A framework for modeling
human monogenic diseases
by deploying organism
selection

We designed a decision-making framework to find tractable
genes from our organism selection dataset for pilot experiments.
We focused on genes in two potential models of human
monogenic disease, the choanoflagellate Salpingoeca rosetta and
the tunicate Ciona intestinalis.
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Purpose

Drug development requires organismal models to evaluate the efficacy and safety
of therapeutic candidates. Most pharmaceutical research uses rodents, assuming
they're similar enough to humans to be useful; however, as others have noted 12,
such models can be expensive, slow, and even inaccurate. Can we unlock new
opportunities by studying human diseases in different organisms?

We previously released a computational method to systematically identify
similarities between proteins in humans and diverse research organisms by
comparing protein secondary structural properties and correcting for phylogenetic
relationships [31. We found that phylogenetic distance doesn't always determine
modeling utility; the best predicted organisms for a given gene could sometimes
be very unexpected. We created the Zoogle interface, hoping this would make it
easier for both basic science researchers and drug developers to use our dataset
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to create disease models. However, users struggled to leverage Zoogle for their

own work.

In an effort to improve the usefulness of our predictions for external users, we
tried to use Zoogle ourselves to identify actionable organism-gene pairings. We
focused on developing a workflow for a particular user type, namely “organism
experts” in biology. Such experts have critical, specialized knowledge about the
life cycle, phenotypes, experimental tools, and relevant datasets for their
organismal model of choice. They're often part of larger organismal research
communities, which helps with troubleshooting and collaborations. To test our
workflow, we worked with experts on two organisms with unique biology that are
suitable for genetic experiments — a unicellular protist that's closely related to
animals, Salpingoeca rosetta, and a sea squirt that's closely related to vertebrates,
Ciona intestinalis.

In this context, we aimed to identify which genes within a given organism might
offer the greatest relevance to human biology and disease, helping experts
prioritize their experimental efforts. Here, we present a heuristic decision-making
approach that combines computational filtering with manual diligence to evaluate
gene-disease pairs. We prioritized experimental feasibility and therapeutic impact
by evaluating disease mechanisms, protein conservation, available genetic tools,
and phenotypic assays. We ultimately identified seven actionable genes in S.
rosetta and three in C. intestinalis. We're funding two academic labs to pursue

experimental testing of our predictions.

e Data from this pub is available on Zenodo.

e All associated code is available in this GitHub repository.

e Check out companion pubs documenting how we chose the most
intriguing genes to pursue in Salpingoeca rosetta (41 and Ciona

intestinalis [s1.

The problem

Through the Zoogle interface, we present a list of matches between the proteins
in an organism’s proteome and the proteins in the human proteome. Each match
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represents a hypothesis about the utility of modeling a human protein’s function
using the homologous protein in a non-human organism. These matches are
ranked based on how unexpected their similarity is with respect to the
phylogenetic distance between the human and non-human proteins.

What this means on a practical level is that Zoogle presents a ranked list of tens
of thousands of predictions of genetic similarity to scientific users. For
Salpingoeca rosetta, Zoogle catalogs 27,354 predictions; for Ciona intestinalis,
there are 50,693. How can a scientist determine which, among these thousands
of predictions, represents the most actionable set for experimental testing? We
combined computational filtering with manual diligence into an overarching
framework for winnowing these predictions to an actionable short list for

downstream experiments.

Challenges of choosing a useful disease model
When considering what it means to model a human disease, there are many
different strategies 1. The most technically accurate model for human diseases

would be humans. However, due to obvious ethical and safety considerations, this
isn't the preferred starting point for drug development.

