
A framework for modeling
human monogenic diseases
by deploying organism
selection

We designed a decision-making framework to find tractable

genes from our organism selection dataset for pilot experiments.

We focused on genes in two potential models of human

monogenic disease, the choanoflagellate Salpingoeca rosetta and

the tunicate Ciona intestinalis.

Purpose

Drug development requires organismal models to evaluate the efficacy and safety

of therapeutic candidates. Most pharmaceutical research uses rodents, assuming

they're similar enough to humans to be useful; however, as others have noted [1][2],

such models can be expensive, slow, and even inaccurate. Can we unlock new

opportunities by studying human diseases in different organisms?

We previously released a computational method to systematically identify

similarities between proteins in humans and diverse research organisms by

comparing protein secondary structural properties and correcting for phylogenetic

relationships [3]. We found that phylogenetic distance doesn't always determine

modeling utility; the best predicted organisms for a given gene could sometimes

be very unexpected. We created the Zoogle interface, hoping this would make it

easier for both basic science researchers and drug developers to use our dataset
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to create disease models. However, users struggled to leverage Zoogle for their

own work.

In an effort to improve the usefulness of our predictions for external users, we

tried to use Zoogle ourselves to identify actionable organism–gene pairings. We

focused on developing a workflow for a particular user type, namely “organism

experts” in biology. Such experts have critical, specialized knowledge about the

life cycle, phenotypes, experimental tools, and relevant datasets for their

organismal model of choice. They’re often part of larger organismal research

communities, which helps with troubleshooting and collaborations. To test our

workflow, we worked with experts on two organisms with unique biology that are

suitable for genetic experiments — a unicellular protist that's closely related to

animals, Salpingoeca rosetta, and a sea squirt that's closely related to vertebrates,

Ciona intestinalis.

In this context, we aimed to identify which genes within a given organism might

offer the greatest relevance to human biology and disease, helping experts

prioritize their experimental efforts. Here, we present a heuristic decision-making

approach that combines computational filtering with manual diligence to evaluate

gene–disease pairs. We prioritized experimental feasibility and therapeutic impact

by evaluating disease mechanisms, protein conservation, available genetic tools,

and phenotypic assays. We ultimately identified seven actionable genes in S.

rosetta and three in C. intestinalis. We’re funding two academic labs to pursue

experimental testing of our predictions.

Data from this pub is available on Zenodo.

All associated code is available in this GitHub repository.

Check out companion pubs documenting how we chose the most
intriguing genes to pursue in Salpingoeca rosetta [4] and Ciona

intestinalis [5].

The problem

Through the Zoogle interface, we present a list of matches between the proteins

in an organism’s proteome and the proteins in the human proteome. Each match
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represents a hypothesis about the utility of modeling a human protein’s function

using the homologous protein in a non-human organism. These matches are

ranked based on how unexpected their similarity is with respect to the

phylogenetic distance between the human and non-human proteins.

What this means on a practical level is that Zoogle presents a ranked list of tens

of thousands of predictions of genetic similarity to scientific users. For

Salpingoeca rosetta, Zoogle catalogs 27,354 predictions; for Ciona intestinalis,

there are 50,693. How can a scientist determine which, among these thousands

of predictions, represents the most actionable set for experimental testing? We

combined computational filtering with manual diligence into an overarching

framework for winnowing these predictions to an actionable short list for

downstream experiments.

Challenges of choosing a useful disease model
When considering what it means to model a human disease, there are many

different strategies  [1]. The most technically accurate model for human diseases

would be humans. However, due to obvious ethical and safety considerations, this

isn't the preferred starting point for drug development.

In practice, all drug development relies on disease models. The most common

approaches to disease modeling are:

Using in vitro cell culture of human cells, cell lines, tissues, or organoids

Using non-human models, usually rodents, to approximate human disease
pathology

Borrowing a common saying from statistics, we’d argue that all models are wrong,

but some are useful – each strategy has its pitfalls. In vitro cell culture models

often use immortalized cell lines with abnormal karyotypes [6]. Patient-derived

primary cells have genetic and environmental variability and are expensive to

acquire and maintain [1]. Organoids require long experimental timelines, while not

fully capturing the complexity of real human tissues [7]. Non-human models have

fundamental differences at the molecular level — human and mouse proteins

aren't identical and can have drastically different properties, which can lead to

costly failures to translate [2][8].

3

https://doi.org/10.1038/s44222-023-00063-3
https://doi.org/10.3390/ijms241612716
https://doi.org/10.1038/s44222-023-00063-3
https://doi.org/10.3390/cells8050403
https://doi.org/10.20517/jca.2022.10
https://doi.org/10.3390/ani10071199


The inaccuracies and inefficiencies of existing models have been recognized by

authorities such as the FDA, which recently announced a plan to phase out animal

testing requirements for monoclonal antibody therapies.

