Automated classification of
time-course imaging data
applied to nematode
embryogenesis

Machine learning is a powerful tool for classifying images in a
time series, such as the developmental stages of embryos. We
built a classifier using only bright-field microscopy images to
infer nematode embryonic stages at high throughput.
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Purpose

We're broadly interested in extracting biological function from label-free, high-
throughput imaging data. As a first pass, we tested the effectiveness of a deep-
learning framework that incorporates temporal information in classifying the
developmental stage of the well-studied nematode, Caenorhabditis elegans. We
trained a classifier that you can use to identify nematode embryo stages from
time-course datasets captured using bright-field microscopy. We hope this tool
will be immediately useful to interrogate embryonic development, reproductive
success, or developmental outcomes following perturbations in C. elegans or
other free-living nematode species. More broadly, you can adapt our approach to
any category of classifiable microscopy time-course data. To this end, we provide
a PyTorch-based pipeline for training and evaluating your own models.

The tool lets you go from imaging nematode embryos to classifying
developmental stages and quantifying the frequency of successful versus



unsuccessful developmental outcomes. It's about 80% accurate in calling the
correct stage. We're not pursuing this project further but welcome your input and
encourage others to incorporate user feedback to improve the functionality of the
classifier if it's useful to you.

e Our code in Python is available in this GitHub repository.

e The data we used in our training, validation, and experimentation are on
Zenodo.

We’ve put this effort on ice!

Background

For most organisms, the effort and expense of genetic or antibody-based labeling
for the purpose of imaging is very high, requiring dedicated team effort and
resources. We want to develop tools that we can readily apply to many organisms,
allowing new understanding of evolutionary solutions to biological problems. In
line with this overarching goal, we set out to leverage the information in label-
free images for phenotyping in a scalable, automated fashion. More broadly, we'd
like to understand the extent to which we can use label-free imaging across as
large a swath of the tree of life as possible to extract phenotypic information and
map traits wherever we find novelty.

Combining deep learning with high-throughput live imaging has the potential for
broad impacts on many fields of biology, scaling from cells to organisms. For
example, deep learning approaches to cell type identification 121 and cell

health (31 have the potential to be transformative. Applying these methods to
label-free data (415161 decreases experimental cost and increases our ability to

explore organismal diversity.

Developmental biology is ripe for the application of deep learning approaches to
facilitate discovery and unlock translational potential [71. The study of
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developmental biology has provided fundamental insights into multicellular life at
the intersection of genetics, molecular, cellular, and evolutionary biology. Seeing
where development goes awry allows us to understand the molecular
underpinnings of disease, from developmental disorders leading to birth

defects (s591 to the origins of cancer 1e1. Not surprisingly, there are concerted
efforts at improving the outcomes of in vitro fertilization by applying deep
learning strategies to human embryo health and viability 1112;.

During embryogenesis, multicellular organisms pass through discrete
developmental stages, including fertilization, cleavage, morphogenesis, and
organogenesis, ultimately hatching into their environment. Animal development is
characterized by sets of shared and species-specific features. For example,
following fertilization, most animal embryos undergo a series of rapid cell
divisions. At some point during this cleavage period, cells undergo a suite of
morphogenetic changes as embryo patterning results in tissue-layer organization
through the process of gastrulation. While embryos from many different
organisms may share similar-looking cleavage stages, within specific lineages
there are often unique morphologies characteristic of distinct taxonomic groups
— animal embryos that look similar at cleavage stages might look very different
during gastrulation. These species-specific differences only compound as
development continues. Thus, there is a need for automated tools to classify key
embryonic stages to unlock high-throughput approaches to developmental
biology.

Finally, to fully understand the development of a particular organism, we need to
be both descriptive and mechanistic. The most common way of accomplishing
this is by perturbing the system, from traditional mutagenesis to drug screening.
If we can devise approaches that take advantage of inherent properties, such as
the data we get from label-free light microscopy methods (e.g., bright-field, DIC,
phase contrast, etc), we can maximize our ability to perform these experiments at
scale, across the tree of life, as we don’t have to invest in bespoke genetic

labeling tools for each new research organism.
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The strategy

As a first step toward a longer-term goal of high-throughput image-based
phenotyping across species, we decided to develop an image analysis pipeline for
training a neural network to classify developmental stages with high accuracy and

minimal human intervention from bright-field movies.

We selected the well-studied nematode, Caenorhabditis elegans, as a test case
for automated phenotyping because it has a well-defined embryonic lineage and
easily observable morphological stages, undergoes rapid embryonic development
to a free-living larva, and has a large scientific community that leverages these
many strengths for biological discovery. Despite many differences in early embryo
patterning between nematode species, key developmental stages appear
conserved 1311141, SO we also wanted to explore whether a classifier trained on C.
elegans development would work out-of-the-box on related nematode species,
unlocking future evolutionary comparative studies.