In practice, all drug development relies on disease models. The most common
approaches to disease modeling are:

e Using in vitro cell culture of human cells, cell lines, tissues, or organoids

e Using non-human models, usually rodents, to approximate human disease
pathology

Borrowing a common saying from statistics, we'd argue that all models are wrong,
but some are useful - each strategy has its pitfalls. In vitro cell culture models
often use immortalized cell lines with abnormal karyotypes (61. Patient-derived
primary cells have genetic and environmental variability and are expensive to
acquire and maintain 1. Organoids require long experimental timelines, while not
fully capturing the complexity of real human tissues 7. Non-human models have
fundamental differences at the molecular level — human and mouse proteins
aren't identical and can have drastically different properties, which can lead to
costly failures to translate r2jsi.
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The inaccuracies and inefficiencies of existing models have been recognized by
authorities such as the FDA, which recently announced a plan to phase out animal

testing requirements for monoclonal antibody therapies.

Our strategy of using unconventional organisms doesn’t overcome concerns with
using non-human models. Sequence and structural differences between human
and model proteins remain relevant. We account for some of these differences by
identifying those pairs of non-human and human proteins with unusually high
similarity [31. But the ultimate goal of modeling diseases using such organisms
isn't to eliminate the use of human cell or mouse models; rather, it's to
complement them.

Our thinking

A phenotype-first experimental framework for
modeling human disease

Our hypothesis is that experimentally tractable and more scalable model
organisms, such as invertebrates and unicellular eukaryotes, are advantageous
and underutilized tools at the earliest stages of therapeutic research and
development. Some of these organisms may be more accurate biological models
for a particular human disease than rodents are. Others might be comparable to
existing models, and also have experimental advantages that complement rodents
or in vitro studies, such as tissue-level testing opportunities or cheaper, higher-
throughput ways to conduct early screens. Moreover, expanding the list of
organisms with the potential for disease modeling provides more avenues for
basic science to have translational impact.
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Figure 1. Assumptions we'’re challenging with our framework.

We aim to challenge three major assumptions about non-human models

(Figure 1)

1. Distant organisms can’t be useful models

It's often assumed that the further an organism is from humans on the

evolutionary tree, the less relevant it is as a model. But genes don’t evolve

in lockstep with species. They can evolve independently and sometimes

even converge on similar functions in distantly related organisms.

That means a gene in algae might actually behave more like the human

version than the same gene in a mouse. Relying on evolutionary proximity

alone — like defaulting to mammals — can lead to poor model choices. Our



earlier work on organism selection [31 shows how this assumption can

mislead and how gene-by-gene thinking opens up better options.

2. The model must mimic the human disease phenotype
Another widespread belief is that a good model must replicate the same
physical symptoms or cell behaviors seen in human disease. For example, if
a mutation disrupts blood cell migration in humans, researchers expect to
see that same defect in the model organism.
But biology doesn’t always work that way. A mutation in a cytoskeletal gene
might affect blood cells in humans but lead to a different, yet
mechanistically related, problem in another species — like cell intercalation
defects in a nematode. Even if the symptoms differ, the root cause (a
cytoskeletal failure) may be the same. Studying and rescuing the
phenotype in the model can still yield insights and therapeutic entry points
for the human condition.

3. There is a single “best” model for every disease
Researchers often try to identify one ideal organism that captures all
aspects of a disease. But no model is perfect. Different organisms bring
different strengths, and choosing a combination tailored to each stage of
research might be more effective. For example, early discovery work might
benefit from simple, fast-growing organisms, whereas later work might
benefit from more human-like physiology.
Rather than framing the problem as “which organism should I use instead
of a mouse?” we ask scientists to consider “which organisms, used

together, could increase progress towards curing human disease?”

What we're ultimately interested in identifying are genes with the potential to be
modeled advantageously in our organisms of interest, where we can identify a
measurable phenotype to test therapeutic mechanisms of action. This leads to a
simple overall experimental framework (Figure 2, right):

1. Identify tractable candidate genes for modeling in a non-human organism.
The process of winnowing genes into a short list is detailed in the current
pub.

