Streamlining microscopy
datasets by enriching for in-
focus frames

We distilled label-free microscopy data by comparing and
implementing feature-detection algorithms. Sobel and Laplacian
methods outperformed pixel intensity variance in accuracy.
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Purpose

Microscopy datasets are notoriously large, making more complex analyses of
these data inherently slower or intractable 2i31. Previously, we'd found that
filtering large datasets down to smaller, information-dense subsets allowed us to
iterate on our experimental troubleshooting in increments of minutes or hours,
instead of many hours or days. In that case, we reduced the datasets by 82% by
including only frames of cells in focus.

Here, we compare three simple feature-detection algorithms to identify the most
reliable metrics for selecting in-focus frames in label-free microscopy data,
namely, the variances of the raw image, the Sobel-filtered image, and the
Laplacian-filtered image. We found that the variances of the Sobel- and
Laplacian-filtered images surpassed the variance of raw pixel intensities in
accuracy and that both the Sobel and Laplacian filters provided accurate in-focus
frame detection, aligning closely with expert assessments. We hope this
comparison will help cell biologists and computational researchers expedite and
refine analysis in high-throughput experiments.


https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1007/s00418-023-02209-1
https://doi.org/10.1007/s00418-023-02191-8

e This pub is part of the platform effort, “Microscopy: Visually interrogating
the natural world.” Visit the platform narrative for more background and
context.

e Our time-lapse data, expert annotations, Fiji macro, and code in
Python are available in this GitHub repository.

The strategy

The problem

The increasing volume of time-lapse microscopy data in experimental biology
poses challenges in extracting useful biological information at scale r1213i.
Increasing data volume entails longer transfer and processing times, which can
slow the pace of biological research. For example, our initial computational
workflows to measure the motility, size, and shape of two species of algae took
days of processing time, largely due to the total size of the time-lapse data (4.
Also, we found that measuring the morphology of motile cells in bulk within time-

lapse data was less accurate than measuring cells in maximal focus [41.

We're performing an interspecies hybridization experiment that involves
collecting phenotypic measurements of Chlamydomonas cells from time-lapse
microscopy data r41. We want to collect accurate measurements of as many algal
cells as possible. We plan to analyze thousands of progeny strains in our
experiment.

Our solution

One solution to manage such large and complex image-based datasets is to filter
the raw data to enrich information that is useful. We adopted this approach during
our preliminary benchmarking of the two interfertile Chlamydomonas species that
we're hybridizing r41. In our previous approach, we first selected a subset of
frames at random (the first 100 frames of the time-lapse), but quickly realized that
this approach can lead to frames without the object in focus. We then applied one
technique (variance of Laplacian) for detecting edges in an image, and
successfully extracted frames with the cells of interest in focus [41. Focus-filtering

allowed us to speed up our processing time. Also, parsing focal sequences gave


https://research.arcadiascience.com/microscopy
https://research.arcadiascience.com/microscopy
https://github.com/Arcadia-Science/2023-focus-filtering/tree/v1.0
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1007/s00418-023-02209-1
https://doi.org/10.1007/s00418-023-02191-8
https://doi.org/10.57844/ARCADIA-35F0-3E16
https://doi.org/10.57844/ARCADIA-35F0-3E16
https://doi.org/10.57844/ARCADIA-35F0-3E16
https://doi.org/10.57844/ARCADIA-35F0-3E16
https://doi.org/10.57844/ARCADIA-35F0-3E16

us more accurate morphology measurements of our cells. We measured the cell
footprint that had the maximal area in the sequence, as opposed to using
measurements of cells that were partially in focus that would inaccurately skew
the data [41.

The resource

We evaluated three different focus-filtering methods by comparing them to
manual human annotations of in-focus frames. We thought that these methods
could be useful for downsampling any dataset where the object of interest moves
in and out of the focal plane, or in cases where frames contain superfluous
objects. In addition, we wanted to explore two different types of label-free data
(DIC and BF) that might be useful for training machine-learning models on
microscopy data. We're sharing the results here to serve as a resource to other
researchers interested in applying these approaches to various data types.