Our strategy of using unconventional organisms doesn’t overcome concerns with

using non-human models. Sequence and structural differences between human

and model proteins remain relevant. We account for some of these differences by

identifying those pairs of non-human and human proteins with unusually high

similarity [3]. But the ultimate goal of modeling diseases using such organisms

isn’t to eliminate the use of human cell or mouse models; rather, it's to

complement them.

Our thinking

A phenotype-first experimental framework for
modeling human disease
Our hypothesis is that experimentally tractable and more scalable model

organisms, such as invertebrates and unicellular eukaryotes, are advantageous

and underutilized tools at the earliest stages of therapeutic research and

development. Some of these organisms may be more accurate biological models

for a particular human disease than rodents are. Others might be comparable to

existing models, and also have experimental advantages that complement rodents

or in vitro studies, such as tissue-level testing opportunities or cheaper, higher-

throughput ways to conduct early screens. Moreover, expanding the list of

organisms with the potential for disease modeling provides more avenues for

basic science to have translational impact.
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Figure 1. Assumptions we’re challenging with our framework.

We aim to challenge three major assumptions about non-human models

(Figure 1):

1. Distant organisms can’t be useful models

It’s often assumed that the further an organism is from humans on the

evolutionary tree, the less relevant it is as a model. But genes don’t evolve

in lockstep with species. They can evolve independently and sometimes

even converge on similar functions in distantly related organisms.

That means a gene in algae might actually behave more like the human

version than the same gene in a mouse. Relying on evolutionary proximity

alone — like defaulting to mammals — can lead to poor model choices. Our
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earlier work on organism selection [3] shows how this assumption can

mislead and how gene-by-gene thinking opens up better options.

2. The model must mimic the human disease phenotype

Another widespread belief is that a good model must replicate the same

physical symptoms or cell behaviors seen in human disease. For example, if

a mutation disrupts blood cell migration in humans, researchers expect to

see that same defect in the model organism.

But biology doesn’t always work that way. A mutation in a cytoskeletal gene

might affect blood cells in humans but lead to a different, yet

mechanistically related, problem in another species — like cell intercalation

defects in a nematode. Even if the symptoms differ, the root cause (a

cytoskeletal failure) may be the same. Studying and rescuing the

phenotype in the model can still yield insights and therapeutic entry points

for the human condition.

3. There is a single “best” model for every disease

Researchers often try to identify one ideal organism that captures all

aspects of a disease. But no model is perfect. Different organisms bring

different strengths, and choosing a combination tailored to each stage of

research might be more effective. For example, early discovery work might

benefit from simple, fast-growing organisms, whereas later work might

benefit from more human-like physiology.

Rather than framing the problem as “which organism should I use instead

of a mouse?” we ask scientists to consider “which organisms, used

together, could increase progress towards curing human disease?”

What we’re ultimately interested in identifying are genes with the potential to be

modeled advantageously in our organisms of interest, where we can identify a

measurable phenotype to test therapeutic mechanisms of action. This leads to a

simple overall experimental framework (Figure 2, right):

1. Identify tractable candidate genes for modeling in a non-human organism.
The process of winnowing genes into a short list is detailed in the current
pub.

2. Generate analogous mutants in non-human models.

3. Identify measurable phenotypic consequences of the mutation.
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Figure 2. Graphical abstract illustrating the overall framework.

The 27k and 50k proteins originate from the number of proteins found in the final organism
selection dataset for each organism.

4. Use the models to screen for molecules that rescue the measurable
phenotype.

While this experimental plan is fairly straightforward, choosing which of the

thousands of candidate genes to pursue within a given organismal model is far

more opaque. We spent a lot of time investigating tractable candidate genes for

two example organisms, Salpingoeca rosetta and Ciona intestinalis (check out

specific findings in individual pubs about each in [4] and [5]), and describe our

overall approach (Figure 2, left) in the rest of this pub.
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Choosing the right experts

To understand how organism experts might approach designing experiments

using Zoogle, we needed feedback from external scientists. We interviewed a

handful of experts in our personal networks whose organisms are included in

Zoogle to understand:

Whether they were aligned with our overall mission

How willing they were to experiment with new approaches to scientific
publishing, to be able to iterate in public without needing to cater to
journal expectations

Whether they could give us helpful feedback to improve organism
selection

We decided to work with experts in two academic research laboratories: David

Booth’s laboratory at UCSF, which uses S. rosetta, and Alberto Stolfi’s laboratory at

the Georgia Institute of Technology, which uses Ciona. These experts provided

invaluable feedback during our diligence process.

Our approach

Skip to “Methods” for nitty-gritty details, or read on to get a big-picture sense of

how we tried to select the most useful and feasible disease-associated genes to

study in two uncommon organismal models.

Computational filtering
Predictions within the organism selection dataset in Zoogle are currently ranked

based on the percentile of the phylogenetically-corrected structural distance of

proteins within gene families. This is essentially the relative ranking of each

protein compared to others in the same gene family. While this metric was easy to

implement into a web interface, it doesn’t account for variability among gene

families in their size and distribution of distances from human homologs.