2. Generate analogous mutants in non-human models.

3. Identify measurable phenotypic consequences of the mutation.
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Figure 2. Graphical abstract illustrating the overall framework.

The 27k and 50k proteins originate from the number of proteins found in the final organism
selection dataset for each organism.

4. Use the models to screen for molecules that rescue the measurable
phenotype.

While this experimental plan is fairly straightforward, choosing which of the
thousands of candidate genes to pursue within a given organismal model is far
more opaque. We spent a lot of time investigating tractable candidate genes for
two example organisms, Salpingoeca rosetta and Ciona intestinalis (check out
specific findings in individual pubs about each in (41 and s1), and describe our

overall approach (Figure 2, left) in the rest of this pub.
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Choosing the right experts

To understand how organism experts might approach designing experiments
using Zoogle, we needed feedback from external scientists. We interviewed a
handful of experts in our personal networks whose organisms are included in
Zoogle to understand:

e Whether they were aligned with our overall mission

e How willing they were to experiment with new approaches to scientific
publishing, to be able to iterate in public without needing to cater to
journal expectations

e Whether they could give us helpful feedback to improve organism
selection

We decided to work with experts in two academic research laboratories: David
Booth'’s laboratory at UCSF, which uses S. rosetta, and Alberto Stolfi's laboratory at
the Georgia Institute of Technology, which uses Ciona. These experts provided
invaluable feedback during our diligence process.

Our approach

Skip to “Methods” for nitty-gritty details, or read on to get a big-picture sense of
how we tried to select the most useful and feasible disease-associated genes to
study in two uncommon organismal models.

Computational filtering

Predictions within the organism selection dataset in Zoogle are currently ranked
based on the percentile of the phylogenetically-corrected structural distance of
proteins within gene families. This is essentially the relative ranking of each
protein compared to others in the same gene family. While this metric was easy to
implement into a web interface, it doesn’t account for variability among gene
families in their size and distribution of distances from human homologs.

To account for these differences, we included two new metrics aimed at
quantifying whether each distance to human homologs was exceptionally similar
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or not, given the observed distribution of distances in each gene family.
Specifically, we used a permutation test-based approach to calculate two p-
values: one “within organism,” and one “across organisms.” The within-organism
p-value indicates, for each gene family, whether the degree of similarity with
respect to the human homolog is exceptional for a given species. In contrast, the
across-organism p-value indicates, for each gene family, which species are
exceptionally similar to humans.

For a detailed description of how we carried out these analyses, see “Methods.”

We then filtered our genes for each organism using the following steps (as
illustrated in Figure 3):

1. P-value filtering. We filtered genes across gene families based on their
“across-organism” p-value.

2. General disease association. We used the list of human gene-disease
associations found in the ClinVar database to quickly remove genes with
no recorded disease association.

3. Homolog count. For our pilot experiments, we sought genes that are very
likely to produce a phenotype through a single knockout. As such, we
removed genes with multiple predicted copies in Salpingoeca rosetta or
Ciona intestinalis.

4. Single disease association. To identify genes with simple mechanisms
and further decrease the number of genes we needed to diligence, we
removed genes associated with more than one ClinVar disease.



Salpingoeca Ciona
rosetta intestinalis

Total 27,421 (166.6%) 50,764 (100.0%)
Across-organism
p—valueg<005 .4,216(15.4%) .10,272 (26.2%)

Associated
with disease .41216 (15.4%) 10,270 (206.2%)
Single ortholog 670 (2.4%) 917 (1.8%)

Single disease

L 153 (0.6%) 192 (9.4%)
association

Figure 3. Funnel chart illustrating the stages of the computational filtering pipeline and
the corresponding number of predictions remaining after each filter.

This set of crude filters is an initial prototype, and we recognize there are many
ways to improve upon our approach. Our primary goal in the filtering process was
to decrease the number of genes we needed to manually diligence. At the end of
this filtering process, we were left with a “long list” of 153 genes in Salpingoeca
rosetta and 192 genes in Ciona intestinalis.

