequence samples ourselves, we could add
these new samples to this analysis. We would have to check new samples
for batch effects and assess whether the current model matrix could
include more samples.

If you use our Shiny app, analysis, or any part of our code, we'd love to hear how it
works for you. Any feedback on issues or potential useful features to add is

welcome.
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