To account for these differences, we included two new metrics aimed at

quantifying whether each distance to human homologs was exceptionally similar
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or not, given the observed distribution of distances in each gene family.

Specifically, we used a permutation test-based approach to calculate two p-

values: one “within organism,” and one “across organisms.” The within-organism

p-value indicates, for each gene family, whether the degree of similarity with

respect to the human homolog is exceptional for a given species. In contrast, the

across-organism p-value indicates, for each gene family, which species are

exceptionally similar to humans.

For a detailed description of how we carried out these analyses, see “Methods.”

We then filtered our genes for each organism using the following steps (as

illustrated in Figure 3):

1. P-value filtering. We filtered genes across gene families based on their
“across-organism” p-value.

2. General disease association. We used the list of human gene–disease
associations found in the ClinVar database to quickly remove genes with
no recorded disease association.

3. Homolog count. For our pilot experiments, we sought genes that are very
likely to produce a phenotype through a single knockout. As such, we
removed genes with multiple predicted copies in Salpingoeca rosetta or
Ciona intestinalis.

4. Single disease association. To identify genes with simple mechanisms
and further decrease the number of genes we needed to diligence, we
removed genes associated with more than one ClinVar disease.
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Figure 3. Funnel chart illustrating the stages of the computational filtering pipeline and
the corresponding number of predictions remaining after each filter.

This set of crude filters is an initial prototype, and we recognize there are many

ways to improve upon our approach. Our primary goal in the filtering process was

to decrease the number of genes we needed to manually diligence. At the end of

this filtering process, we were left with a “long list” of 153 genes in Salpingoeca

rosetta and 192 genes in Ciona intestinalis.

Manual diligence
From our long list, we performed manual diligence to evaluate how actionable

each possible gene would be for downstream experiments. We considered two

high-level questions during our process:

Experimental feasibility. Is it easy to make a genetic model of the
disease in this organism?

Therapeutic impact. Would making a model for the disease in this
organism be useful? For example, could we more rapidly investigate
therapeutic mechanisms of action in this system as opposed to standard
models?

We didn't pursue comprehensive diligence for each hypothesis in our long list;

rather, we assessed each individual gene until the first point of failure — that is, as
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soon as we determined that making a model wouldn’t be easy or useful. We also

didn’t perform manual diligence on every single member of our long list, as this is

time-consuming. Instead, we diligenced ~30–40 genes from each organism,

starting with those with a low percentile score. We added a handful of others

based on the research interests of two research groups we’re funding to

experimentally test our Zoogle predictions.

For each of our high-level questions, we cataloged a number of failure modes

based on our technical analyses, listed below. The details of the technical analyses

are described in the Methods section.

A schematic diagram of the desired qualities of a candidate gene and areas of

consideration can be found in Figure 4.

Figure 4. Guide showing areas to consider in diligencing essential qualities of a candidate
gene.

Rows are areas of evaluation and columns are technical analyses that we took into account to
perform the evaluation.

11



Experimental feasibility
When considering experimental feasibility, we encountered the following failure

modes. These criteria aren’t necessarily dealbreakers for the overall utility of

models — rather, they helped us eliminate options that weren’t low-hanging fruit.

Model not feasible. We evaluated the technical feasibility of making an

analogous mutation to the causative disease allele in humans. We

accounted for the precise molecular mechanism and genetic variation in

the human disease, the state of technology in each organism, and the

essentiality of the gene. In general, we strove to identify diseases where

we could generate an analogous mutation to a human disease allele in the

organism. For example, if a human gene had a nonsense or frameshift

mutation leading to loss of function, we’d want to be able to introduce a

nonsense or frameshift mutation in our organism. For some genes, we

generated protein sequence alignments between the human and non-

human proteins to look for conservation of disease-causing residues. In

some cases, we had evidence from literature that missense mutations

could induce loss of protein expression; for those genes, induced

nonsense mutations could be appropriate analogous mutations to

generate.

Because the state of technology for generating genetic mutations differs

between Salpingoeca rosetta and Ciona intestinalis (our two test

organisms), our approach to evaluating feasibility also differed by

organism. We describe the differences in the pubs linked in the “Organism

narratives” section.

Lack of homolog confidence. We assessed our level of confidence in

precisely matching a non-human gene to its human paralog. We used

structure-based Foldseek searches of the non-human protein across

diverse proteomes as a crude measure of confidence. In one case, we also

used structure-based clustering of proteins using ProteinCartography to

understand more precise differences across a large gene family. In a small

handful of cases, we weren’t able to confidently determine which human

paralog was the best match for the non-human protein. We avoided

pursuing those ambiguous matches.
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Lack of model advantage. We considered whether building a model in

each organism might be advantageous or whether an in vitro approach

would be superior. We accounted for the molecular mechanism of the

disease and the unique features of the organism’s biology. For mutations

in some metabolic enzymes, generating correctors for those proteins

through an in vitro approach would likely be a superior approach to a non-

human cellular or organismal model.