The problem

To fully leverage high-throughput experimental approaches that involve imaging,
we need automated image processing and analysis workflows. High-throughput
experiments involving time courses often consist of large (100+ GB) datasets that
require lengthy data curation and annotation before analyses can even begin. We
set out to establish a method for classifying embryonic stages from bright-field
image data; a modality that does not require the use of species-specific labeling
tools.

Previous attempts to generate a nematode classifier required technological
innovations in microfluidic approaches to isolate individual embryos and relied on
reporter transgenes to properly orient the embryo 1151. In contrast, we wanted to
create a classifier that performs robustly irrespective of embryo orientation and
solely using bright-field microscopy, to allow for comparative studies in organisms
lacking genetic tools.

Our solution

As a proof-of-principle, we built an automated, high-throughput, experimental,
and computational workflow to image and classify the embryonic stages of C.
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elegans.

Our workflow includes (1) optimizing high-throughput embryo collection and
imaging, (2) embryo segmentation, and (3) classification of known stages of
nematode development as well as the detection of unfertilized oocytes and
embryonic lethality. In constructing this pipeline, we've built a trained classifier to
recognize label-free bright-field images of C. elegans embryonic stages, based on
the original descriptions by John Sulston (1942-2018), who generated the first
embryonic lineage map of a multicellular organism. We trained a model based on
manual ground truth annotations using the ResNet-18 neural network

architecture 161. Our classifier achieves approximately 8% accuracy, accounting
for class imbalances, for classifying embryo developmental stages, independent of
embryo orientation. To test our nematode classifier and to extend the utility of
this tool, we used it to quantify the embryonic lethality associated with induced
environmental stress from heat shock and osmotic stress and tested its ability to
correctly classify embryonic stages of related nematode species.

We anticipate that this pipeline will be useful in collecting population-level details
related to reproductive success or embryonic lethality in phenotyping following
perturbation (e.g., RNA interference or traditional mutagenesis screens). More
generally, we're excited by the potential of taking this approach to classify other
kinds of time-course data. We hope you’ll be able to apply our workflow for your
own time-course data and would love to hear how it goes, so please drop us a
comment if you try it!

The resource

Building a classifier for nematode embryo stages

We created a classifier to facilitate the characterization of C. elegans embryonic
phenotypes in high-throughput time-course imaging data. In this pub, we
summarize how we trained our model. We also describe the CLI that you can use
to adapt the model to your imaging data acquired with different contrast,

resolution, or magnification (see pipeline documentation).
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This first section provides a brief overview of the workflow (Figure 1), from
collecting the data to using the computational pipeline to classify and extract
labeled time-course data for downstream analyses. To see the classifier in action,
jump to “Using the classifier for high-throughput studies of nematode

development.”
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Figure 1. Overview of workflow to train and use our nematode classifier.

(1) We collect embryos by hypochlorite treatment and dispense into 384-well glass-bottom plates
(2) for imaging (3). Post-acquisition, we convert files into the ome-zarr format (4) and then
segment and crop individual FOVs (5) in preparation for ground truth annotation (6). We then train
and validate (7) input data from movies that have ground truth annotation using a ResNet-18
architecture to generate a trained classifier (8). A post-processing filtration step removes transient
errors (9) in state calls. We can then process new experimental data and apply the classifier to that
processed data (10) to generate summary statistics for high-throughput experiments (11).

Embryo isolation and applying “smart” microscopy to
optimize data collection

We isolated embryos from gravid adults by hypocholorite treatment 171 and added

them to a 384-well glass-bottom plate (Cellvis).

To reduce the collection of empty fields of view (FOVs), we used the “JOBS”
function in Nikon NIS Elements software (version 54203) to perform threshold-
based object detection (Nikon Elements script available here) in a first round of
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imaging, tiling over each well (Figure 2, B). FOVs that passed a minimum object
detection criteria (usually > 3 embryos detected) moved to a second round of
imaging (Figure 2, C and Figure 3). We then imaged these embryo-containing
FOVs every five minutes for a minimum of 14-16 hours, a length of time that
should allow for wild-type C. elegans to hatch into the L1 larval stage r1s1.
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Figure 2. Smart imaging to collect high-throughput nematode embryogenesis data.

(A) We perform imaging in 384-well plates in a subset of wells. In this example, the colored wells
denote potential different treatments in a given experiment.

(B) We perform a round of object detection to limit data collection to FOVs that have a minimum
number of embryos. Example FOV is shown as raw image (top) and after object detection (bottom),
where the dark blue dot indicates a detected object.

(C) Example FOVs that either fail ( ) or pass ( ) object detection.

