Automating identification and
guantification of mouse scratch behavior in
video recordings

Itch is a key symptom of many diseases. Drug development for these
diseases requires assessing itch to determine if potential drugs work. We
developed a workflow to rapidly quantify scratching, a measure of itch, in a
pre-clinical animal model to speed drug discovery.
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Purpose

We sought to speed drug discovery by building an end-to-end video analysis
pipeline to assess itch in mice treated with itch-inducing substances (pruritogens)
and tick extracts that contain compounds that may alleviate itch. The pipeline
leverages machine learning (ML)-based pose estimation to track mouse scratching
behavior and automation in the cloud to accelerate analysis.

This resource might be useful to researchers working on itch, applying ML-based
models to assess other behavioral readouts, or hoping to extract general lessons
for productionizing ML workflows in the cloud.

e All associated code is available in this GitHub repository.

e Check out our protocol, “A behavioral assay for measuring acute itch in
mice,” for step-by-step instructions to carry out the upstream scratch assay
and generate the videos that feed into this computational pipeline.



https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

The strategy

The problem

Itch is a debilitating symptom and driver of numerous diseases that have a
devastating impact on physical and emotional health. Being able to categorize and
quantify itch is necessary to assess disease progression and the efficacy of
treatment for itch-associated diseases. The gold standard for quantifying itch in
preclinical translational models has been human observation and tallying of itch-
specific behaviors from video recordings, specifically pruritogen-induced
scratching in mouse models 1.

Mouse scratching has traditionally been quantified through manual annotation of
mouse videos, counting mouse paw swipes across affected areas. This approach
has translated reasonably well to human clinical phenotypes 12, although the

process of manual annotation can be slow and tedious. Given our goal of using
behavioral phenotyping as a guide for our fractionation experiments, we needed
ways to speed up our in vivo analyses.

Our solution

To accelerate our studies on anti-itch compounds, we built a computational
pipeline to automate the steps involved in quantifying mouse scratching (please
check out our companion protocol on how to perform the mouse scratch assay).
Here, we present the workflow and code we developed. We estimate that it
ultimately sped up our data analysis by at least 50x. One limitation, however, is
that our pipeline performs well only on DBA/2) mice, which have unique
coloration patterns. Further work is necessary to make it generalizable for all mice.

Others have also developed ML-based training sets to track and quantify
scratching in rodents 3141. While tracking mice using ML-based algorithms isn't a
new tool to aid in scratch quantification, automating the different arms of the
process in the cloud was unique and a game-changer for decreasing our analysis
time between experiments.

We built this pipeline to quantify scratching in mice, but we recognize that there
are other, less-appreciated, itch-related behaviors that aren't categorized as


https://doi.org/10.1016/j.pain.2008.08.002
https://doi.org/10.1016/j.jid.2024.08.018
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1
https://doi.org/10.1016/j.neuron.2021.07.020
https://doi.org/10.7554/elife.84042
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Figure 1. Schematic of automated workflow for the analysis of mouse scratching.

We uploaded unprocessed video files and their matching metadata (TXT) files to AWS, where we
triggered the NextFlow workflow. We cropped the files to include only one mouse per video and
renamed them based on the data in the metadata file (time, date, camera, frame of capture). We then
used DeepLabCut to track the six body parts, indicated by the colored circles. We processed the
output pose estimation data from DLC with a peak-finding script to identify and quantify episodes of
scratching. The script looks at the difference in x,y positions between the two rear hindlimbs to
identify the stereotypical cyclical movement pattern of the scratching motion.

scratching. Since the pipeline provides positional data for numerous body parts of
the mouse, we hope others will use it to identify and track metrics besides
scratching using unbiased ML-based clustering algorithms.
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Figure 1 outlines the pipeline. It automates video cropping and cataloging, body
position tracking using DeepLabCut, and scratch quantification.

The resource

Code, including the NextFlow workflow, packages to preprocess
videos and analyze them with DLC, and the peak-finding scripts,
is available in our GitHub repo (DOI: 10.5281/zenodo.16879067).

In this section, we dive into the details of our automated scratch assay analysis
pipeline. Figure 1 outlines the key steps of the computational analysis.

Preprocessing videos

We treated DBA/2] mice with pruritogens (itch inducers) and captured videos of
their behavior (see our protocol for this assay on protocols.io). Each video
captured two mice. To unambiguously catalog each mouse recording, we
subjected videos containing two mice to automated cropping into two videos
containing one mouse each (Figure 1, top panel). We renamed these videos based
on position in the frame (right vs. left enclosure), capture time, and date. We
affixed quick response (QR) codes just outside each mouse enclosure, and used a
script to assign a 900 x 900 pixel bounding box based on the corner of the QR
code to perform the video cropping. Two boxes defined two regions in the video
to crop to generate two separate videos. We then extracted the video capture time
and date from an associated metadata file and used them to rename the two
cropped video files.