Therapeutic impact
When considering therapeutic impact, we encountered the following failure

modes:

Disease association concerns. We evaluated our level of confidence that

the human gene causes its annotated disease. We relied on summaries

from OMIM to make this assessment. For some diseases annotated in

ClinVar [9], there's a lack of clear genetic evidence that the disease is

related to the given allele. We decided not to pursue those genes.

Treatment not possible. We considered whether it would be possible to

treat the disease in an actual patient. We used summaries from OMIM and

a review of disease literature to make this assessment. For some diseases,

the effects of a mutation manifest during embryonic development,

resulting in morphological abnormalities that can’t be easily corrected after

birth. Given that our ultimate goal is to identify drug candidates for these

diseases, we usually decided not to pursue these genes. In some cases, we

were able to identify a compelling hypothesis for a possible phenotype,

which we believed could be useful as a positive control — we didn't reject

genes for this reason in those cases.

Lack of unmet need. We evaluated whether there was a substantial unmet

need for a given disease to be treated by considering both the severity of

the disease and existing treatments. We used summaries from OMIM and

other literature searches to make this assessment. In some cases, the

disease in question didn’t have a meaningful impact on patient lifespan.

For example, Meier–Gorlin syndrome (associated with CDC45 mutations)

results in patients of shorter stature but otherwise normal life expectancy

and mostly normal health [10]. We decided not to pursue models for these
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genes. In some cases, a trivial mechanism is already used to treat the

disease; for example, for congenital defect of folate absorption (e.g.,

caused by defects in SLC46A1), dietary supplementation of folate is

sufficient to treat the disease [11]. We decided not to pursue models for

such genes.

Other considerations
Notably, we didn't consider whether there were substantial market opportunities

to treat a given disease (either due to market size, incidence, or degree of unmet

need). A challenge for drug development in rare diseases is that economic forces

make it difficult to justify investing the high capital cost of drug development for

a small number of patients. For our proof-of-concept experiments, focusing on

the financial upside would have been prohibitively limiting. Our hope is that our

framework can help match academic researchers focused on specific model

organisms with rare disease communities to spur transformative research without

having to worry about turning a profit.

Methods

Below are the technical analyses we performed as part of this work.

Conservation with humans
We originally quantified the degree of molecular conservation between non-

human gene copies and their human homologs within each of the 9,260 gene

families containing humans assessed in our recent pub [3] (see “The approach” for

a detailed description of methods). Here, we extended this approach, statistically

quantifying our confidence in asserting that measured distances were

exceptional, whether looking within species and across gene families (“within

organism”), or within gene family and across species (“across organism”).

We calculated the within-organism p-value by permuting the distances from

human homologs observed within each species and across gene families 10,000

times, determining the number of times a distance was smaller than observed. We

calculated the across-species p-value by permuting the distances within gene
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family and across species 10,000 times, with the p-value corresponding to the

probability of observing a distance smaller than observed. We carried out all

analyses in R [12], with the permutation tests implemented as custom Rcpp scripts

(found here), and called by the dist_permute_test  function implemented here.

Disease molecular mechanism
We manually reviewed the existing literature summaries on the known function of

the wild-type protein and the consequences of mutation found in OMIM,

MARRVEL [13], and UniProt [14]. For genes we were interested in modeling, we dove

deeper by reading the primary literature for each disease.

Nature of human variants
We manually reviewed the existing literature summaries on human genetic

variation found in OMIM’s case studies and in MARRVEL. We used the case

studies highlighted in OMIM’s “Allelic Variants” sections to understand the

mechanistic underpinnings of mutations that can contribute to disease. We also

reviewed the ClinVar [9], Geno2MP, and gnomAD [15] data compiled in MARRVEL to

understand the broader scope of human variation.

Predicted gene essentiality
We used the literature summaries from OMIM and the loss-of-function

observed/expected (LoF o/e) score and lethality evaluation from MARRVEL’s

gnomAD module to evaluate whether a gene is likely to be lethal upon knockout.

Disease severity
We used the disease-specific literature summaries from OMIM, disease

summaries from MedlinePlus, disease descriptions in Orphanet, and descriptions

of patient phenotypes and experience from patient advocacy group websites, if

available, to understand the severity of diseases.

Existing models
We used the literature summaries from OMIM focused on organismal models

(usually found in the “Animal Model” section) to understand whether phenotypic

information has been generated for organisms such as mice and zebrafish. In

some cases, we also checked whether a mouse mutant exists in the Mouse
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Genome Informatics (MGI) database or used web searches to look for literature

not cataloged in OMIM on existing mouse or zebrafish models.

Existing drugs
We used the “Approved Drugs and Active Ligands from PHAROS” info in

MARRVEL and the protein-specific pages in OpenTargets, as well as treatment

information from OMIM, Orphanet, and MedlinePlus to understand the current

state of therapeutics for each disease.