We chose to assess three distinct focus metrics that can detect features or edges
in computer vision workflows (sj61: variance of pixel intensities, variance of edge
sharpness (determined via the Sobel operator), and variance in detailed edge
sharpness (determined via the Laplacian operator). Each operator, Sobel or
Laplacian, applies an algorithm to convert an image to a filtered image. Then we
take the variance of each pixel value in the filtered image to use as a metric. Each
approach is summarized in the list below and you can see example visuals in

Figure 1.

1. Variance of pixel intensities: This metric gauges the dispersion of pixel
intensities from their mean value within each frame. We postulated that
frames with in-focus cells would exhibit a heightened pixel intensity
variance. The underlying rationale is that such frames, being more feature-
rich, would likely have a wider range of pixel intensities.

2. Variance in edge sharpness: To understand the spread or variability of
edge sharpness in our images, we analyzed the variation in the intensity of
edges. We did this by computing the magnitude of the image gradient,
which highlights the edges, using the Sobel operator. We hypothesize that
images with in-focus cells will show a higher variability in edge intensity.
This is because in-focus images tend to have crisper, more defined edges.
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3. Variance in detailed edge sharpness: Building on the previous idea, we
also examined the variation in the sharpness of finer details within the
edges themselves. This is achieved by using a second-order differential
operator, the Laplacian, to measure the rate of change of the magnitude of
the gradient. Our hypothesis was that this measure would further
distinguish between in-focus and out-of-focus cells, as sharper detail
within edges is more pronounced in the in-focus images.
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Figure 1. Application of focus metrics to time-lapse bright-field (BF) and differential
interference contrast (DIC) microscopy data.

Image sequences show a Chlamydomonas cell swimming in a well with a diameter of 100
microns. Each filter, Sobel or Laplacian, applies an algorithm to convert an image to a filtered
image. Then we take the variance of each pixel value in the filtered image. “Rationale” denotes why
we thought each measure might be able to distinguish between frames with cells that are in focus
vs. out of focus.

To compare these three algorithmic approaches against a “ground truth,” we
recruited a few of our scientists who are proficient in cellular microscopy and
adept at identifying when cells are in focus. These experts examined time-lapse
sequences of motile cells as they swam in and out of the focal plane, which we
previously captured using either DIC or BF imaging r41. Participants classified each

frame as either “in focus” or “out of focus.” The annotations all agree with one
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another for 70% of frames (126/180). At least 3 of the 4 annotations agreed with
one another for 92% of frames (166/180).

We evaluated the accuracy of each focus metric as a predictor of the expert-
annotated in-focus frames by plotting the receiver operating characteristic (ROC)
curves for each metric. The ROC curve is a plot of the true-positive rate (TPR) as a
function of the false-positive rate (FPR) for a binary classifier. In this case, we
change the value of the threshold systematically to construct the ROC curve.

We calculated and plotted the ROC curves for each focus metric and each of the
four experts’ sets of manual annotations (Figure 2). We found that the variance of
pixel intensity is a poor focus metric for both bright-field and DIC time-lapse data
(Figure 2, A). For each of the expert annotations, this metric had roughly equal
false- and true-positive rates at most thresholds — ROC curves roughly align with
the diagonal of the plot, suggesting it performs as well as a program that selects
frames randomly.

Promisingly, we found that the Sobel and Laplacian metrics accurately identified
frames of cells in focus. For each expert annotation, these metrics displayed a
high true-positive rate and a low false-positive rate at most thresholds. At a false-
positive rate of 5%, the median true-positive rate for the Sobel metric was 71%
for bright-field images and 79% for DIC images. For the Laplacian metric, it was
57% for bright-field images and 72% for DIC images. Consequently, the ROC
curves were aligned along the upper-left portion of the plot. Thus, we see that the
Sobel and Laplacian metrics perform well in this particular quantitative

assessment.