Manual diligence

From our long list, we performed manual diligence to evaluate how actionable
each possible gene would be for downstream experiments. We considered two
high-level questions during our process:

o Experimental feasibility. Is it easy to make a genetic model of the
disease in this organism?

e Therapeutic impact. Would making a model for the disease in this
organism be useful? For example, could we more rapidly investigate
therapeutic mechanisms of action in this system as opposed to standard
models?

We didn't pursue comprehensive diligence for each hypothesis in our long list;
rather, we assessed each individual gene until the first point of failure — that is, as
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soon as we determined that making a model wouldn’t be easy or useful. We also
didn’t perform manual diligence on every single member of our long list, as this is
time-consuming. Instead, we diligenced ~30-40 genes from each organism,
starting with those with a low percentile score. We added a handful of others
based on the research interests of two research groups we’re funding to
experimentally test our Zoogle predictions.

For each of our high-level questions, we cataloged a number of failure modes
based on our technical analyses, listed below. The details of the technical analyses

are described in the Methods section.

A schematic diagram of the desired qualities of a candidate gene and areas of
consideration can be found in Figure 4.
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Figure 4. Guide showing areas to consider in diligencing essential qualities of a candidate
gene.

Rows are areas of evaluation and columns are technical analyses that we took into account to
perform the evaluation.



Experimental feasibility

When considering experimental feasibility, we encountered the following failure

modes. These criteria aren’t necessarily dealbreakers for the overall utility of

models — rather, they helped us eliminate options that weren’t low-hanging fruit.

Model not feasible. We evaluated the technical feasibility of making an
analogous mutation to the causative disease allele in humans. We
accounted for the precise molecular mechanism and genetic variation in
the human disease, the state of technology in each organism, and the
essentiality of the gene. In general, we strove to identify diseases where
we could generate an analogous mutation to a human disease allele in the
organism. For example, if a human gene had a nonsense or frameshift
mutation leading to loss of function, we’d want to be able to introduce a
nonsense or frameshift mutation in our organism. For some genes, we
generated protein sequence alignments between the human and non-
human proteins to look for conservation of disease-causing residues. In
some cases, we had evidence from literature that missense mutations
could induce loss of protein expression; for those genes, induced
nonsense mutations could be appropriate analogous mutations to
generate.

Because the state of technology for generating genetic mutations differs
between Salpingoeca rosetta and Ciona intestinalis (our two test
organisms), our approach to evaluating feasibility also differed by
organism. We describe the differences in the pubs linked in the “Organism

narratives” section.

Lack of homolog confidence. We assessed our level of confidence in
precisely matching a non-human gene to its human paralog. We used
structure-based Foldseek searches of the non-human protein across
diverse proteomes as a crude measure of confidence. In one case, we also
used structure-based clustering of proteins using ProteinCartography to
understand more precise differences across a large gene family. In a small
handful of cases, we weren’t able to confidently determine which human
paralog was the best match for the non-human protein. We avoided
pursuing those ambiguous matches.



Lack of model advantage. We considered whether building a model in
each organism might be advantageous or whether an in vitro approach
would be superior. We accounted for the molecular mechanism of the
disease and the unique features of the organism'’s biology. For mutations
in some metabolic enzymes, generating correctors for those proteins
through an in vitro approach would likely be a superior approach to a non-
human cellular or organismal model.

Therapeutic impact

When considering therapeutic impact, we encountered the following failure

modes:

Disease association concerns. We evaluated our level of confidence that
the human gene causes its annotated disease. We relied on summaries
from OMIM to make this assessment. For some diseases annotated in
ClinVar 193, there's a lack of clear genetic evidence that the disease is

related to the given allele. We decided not to pursue those genes.