Paralog matching
We used pre-folded structures from AlphaFold [16], retrieved via UniProt ID, to

search proteomes within the Foldseek Search server. We ran Foldseek searches in

3Di/AA mode against the AFDB-Proteome and AFDB-SwissProt databases with a

taxonomic filter for human proteins. We evaluated whether the top human hit to

the non-human protein matched the predictions in our organism selection

pipeline. We also checked for differences in overall protein structure, such as new

or differently sized domains. For proteins of very large size or with multiple

domains, we didn’t consider a low TM-score to be disqualifying, as TM-score

relies on static structural alignment, which doesn't account for the possibility of

flexible domains.

Protein folding
For one pair of proteins — human VWA8 (UniProt ID A3KMH1) and its Ciona

homolog (UniProt ID F6QXZ7), which were too large to be folded by AlphaFold (>

1,500 aa) and therefore not included in publicly available datasets, we used

ESMFold [17] to generate predicted structures. You can download these structures

below.

A3KMH1.pdb Download

F6QXZ7.pdb Download
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Structure alignment
For visualization figures, we used the Pairwise Structural Alignment tool found in

the RCSB databank [18]. We generated structural alignments using either TM-

align [19] or, for large proteins where fixed-body alignment was likely to fail, using

jFATCAT [20].

Sequence alignment
We used ClustalOmega [21] provided by the UniProt web interface to perform

pairwise sequence alignment, with default settings.

The zoogletools package
We created a lightweight, locally installable Python package called zoogletools to

organize the code we used in our computational analyses, which is part of our

GitHub repository. This package contains scripts for our filtering pipeline, as well

as scripts for visualizing gene expression from S. rosetta and Ciona resources

described in our companion pubs.

State of technology
As part of our evaluation process, we evaluated the state of genetic tools in each

organism by reviewing existing literature and consulting with experts. This helped

us evaluate what kinds of experiments would be easy to perform without

substantial technical development. You can read more about the state of

technology for each organism in the corresponding pubs.

AI tool usage
We used ChatGPT to help write code and comment our code. We used Claude to

help write code, clean up code, comment our code, suggest wording ideas that

informed our phrasing choices, write text that we edited, expand on summary text

that we provided, and clarify and streamline our text. We also used Cursor to help

generate and revise code.

Visualization
We used plotly (v5.17.0) [22] arcadia-pycolor (v0.6.3) [22] to generate figures

before manual adjustment.
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Organism narratives

You can read more about the specific takeaways from each organism in two

companion pubs.

Key takeaways

In this pub, we present a framework for leveraging organism selection to identify

which monogenic diseases you might effectively model with your favorite

research organism. This framework isn’t a computational pipeline; rather, it’s a

recorded example of the types of scientific reasoning that scientists do almost

every day.

As we developed our framework, we realized that this work was more challenging

and time-consuming than we expected, particularly as novices in working with

these organisms. The predictions presented in Zoogle were a useful starting

point, but we needed to gather a lot of additional information about diseases and

the technologies in each organism to develop an actionable experimental plan. In

some cases, we had to onboard to community resources or integrate expert

opinions on the most practical ways to test our predictions. Access to such

implicit and explicit knowledge was essential.

We’ve sometimes described this work as a miniature version of a qualifying exam,

and hope that sharing our framework will help others identify new ways to deploy

their favorite research organisms for broader impact on human health. Below, we

summarize some of the lessons we learned from this exercise.

Importance of expert knowledge
When we performed our initial reasoning, we relied on existing literature and

publicly available resources to help us understand the state of technology in each

organism. Relying on existing literature sometimes failed to give us a clear picture

of what experiments were trusted in the field; in other cases, it completely misled

us. For example, a single report of targeted genetic engineering in the literature

may not reflect the likelihood of success, applicability to other examples, or
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represent a dependable protocol. Speaking with experts cleared this up quickly. It

also helped us understand what data resources were most useful to integrate into

our analyses and how to navigate the bespoke datasets that are common in

emerging research organisms. When attempting to design experiments in

unfamiliar organisms, human experts remain irreplaceable.

We recommend that organism experts who follow our framework carefully

consider the unique strengths and limitations of their organism of interest when

evaluating which diseases to model. What opportunities are uniquely unlocked by

the biology of your organism? And how does your organism provide an advantage

over the status quo?

Some choices were counterintuitive
Our final gene lists contained some intuitive examples — for example, modeling

the function of a stereocilia gene in a S. rosetta, an organism with a stereocilium,

might appear sensible and even obvious. In other cases, our reasoning arrived at

highly counterintuitive results. For example, all three of the genes we chose in

Ciona are implicated in immunodeficiencies, yet all three might be well-modeled

through a completely different cellular process: notochord lumen morphogenesis.

It’s important to note that we didn’t set out to search for either intuitive or

counterintuitive examples when performing our reasoning exercise. Starting with

data, we reasoned through the options through a practical lens to arrive at our

final short list. It was heartening to see that taking a data-driven approach to

choosing scientific questions can lead to surprising and exciting new research

directions.