Image processing

After image acquisition, we preprocess the raw FOVs to crop around each embryo
to obtain images of uniform size that are centered on a single embryo. This
preprocessing step significantly reduces the complexity of subsequent annotation
and analysis — this two-fold approach transforms the problem of object detection
and classification into the problem of image classification. We segmented the
embryos from the temporal fluctuations in intensity by computing the standard
deviation of the raw bright-field movies across the time dimension, then using
Otsu thresholding to generate a background mask (Figure 3, A). We then filtered
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the foreground regions in the background mask using morphological criteria to
exclude regions that did not correspond to a single isolated embryo. Finally, we
obtained movies of single embryos by cropping square bounding boxes of a size
equal to the length of the embryos around each foreground region (Figure 3, B).
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Figure 3. Image processing workflow to generate single cropped embryo time-lapses.

(A) Example segmentation workflow for an FOV. We segment data based on standard deviation
over time (left) and perform smoothening in xy (middle), which results in detection of a subset of
embryos in a given FOV. Detected embryos are given a unique ID. As an example, we've numbered
starting from O in this figure.

(B) Representative, cropped time-lapses from the FOV in the example shown in (A). Scale bar, in
this and all subsequent images, is 10 um.

Key frame annotation for ground truth

To build a classifier for nematode embryogenesis, we first had to decide on a core
set of developmental stages that would be useful to encode as ground truth. C.
elegans embryogenesis is highly stereotyped, with a defined cell lineage and
rapid development, as embryos hatch in ~12-14 hours into a motile larval stage
(L1). For our classifier, we selected key developmental stages based on the work
of John Sulston and colleagues, whose groundbreaking efforts led to the first cell
lineage map of any animal embryo 1s1.

While a rare occurrence in our wild-type imaging, we did observe instances of
unfertilized embryos, likely stemming from a result of the hypochlorite bleaching
treatment or from older hermaphrodites that had exhausted their supply of
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sperm 191. In experimental manipulations or in experiments involving aging, we
expect that recording the frequency of unfertilized embryos would be useful, so
we annotated images of unfertilized embryos (Figure 4, A and B.9). Next, we
binned all of the early cell division events prior to major morphogenetic
movements into a proliferation stage, which would also include all the events
associated with gastrulation (Figure 4, A and B.1). The first major morphogenetic
changes in the embryo are observable by bright-field microscopy imaging
restricted to a single z-plane, and happen ~six hours into development, when the
embryo takes on a characteristic bean morphology (Figure 4, A and B.2). The next
characteristic stage in nematode development is the comma phase (Figure 4, A
and B.3), which Sulston et al. precisely defined as “the moment at which the
ventral surface of the tail lies perpendicular to the long axis of the egg” r181. In our
movies, this stage only represented a 10-minute imaging window (two frames, as
our time interval was five minutes). Shortly after the comma stage, the embryo
begins to move and progresses through three stages, usually defined as one-,
two-, and three-fold. We binned these stages together as the fold stage (Figure 4,
A and B.4). Finally, the larva hatches into its environment, escaping the eggshell,
which for purposes of ground truth training we annotated as hatch either the
moment we saw the larvae escape or more commonly in our imaging data, the
first frame without an embryo, though sometimes the eggshell is visible in the
frame (Figure 4, A and B.5).
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Figure 4. Schematic and representative images of the developmental stages we used to
create a nematode classifier.

(A) Schematic and (B) images showing the seven classes we selected for annotation. We annotated
images irrespective of orientation so our classifier could correctly identify stages in both lateral
and dorso-ventral orientations. White arrows indicate invagination at the bean stage and yellow
arrows indicate the orientation of the growing tail with respect to the rest of the embryo, as
described by Sulston et al.

To add functionality to our classifier for downstream experiments, we wanted to
annotate images of embryonic lethality or death (Figure 4, A and B.6). We looked
through our original dataset, and not surprisingly, given the high fidelity of C.
elegans embryogenesis [20], we were only able to find two examples (out of 291) of
embryos dying during imaging. In an attempt to generate more images of
embryonic lethality, we heat-shocked wild-type L4-stage animals (the last
developmental stage before becoming gravid adults) at 37 °C for one hour and
collected embryos the following day. However, even in this dataset, we were only
able to identify an additional two examples of “death.”
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Rather than troubleshoot heat shock conditions, we decided to use a
pharmacological perturbation strategy to induce embryonic lethality. A previous
attempt to build a C. elegans embryo classifier used several perturbation
strategies, including high salt 1151. We found that at 8.2 M NaCl, the concentration
used by Atakan and colleagues, we still observed insufficient incidence of
embryonic lethality. Given that Atakan and colleagues found high embryonic
lethality in the context of a microfluidic chamber (in addition to 8.2 M NaCl), it's
possible that this level of lethality (~30%) depended on other environmental
factors in addition to the hyperosmotic stress. In other studies not utilizing a
microfluidics chamber, researchers have used higher salt concentrations to
induce hyperosmotic stress [211. Thus, we performed an additional round of
imaging using 0.5 M and 0.75 M NaCl. At 0.5 M NaCl, we noticed that many
embryos were arrested during fold stages. At 0.75 M NaCl, we saw pronounced
embryonic lethality. We therefore used images from this .75 M NaCl dataset as
additional ground truth annotations for training a classifier to recognize death.