Treatment not possible. We considered whether it would be possible to
treat the disease in an actual patient. We used summaries from OMIM and
a review of disease literature to make this assessment. For some diseases,
the effects of a mutation manifest during embryonic development,
resulting in morphological abnormalities that can’t be easily corrected after
birth. Given that our ultimate goal is to identify drug candidates for these
diseases, we usually decided not to pursue these genes. In some cases, we
were able to identify a compelling hypothesis for a possible phenotype,
which we believed could be useful as a positive control — we didn't reject
genes for this reason in those cases.

Lack of unmet need. We evaluated whether there was a substantial unmet
need for a given disease to be treated by considering both the severity of
the disease and existing treatments. We used summaries from OMIM and
other literature searches to make this assessment. In some cases, the
disease in question didn’t have a meaningful impact on patient lifespan.
For example, Meier-Gorlin syndrome (associated with CDC45 mutations)
results in patients of shorter stature but otherwise normal life expectancy
and mostly normal health r1e1. We decided not to pursue models for these
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genes. In some cases, a trivial mechanism is already used to treat the
disease; for example, for congenital defect of folate absorption (e.qg.,
caused by defects in SLC46A1), dietary supplementation of folate is
sufficient to treat the disease 111. We decided not to pursue models for

such genes.

Other considerations

Notably, we didn't consider whether there were substantial market opportunities
to treat a given disease (either due to market size, incidence, or degree of unmet
need). A challenge for drug development in rare diseases is that economic forces
make it difficult to justify investing the high capital cost of drug development for
a small number of patients. For our proof-of-concept experiments, focusing on
the financial upside would have been prohibitively limiting. Our hope is that our
framework can help match academic researchers focused on specific model
organisms with rare disease communities to spur transformative research without
having to worry about turning a profit.

Methods

Below are the technical analyses we performed as part of this work.

Conservation with humans

We originally quantified the degree of molecular conservation between non-
human gene copies and their human homologs within each of the 9,260 gene
families containing humans assessed in our recent pub 3] (see “The approach” for
a detailed description of methods). Here, we extended this approach, statistically
quantifying our confidence in asserting that measured distances were
exceptional, whether looking within species and across gene families (“within

organism”), or within gene family and across species (“across organism”).

We calculated the within-organism p-value by permuting the distances from
human homologs observed within each species and across gene families 10,000
times, determining the number of times a distance was smaller than observed. We
calculated the across-species p-value by permuting the distances within gene
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family and across species 10,000 times, with the p-value corresponding to the
probability of observing a distance smaller than observed. We carried out all
analyses in R 123, with the permutation tests implemented as custom Rcpp scripts

(found here), and called by the dist_permute_test function implemented here.

Disease molecular mechanism

We manually reviewed the existing literature summaries on the known function of
the wild-type protein and the consequences of mutation found in OMIM,
MARRVEL 13), and UniProt (141. For genes we were interested in modeling, we dove

deeper by reading the primary literature for each disease.

Nature of human variants

We manually reviewed the existing literature summaries on human genetic
variation found in OMIM'’s case studies and in MARRVEL. We used the case
studies highlighted in OMIM'’s “Allelic Variants” sections to understand the
mechanistic underpinnings of mutations that can contribute to disease. We also
reviewed the ClinVar 91, Geno2MP, and gnomAD 115 data compiled in MARRVEL to

understand the broader scope of human variation.

Predicted gene essentiality

We used the literature summaries from OMIM and the loss-of-function
observed/expected (LoF o/e) score and lethality evaluation from MARRVEL'’s
gnomAD module to evaluate whether a gene is likely to be lethal upon knockout.

Disease severity

We used the disease-specific literature summaries from OMIM, disease
summaries from MedlinePlus, disease descriptions in Orphanet, and descriptions

of patient phenotypes and experience from patient advocacy group websites, if
available, to understand the severity of diseases.