Next steps

Our most important next step is to evaluate whether our predictions or decision-

making steps led to actionable outcomes. We’ll pursue this by funding organism

experts to perform experiments based on our predictions. Results from this work

will be published openly through modular units (see below). Assuming that our
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framework proves useful, there are a variety of ways we could imagine improving

it.

Potential improvements
The framework presented in this pub is a prototype with many possible areas for

improvement, including:

Systematic approaches for understanding the state of technology.

We manually determined the state of technology in each organism through

literature review and discussions with experts. Building a centralized

database of this information across organisms could substantially

accelerate diligence and make it easier for researchers to design

experiments across systems they aren’t familiar with.

Improved filtering. Our current filtering framework uses a variety of

simple heuristics and statistical tests from the organism selection pipeline.

To improve our filtering approach, it could be useful to curate a positive

and negative control dataset — such as by collating data on the accuracy of

existing disease models in mice and zebrafish — to help us determine

filtering cutoffs and approaches more empirically.

Automating manual technical analyses. We ran a variety of technical

analyses, such as structure-based searches, sequence alignment, and

review of results from technical analyses in OMIM and MARRVEL. Many of

these steps could be automated by building snakemake or Nextflow

workflows and accessing the APIs of such resources to retrieve data, rather

than reviewing data manually.

Developing numerical heuristics. The current framework relies on

human judgment and reasoning to determine which disease–gene pairs

are most actionable. To increase efficiency and consistency in our

evaluations, we could develop numerical heuristics — for example,

developing a “feasibility score” on a scale from 1 to 5, where different

aspects of the state of technology in an organism are given a numerical

value. This could allow for more systematic and uniform evaluation of

disease–gene pairs.
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Leveraging machine intelligence. State-of-the-art language models

appear to possess powerful evaluation capabilities. Presenting our

framework for evaluation alongside underlying data to such systems could

allow for flexible and efficient reasoning through possible disease–gene

pairs at scale.

Stay tuned
This pub and its organism-specific companion pieces [4][5] are just the start of a

longer series of experiments. Stay tuned to learn more about the results of our

testing, which the two labs we’re funding for this work will publish through an

open, journal-independent approach.

Acknowledgments

We’d like to thank Alberto Stolfi and David Booth for their feedback on our

diligence process and the final list of candidates, which they’ll pursue

experimentally with funding from Arcadia.

Contributors (A–Z)

Prachee Avasthi: Critical Feedback

Audrey Bell: Visualization

Keith Cheveralls: Validation

Seemay Chou: Conceptualization, Methodology, Supervision

Megan L. Hochstrasser: Editing

Austin H. Patton: Formal Analysis, Software

Dennis A. Sun: Formal Analysis, Investigation, Methodology, Software, Visualization,

Writing

Ryan York: Critical Feedback

21

https://doi.org/10.57844/arcadia-bp0f-v1xx
https://doi.org/10.57844/arcadia-084m-a3v2


References

1. Loewa A, Feng JJ, Hedtrich S. (2023). Human disease models in drug development.

https://doi.org/10.1038/s44222-023-00063-3

2. Frangogiannis NG. (2022). Why animal model studies are lost in translation.

https://doi.org/10.20517/jca.2022.10

3. Avasthi P, McGeever E, Patton AH, York R. (2024). Leveraging evolution to identify

novel organismal models of human biology. https://doi.org/10.57844/arcadia-33b4-

4dc5

4. Chou S, Sun DA. (2025). Modeling human monogenic diseases using the

choanoflagellate Salpingoeca rosetta. https://doi.org/10.57844/arcadia-bp0f-v1xx

5. Chou S, Sun DA. (2025). Modeling human monogenic diseases using the tunicate

Ciona intestinalis. https://doi.org/10.57844/arcadia-084m-a3v2

6. Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. (2023). Practical

Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives.

https://doi.org/10.3390/ijms241612716

7. Doss MX, Sachinidis A. (2019). Current Challenges of iPSC-Based Disease Modeling

and Therapeutic Implications. https://doi.org/10.3390/cells8050403

8. Ferreira GS, Veening-Griffioen DH, Boon WPC, Moors EHM, van Meer PJK. (2020).

Levelling the Translational Gap for Animal to Human Efficacy Data.

https://doi.org/10.3390/ani10071199

9. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR.