While the Laplacian metric appears to perform a bit worse on BF images (i.e. 57%
for the Laplacian versus 71% for the Sobel), these reportings are sensitive to
differences in user annotations, so we don't put a ton of weight on these
numbers. That said, this finding is in line with our qualitative assessments. By
simple visual inspection, we see that the Laplacian metric performs better on DIC
data than on BF data. This fits with our expectation that Laplacian should do
better with finer features, as there are more fine features in DIC images. In
addition, the Sobel metric identifies frames where the shadow of the cell is
visible, whereas the Laplacian metric is less sensitive to the shadow. If we want to



track cells even when the cell is slightly out-of-focus (i.e. a shadow is visible), we
might use the Sobel metric. If we only want the frames of the cell truly in focus,
we might use the Laplacian metric. In our previous work, using Laplacian focus
filtering reduced data volume by 82% while maintaining accurate
measurements [4].
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Figure 2. Variance of pixel intensity is a poor predictor of in-focus frames, while variances
of Sobel and Laplacian magnitudes perform well on bright-field and DIC data.

We've plotted ROC curves for the variances of pixel intensity, Sobel magnitude, and Laplacian
magnitude to see how they predict in-focus frames on bright-field and DIC time-lapse data. Each
curve represents data from a single user annotation. There were four user annotations.

In conclusion, our comparative analysis of focus metrics within label-free
microscopy data has revealed useful distinctions in performance between
feature- and edge-detection algorithms. Our study demonstrated that the Sobel
and Laplacian filtering methods align closely with manual assessments of DIC data
by expert microscopists, with high true-positive rates. Sobel performed better
than Laplacian filtering for BF data. The variance of pixel intensity proved to be a
poor focus metric for both types of data. Complementary to our work,
independent researchers found that the Laplacian metric is effective at
segmenting regions of objects in focus in micrographs (71. They also compared
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many other metrics and developed a deep learning pipeline for segmenting
objects in focus.

We previously used the Laplacian filtering method to identify in-focus frames of
algal cells (41. Given its strong performance here with DIC data, we’'ll stick with this
approach when we move onto the higher-throughput phase of that project
because we plan to image using DIC. For future work that involves tracking cells
and cell shadows in time-lapse data, we’'ll consider Sobel filtering.

We hope these findings serve as a resource to guide the use of specific focus
metrics for cell biologists and computational imaging specialists, particularly
those working with label-free microscopy data (DIC and BF). This work also
validates the use of focus filtering as a method to enrich datasets with
information that is useful, enabling us to phenotype more strains of cells in our
future experimental workflows. Specifically, applying the filtering methods we
explored here should improve the speed and reliability of phenotypic

measurements in our interspecies hybridization experiments.

Methods

We based our assessment on a time-lapse dataset containing 180 frames of

Chlamydomonas cells swimming in and out of focus. We collected these images
with either DIC (90 frames) or bright-field (90 frames) microscopy for a prior
pub 141. We manually curated the experimental data so that we had cells that were
clearly going in and out of the focal plane. We aimed to have an equal
representation of "in focus" and "out of focus" frames. In a pilot experiment, we
showed frames to the experts in a random order. However, the annotations were
highly variable, because the experts had a hard time assessing whether a cell was
in focus without seeing the transition between in and out of focus. In our
subsequent attempt presented here, we showed all frames in sequence.

We opened the dataset in Fiji (a3, and ran a macro that asked the user for an

annotation of either “in focus” or “out of focus.” Four experts annotated each
frame. We analyzed the results of the experiment by receiver operating
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characteristic curve (ROC) analysis. The code to perform the analysis and plot
ROC curves can be found in our GitHub repository.

We used ChatGPT to write, clean up, and comment code. We also used ChatGPT
to write text that we edited, suggest wording ideas, streamline and clarify text,
and rearrange text to fit the structure of our “Resource” pub template. Last, we
asked ChatGPT for a list of suggested focus metrics that we could use in this
study, and we selected three from the list.

Key takeaways

1. Sobel and Laplacian filtering methods can accurately identify frames of
cells in focus that agree with human microscopy user assessments.

2. The variance of the raw pixel intensities in the image fails to accurately
identify frames of cells in focus.

3. We will continue to use the Laplacian metric for identifying in-focus cells
in DIC data.

4. In future work, we will consider using the Sobel metric for identifying cells
and cell shadows.

Next steps

In the next phase of our research, we'll apply Laplacian focus filtering of DIC
time-lapse data. The goal is to perform high-throughput phenotyping of progeny
from our Chlamydomonas species hybridization. We'd appreciate any feedback on

this pub, especially questions that would help you replicate the work and insights
from anyone who may have compared these approaches in analyzing other types

of microscopy data.
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