Existing models

We used the literature summaries from OMIM focused on organismal models
(usually found in the “Animal Model” section) to understand whether phenotypic
information has been generated for organisms such as mice and zebrafish. In

some cases, we also checked whether a mouse mutant exists in the Mouse
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Genome Informatics (MGI) database or used web searches to look for literature

not cataloged in OMIM on existing mouse or zebrafish models.

Existing drugs
We used the “Approved Drugs and Active Ligands from PHAROS” info in

MARRVEL and the protein-specific pages in OpenTargets, as well as treatment
information from OMIM, Orphanet, and MedlinePlus to understand the current
state of therapeutics for each disease.

Paralog matching

We used pre-folded structures from AlphaFold 1163, retrieved via UniProt ID, to
search proteomes within the Foldseek Search server. We ran Foldseek searches in
3Di/AA mode against the AFDB-Proteome and AFDB-SwissProt databases with a
taxonomic filter for human proteins. We evaluated whether the top human hit to

the non-human protein matched the predictions in our organism selection
pipeline. We also checked for differences in overall protein structure, such as new
or differently sized domains. For proteins of very large size or with multiple
domains, we didn’t consider a low TM-score to be disqualifying, as TM-score
relies on static structural alignment, which doesn't account for the possibility of
flexible domains.

Protein folding

For one pair of proteins — human VWAS8 (UniProt ID ASKMH1) and its Ciona
homolog (UniProt ID F6QXZ7), which were too large to be folded by AlphaFold (>
1,500 aa) and therefore not included in publicly available datasets, we used
ESMFold 171 to generate predicted structures. You can download these structures

below.

A3KMH1. pdb & Download

FB6QXZ7.pdb & Download
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Structure alignment

For visualization figures, we used the Pairwise Structural Alignment tool found in
the RCSB databank r181. We generated structural alignments using either TM-
align 91 or, for large proteins where fixed-body alignment was likely to fail, using
JFATCAT r26].

Sequence alignment

We used ClustalOmega 1211 provided by the UniProt web interface to perform

pairwise sequence alignment, with default settings.

The zoogletools package

We created a lightweight, locally installable Python package called zoogletools to
organize the code we used in our computational analyses, which is part of our
GitHub repository. This package contains scripts for our filtering pipeline, as well
as scripts for visualizing gene expression from S. rosetta and Ciona resources

described in our companion pubs.

State of technology

As part of our evaluation process, we evaluated the state of genetic tools in each
organism by reviewing existing literature and consulting with experts. This helped
us evaluate what kinds of experiments would be easy to perform without
substantial technical development. You can read more about the state of
technology for each organism in the corresponding pubs.

Al tool usage

We used ChatGPT to help write code and comment our code. We used Claude to
help write code, clean up code, comment our code, suggest wording ideas that
informed our phrasing choices, write text that we edited, expand on summary text
that we provided, and clarify and streamline our text. We also used Cursor to help
generate and revise code.

Visualization
We used plotly (v5.17.9) [22] arcadia-pycolor (v0.6.3) (221 to generate figures

before manual adjustment.
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Organism narratives

You can read more about the specific takeaways from each organism in two
companion pubs.

Key takeaways

In this pub, we present a framework for leveraging organism selection to identify
which monogenic diseases you might effectively model with your favorite
research organism. This framework isn't a computational pipeline; rather, it's a
recorded example of the types of scientific reasoning that scientists do almost
every day.

As we developed our framework, we realized that this work was more challenging
and time-consuming than we expected, particularly as novices in working with
these organisms. The predictions presented in Zoogle were a useful starting
point, but we needed to gather a lot of additional information about diseases and
the technologies in each organism to develop an actionable experimental plan. In
some cases, we had to onboard to community resources or integrate expert
opinions on the most practical ways to test our predictions. Access to such
implicit and explicit knowledge was essential.

We've sometimes described this work as a miniature version of a qualifying exam,
and hope that sharing our framework will help others identify new ways to deploy
their favorite research organisms for broader impact on human health. Below, we

summarize some of the lessons we learned from this exercise.