(2013). ClinVar: public archive of relationships among sequence variation and human

phenotype. https://doi.org/10.1093/nar/gkt1113

10. de Munnik SA, Hoefsloot EH, Roukema J, Schoots J, Knoers NV, Brunner HG,

Jackson AP, Bongers EM. (2015). Meier-Gorlin syndrome.

https://doi.org/10.1186/s13023-015-0322-x

11. https://www.ncbi.nlm.nih.gov/books/nbk1673/

12. https://www.r-project.org/

13. Wang J, Al-Ouran R, Hu Y, Kim S-Y, Wan Y-W, Wangler MF, Yamamoto S, Chao H-T,

Comjean A, Mohr SE, Perrimon N, Liu Z, Bellen HJ, Adams CJ, Adams DR, Alejandro

ME, Allard P, Ashley EA, Azamian MS, Bacino CA, Balasubramanyam A, Barseghyan H,

Beggs AH, Bellen HJ, Bernstein JA, Bican A, Bick DP, Birch CL, Boone BE, Briere LC,

Brown DM, Brush M, Burke EA, Burrage LC, Chao KR, Clark GD, Cogan JD, Cooper

22

https://doi.org/10.1038/s44222-023-00063-3
https://doi.org/10.20517/jca.2022.10
https://doi.org/10.57844/arcadia-33b4-4dc5
https://doi.org/10.57844/arcadia-33b4-4dc5
https://doi.org/10.57844/arcadia-bp0f-v1xx
https://doi.org/10.57844/arcadia-084m-a3v2
https://doi.org/10.3390/ijms241612716
https://doi.org/10.3390/cells8050403
https://doi.org/10.3390/ani10071199
https://doi.org/10.1093/nar/gkt1113
https://doi.org/10.1186/s13023-015-0322-x
https://www.ncbi.nlm.nih.gov/books/nbk1673/
https://www.r-project.org/


CM, Craigen WJ, Davids M, Dayal JG, Dell’Angelica EC, Dhar SU, Dipple KM, Donnell-

Fink LA, Dorrani N, Dorset DC, Draper DD, Dries AM, Eckstein DJ, Emrick LT, Eng CM,

Esteves C, Estwick T, Fisher PG, Frisby TS, Frost K, Gahl WA, Gartner V, Godfrey RA,

Goheen M, Golas GA, Goldstein DB, Gordon MG, Gould SE, Gourdine J-PF, Graham

BH, Groden CA, Gropman AL, Hackbarth ME, Haendel M, Hamid R, Hanchard NA,

Handley LH, Hardee I, Herzog MR, Holm IA, Howerton EM, Jacob HJ, Jain M, Jiang Y-

h, Johnston JM, Jones AL, Koehler AE, Koeller DM, Kohane IS, Kohler JN,

Krasnewich DM, Krieg EL, Krier JB, Kyle JE, Lalani SR, Latham L, Latour YL, Lau CC,

Lazar J, Lee BH, Lee H, Lee PR, Levy SE, Levy DJ, Lewis RA, Liebendorfer AP, Lincoln

SA, Loomis CR, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV,

Malicdan MCV, Mamounas LA, Manolio TA, Markello TC, Mazur P, McCarty AJ,

McConkie-Rosell A, McCray AT, Metz TO, Might M, Moretti PM, Mulvihill JJ, Murphy

JL, Muzny DM, Nehrebecky ME, Nelson SF, Newberry JS, Newman JH, Nicholas SK,

Novacic D, Orange JS, Pallais JC, Palmer CG, Papp JC, Pena LD, Phillips JA, Posey

JE, Postlethwait JH, Potocki L, Pusey BN, Ramoni RB, Robertson AK, Rodan LH,

Rosenfeld JA, Sadozai S, Schaffer KE, Schoch K, Schroeder MC, Scott DA, Sharma P,

Shashi V, Silverman EK, Sinsheimer JS, Soldatos AG, Spillmann RC, Splinter K, Stoler

JM, Stong N, Strong KA, Sullivan JA, Sweetser DA, Thomas SP, Tifft CJ, Tolman NJ,

Toro C, Tran AA, Valivullah ZM, Vilain E, Waggott DM, Wahl CE, Walley NM, Walsh CA,

Wangler MF, Warburton M, Ward PA, Waters KM, Webb-Robertson B-JM, Weech AA,

Westerfield M, Wheeler MT, Wise AL, Wolfe LA, Worthey EA, Yamamoto S, Yang Y, Yu

G, Zornio PA. (2017). MARRVEL: Integration of Human and Model Organism Genetic

Resources to Facilitate Functional Annotation of the Human Genome.

https://doi.org/10.1016/j.ajhg.2017.04.010

14. The UniProt Consortium, Bateman A, Martin M-J, Orchard S, Magrane M, Adesina A,

Ahmad S, Bowler-Barnett EH, Bye-A-Jee H, Carpentier D, Denny P, Fan J, Garmiri P,

Gonzales LJdC, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Joshi V, Jyothi D,

Kandasaamy S, Lock A, Luciani A, Luo J, Lussi Y, Marin JSM, Raposo P, Rice DL,

Santos R, Speretta E, Stephenson J, Totoo P, Tyagi N, Urakova N, Vasudev P, Warner

K, Wijerathne S, Yu CW-H, Zaru R, Bridge AJ, Aimo L, Argoud-Puy G, Auchincloss AH,

Axelsen KB, Bansal P, Baratin D, Batista Neto TM, Blatter M-C, Bolleman JT, Boutet E,