Training ML-guided body position tracking

We then employed automated, machine learning-guided body position tracking
using DeepLabCut (v2.2.1, RRID: SCR_021391) 151. We manually labeled six body

parts, generating a skeleton of the front left paw, front right paw, rear left paw,
rear right paw, nose, and rear of the animal. Some other studies (31 focus

exclusively on labeling the limbs that perform the scratching, but miss out on
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tracking other possible behaviors that could be found by tracking many body
parts. We performed training on an Intel Core i9 CPU system and a NVIDIA
GeForce RTX 3080-10GB graphics card. We prepared a training dataset with the
ResNet-50 convolutional neural network backbone s, using 43 videos with 2,200

total frames, extracting an average of 50 frames per video to label the six body
parts manually. We split the dataset 95:5 for training and testing, respectively. At
each iteration of training, we extracted outlier frames, corrected labeling, and then
used them to retrain. Using a confidence threshold of 0.6, training achieved an
average train error of 0.32 mm (1.89 pixels) and average test error of 1.25 mm
(7.39 pixels).

Identifying and quantifying scratching

We then used the pose estimation data to explore the most robust means to
quantify scratching. Scratching in mice involves raising a right or left rear hindlimb
to scratch the affected area 6. When plotting the change in hindlimb x,y position

over time, the cyclical nature of the scratching motion appears as a distinct
oscillating curve (Eigure 1, bottom panel). We empirically determined that the
clearest scratching pattern (the greatest and most consistent difference in x,y
positions over time) was revealed when plotting the difference in the positions of
the right and left hindlimbs during scratching episodes.

We then wrote a Python peak-finding script to automatically identify the itch-
associated cyclical hindlimb displacement pattern noted above. To accurately flag
"waves" of rear hindlimb swipes in displacement-time graphs as scratching
events, we included several key variables in the script (Figure 1, bottom panel):

1. The minimum and maximum prominence of the peak

Peak prominence is a measure of how much a peak stands out from its
surroundings by calculating the minimum vertical distance you need to
descend from the apex of a peak before you could climb to an adjacent
higher peak.

2. The minimum and maximum width of the peak
3. The maximum frequency of the scratches

4. The minimum number of oscillations of the curve within a given time,
corresponding to the number of scratches across the neck in a time bin
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This final metric allowed us to distinguish the repeated pattern of scratching
from just random movement that may appear as less frequent oscillating
displacement of the hindlimb (e.g., rapid walking).

We adjusted these parameters, generated output tables with predicted scratching
events, and compared the predictions to ground-truth video footage and manual
quantification to confirm that the automated calls were correct. After some
iteration, we determined how to adjust the variable settings to call scratching
events accurately.

Using this script, we were able to capture the following data (with precision
dictated by the video capture rate of 1/120 of a second):

1. Which limb is performing the scratching

2. Individual hindlimb swipes at the affected area

3. Number of swipes in a bout of scratching

4. Frequency of swipes and frequency of bouts of scratching.

Overall, these measures help capture the dynamics of scratching across the entire
time course of the video.

NextFlow workflow to orchestrate the analysis
pipeline in AWS

With all the different modules of the analysis pipeline complete, we wanted to
take advantage of the parallel processing power available in the cloud to further

speed up the video analysis. We ported the modules to Amazon Web Services
(AWS) and built a workflow using NextFlow to orchestrate the pipeline.

The NextFlow workflow is available in our GitHub repo.

Findings and caveats

The outcome of this effort was automation and parallel processing of analysis that
significantly accelerated the quantification of scratching and allowed rapid and
nearly real-time adjustment of experimental parameters for follow-up


https://github.com/Arcadia-Science/trove-deeplabcut/blob/v1.0/bin/peak_finder.py
https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0

experiments. Less than a day after an experiment was complete, we would have
the results and could perform the next experiment.

Direct comparison of manual quantification time to automated quantification is
difficult because a huge efficiency gain came from running the automated analysis
in parallel with many videos. However, a good approximation can be made by
comparing the analysis time for an average single experiment of 48 15-minute
videos. Quantifying 48 videos took approximately 36 hours, which generally
spanned seven days. With the automated pipeline, 48 videos could be processed
in three hours (~56x faster).

As noted by others (41, ML-based training weights for pose estimation are sensitive

to the specific conditions in the video (lighting, camera resolution, camera angle,
frame rate, etc.). For instance, our pipeline successfully tracks mice with coloration
patterns specific to DBA/2) mice. Re-training and fine-tuning will be necessary to
generalize to other mouse breeds that are visually distinct from DBA/2) mice.
Additionally, slight variations in our experimental setup (described here), may also
require re-training.

Additional methods

We used ChatGPT to review our code and selectively incorporated its feedback. We
used Claude to review our code, selectively incorporating its feedback, and to help
clarify and streamline text that we wrote. We also used Grammarly Business to
suggest wording ideas and then chose which small phrases or sentence structure
ideas to use.

Key takeaways

In summary, we built a video analysis pipeline to quantify itch in mice treated with
itch-inducing substances and potential anti-itch compounds. Our pipeline
significantly accelerates video analysis and removes the variation inherent in
using different human observers in the same experiment. It also yields more
granular data, such as scratching frequency. Additionally, it provides the
framework to use positional data and non-scratching behavioral information to
track other outcomes of experimental treatments.
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Next steps

We're currently winding down the Trove effort (71, so we won't continue

development of this resource. For those who may want to use this tool, further
work should be done to generalize ML training to follow mouse strains other than
those with DBA/2) coloration patterns. Further optimization of GPU use in the
cloud could also increase efficiency and decrease the analysis time.

Unsupervised ML-based algorithms (sjie; could also be used with our positional

data to identify emergent behavioral patterns caused by treatment regimes. These
emergent behaviors could provide another metric to follow that may display less
variability mouse-to-mouse than scratching.
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