Importance of expert knowledge

When we performed our initial reasoning, we relied on existing literature and
publicly available resources to help us understand the state of technology in each
organism. Relying on existing literature sometimes failed to give us a clear picture
of what experiments were trusted in the field; in other cases, it completely misled
us. For example, a single report of targeted genetic engineering in the literature
may not reflect the likelihood of success, applicability to other examples, or



represent a dependable protocol. Speaking with experts cleared this up quickly. It
also helped us understand what data resources were most useful to integrate into
our analyses and how to navigate the bespoke datasets that are common in
emerging research organisms. When attempting to design experiments in
unfamiliar organisms, human experts remain irreplaceable.

We recommend that organism experts who follow our framework carefully
consider the unique strengths and limitations of their organism of interest when
evaluating which diseases to model. What opportunities are uniquely unlocked by
the biology of your organism? And how does your organism provide an advantage
over the status quo?

Some choices were counterintuitive

Our final gene lists contained some intuitive examples — for example, modeling
the function of a stereocilia gene in a S. rosetta, an organism with a stereocilium,
might appear sensible and even obvious. In other cases, our reasoning arrived at
highly counterintuitive results. For example, all three of the genes we chose in
Ciona are implicated in immunodeficiencies, yet all three might be well-modeled
through a completely different cellular process: notochord lumen morphogenesis.

It's important to note that we didn’t set out to search for either intuitive or
counterintuitive examples when performing our reasoning exercise. Starting with
data, we reasoned through the options through a practical lens to arrive at our
final short list. It was heartening to see that taking a data-driven approach to
choosing scientific questions can lead to surprising and exciting new research

directions.

Next steps

Our most important next step is to evaluate whether our predictions or decision-
making steps led to actionable outcomes. We’'ll pursue this by funding organism
experts to perform experiments based on our predictions. Results from this work
will be published openly through modular units (see below). Assuming that our



framework proves useful, there are a variety of ways we could imagine improving

it.

Potential improvements

The framework presented in this pub is a prototype with many possible areas for

improvement, including:

Systematic approaches for understanding the state of technology.
We manually determined the state of technology in each organism through
literature review and discussions with experts. Building a centralized
database of this information across organisms could substantially
accelerate diligence and make it easier for researchers to design

experiments across systems they aren’t familiar with.

Improved filtering. Our current filtering framework uses a variety of
simple heuristics and statistical tests from the organism selection pipeline.
To improve our filtering approach, it could be useful to curate a positive
and negative control dataset — such as by collating data on the accuracy of
existing disease models in mice and zebrafish — to help us determine
filtering cutoffs and approaches more empirically.

Automating manual technical analyses. We ran a variety of technical
analyses, such as structure-based searches, sequence alignment, and
review of results from technical analyses in OMIM and MARRVEL. Many of
these steps could be automated by building snakemake or Nextflow
workflows and accessing the APIs of such resources to retrieve data, rather

than reviewing data manually.

Developing numerical heuristics. The current framework relies on
human judgment and reasoning to determine which disease-gene pairs
are most actionable. To increase efficiency and consistency in our
evaluations, we could develop numerical heuristics — for example,
developing a “feasibility score” on a scale from 1to 5, where different
aspects of the state of technology in an organism are given a numerical
value. This could allow for more systematic and uniform evaluation of

disease-gene pairs.
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e Leveraging machine intelligence. State-of-the-art language models
appear to possess powerful evaluation capabilities. Presenting our
framework for evaluation alongside underlying data to such systems could
allow for flexible and efficient reasoning through possible disease-gene
pairs at scale.

Stay tuned

This pub and its organism-specific companion pieces [415] are just the start of a
longer series of experiments. Stay tuned to learn more about the results of our
testing, which the two labs we’re funding for this work will publish through an
open, journal-independent approach.
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