Breuza L, Gil BC, Casals-Casas C, Echioukh KC, Coudert E, Cuche B, de Castro E,

Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gaudet P, Gehant S,

Gerritsen V, Gos A, Gruaz N, Hulo C, Hyka-Nouspikel N, Jungo F, Kerhornou A,

Mercier PL, Lieberherr D, Masson P, Morgat A, Paesano S, Pedruzzi I, Pilbout S,

Pourcel L, Poux S, Pozzato M, Pruess M, Redaschi N, Rivoire C, Sigrist CJA,

Sonesson K, Sundaram S, Sveshnikova A, Wu CH, Arighi CN, Chen C, Chen Y, Huang

H, Laiho K, Lehvaslaiho M, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Y,

Zhang J. (2024). UniProt: the Universal Protein Knowledgebase in 2025.

https://doi.org/10.1093/nar/gkae1010

23

https://doi.org/10.1016/j.ajhg.2017.04.010
https://doi.org/10.1093/nar/gkae1010


15. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL,

Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts

NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK,

Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX,

Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd

B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM,

Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan

D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A,

Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome

Aggregation Database Consortium, Aguilar Salinas CA, Ahmad T, Albert CM,

Ardissino D, Atzmon G, Barnard J, Beaugerie L, Benjamin EJ, Boehnke M,

Bonnycastle LL, Bottinger EP, Bowden DW, Bown MJ, Chambers JC, Chan JC,

Chasman D, Cho J, Chung MK, Cohen B, Correa A, Dabelea D, Daly MJ, Darbar D,

Duggirala R, Dupuis J, Ellinor PT, Elosua R, Erdmann J, Esko T, Färkkilä M, Florez J,

Franke A, Getz G, Glaser B, Glatt SJ, Goldstein D, Gonzalez C, Groop L, Haiman C,

Hanis C, Harms M, Hiltunen M, Holi MM, Hultman CM, Kallela M, Kaprio J, Kathiresan

S, Kim B-J, Kim YJ, Kirov G, Kooner J, Koskinen S, Krumholz HM, Kugathasan S, Kwak

SH, Laakso M, Lehtimäki T, Loos RJF, Lubitz SA, Ma RCW, MacArthur DG, Marrugat J,

Mattila KM, McCarroll S, McCarthy MI, McGovern D, McPherson R, Meigs JB,

Melander O, Metspalu A, Neale BM, Nilsson PM, O’Donovan MC, Ongur D, Orozco L,

Owen MJ, Palmer CNA, Palotie A, Park KS, Pato C, Pulver AE, Rahman N, Remes AM,

Rioux JD, Ripatti S, Roden DM, Saleheen D, Salomaa V, Samani NJ, Scharf J,

Schunkert H, Shoemaker MB, Sklar P, Soininen H, Sokol H, Spector T, Sullivan PF,

Suvisaari J, Tai ES, Teo YY, Tiinamaija T, Tsuang M, Turner D, Tusie-Luna T, Vartiainen

E, Vawter MP, Ware JS, Watkins H, Weersma RK, Wessman M, Wilson JG, Xavier RJ,

Neale BM, Daly MJ, MacArthur DG. (2020). The mutational constraint spectrum

quantified from variation in 141,456 humans. https://doi.org/10.1038/s41586-020-

2308-7

16. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O,

Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J,

Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G,

Birney E, Hassabis D, Velankar S. (2021). AlphaFold Protein Structure Database:

massively expanding the structural coverage of protein-sequence space with high-

accuracy models. https://doi.org/10.1093/nar/gkab1061

17. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y,

dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A. (2023).

Evolutionary-scale prediction of atomic-level protein structure with a language

model. https://doi.org/10.1126/science.ade2574

18. Bittrich S, Segura J, Duarte JM, Burley SK, Rose Y. (2024). RCSB protein Data Bank:

exploring protein 3D similarities via comprehensive structural alignments.

24

https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1126/science.ade2574


https://doi.org/10.1093/bioinformatics/btae370

19. Zhang Y. (2005). TM-align: a protein structure alignment algorithm based on the TM-

score. https://doi.org/10.1093/nar/gki524

20. Li Z, Jaroszewski L, Iyer M, Sedova M, Godzik A. (2020). FATCAT 2.0: towards a better

understanding of the structural diversity of proteins.

https://doi.org/10.1093/nar/gkaa443

21. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H,

Remmert M, Söding J, Thompson JD, Higgins DG. (2011). Fast, scalable generation of

high‐quality protein multiple sequence alignments using Clustal Omega.

https://doi.org/10.1038/msb.2011.75

22. https://github.com/arcadia-science/arcadia-pycolor

25

https://doi.org/10.1093/bioinformatics/btae370
https://doi.org/10.1093/nar/gki524
https://doi.org/10.1093/nar/gkaa443
https://doi.org/10.1038/msb.2011.75
https://github.com/arcadia-science/arcadia-pycolor