Machine learning using a ResNet-18 architecture to create a
nematode classifier

We trained a ResNet-18 1161 convolutional neural network (CNN) architecture in
PyTorch (Figure 5). We started with a pre-trained ResNet-18 and adapted the
model to our task via transfer learning. We replaced the first convolutional layer to
allow for multiple input channels. We pooled annotated movies of unperturbed,
heat-shocked and osmotically perturbed embryos to train and evaluate a model
that generalizes to diverse perturbations. In order to make the model invariant to
orientation and small differences in the size of the embryo, we augmented the

input images with transforms such as random rotations and random scaling.

We tested several different data transformations when selecting an optimally
performing model, comparing model performance on raw data as input (Figure 5,
A and B) to measures of temporal fluctuations, such as moving average over time
and moving standard deviation over time (Figure 5, C and D). We eventually chose
to use the moving standard deviation and the moving mean with a window size of
five frames (Figure 5, C and D) as encoding temporal dynamics as input data
improved stage classification accuracy for almost all stages as compared to raw
data (Figure 5, B and D). The best-performing model classified most stages (bean,
fold, hatch, and death) with >77% accuracy (Figure 5, D). Confusion resulted
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during classification of the comma stage from bean-stage embryos, and, to a
lesser extent, between unfertilized and dead embryos (Figure 5, D).

Proliferation - 0.25 0.00 0.00 0.00 0.03 0.00
Bean- 0.09 0.08 0.04 0.00 012 0.00
Comma- 0.00 [0.38 0.23 0.20 0.00 0.8 0.00

Fold- 0.00 0.03 0.01 030 0.00

True label

Hatch- 0.00 0.00 0.00 0.00 0.00

Death- 0.05 0.01 0.00 0.3 0.000.00

ResNet-18

Unfertilized- 0.10 0.03 0.00 0.02 0.01 0.8 ReK:i]

(“ 'DI 6‘ ‘Q‘ ‘(\‘ ‘
& & EF S

K7

@
&

Inferred label

Prnlizeration 0.16 0.00 0.00 0.00 0.01 0.00

Bean- 0.12 §ekg@ 0.05 0.00 0.00 0.06 0.00

Comma- 0.01 .. 0.06 0.00 0.00 0.00

Fold- 0.00 0.03 0.01 jeX:E] 0.05 0.00

True label

Hatch- 0,00 0.00 0.00 0.00 0.00 0.00

Death- 0.02 0.02 0.00 0.6 0.00 gekgR 0.00

ResNet-18

Unfertilized - 0.06 0.05 0.00 0.01 0.02 0.25

Inferred label

Figure 5. Encoding dynamics into a ResNet-18 CNN improves nematode classifier
performance.

We initially trained a ResNet-18 CNN architecture using raw data as input into the model (A)
resulting in a confusion matrix (B). Ground truth annotations are shown along the y-axis and
classifications along the x-axis. After testing several different input data transformations, we found
that using the moving standard deviation and moving mean with a window size of five frames (C)
performed better than using raw data (A) as inputs into the neural network (see Materials and
methods for additional details), as shown by a test confusion matrix (D) from annotations across
experiments. The best-performing model (D) performs at high accuracy for most stages (> 77% for
proliferation, bean, fold, hatch, and death) with poor performance for comma (47%) and detection
of unfertilized embryos (61%).

Improving classifier performance with post-processing

Although our trained network classified developmental stages with reasonable
accuracy (Figure 6, A and AK), we noticed that many of the errors in the
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classification of our test data occurred due to transient confusion between non-
sequential stages (e.g., between proliferation and fold) or confusion between
embryonic lethality (death) and fold stages (Figure 6, B and BKX). To correct
confusion between non-sequential stages, we first applied a median filter (using a
window size of seven frames) to the classified stages to remove transient errors.
Then, we eliminated developmentally impossible stage transitions (such as going
backward in development or skipping stages). To eliminate confusion between
embryonic lethality and the fold stage, we took into account the developmental
outcome of the individual time-lapse — i.e., if an embryo hatched successfully at
the end of the time-lapse, we eliminated any transitions prior to the death stage
(Figure 6 AX and BK). Overall, post-processing improves stage classification
accuracy for bean, comma, fold and death (Figure 5, D versus Figure 6, C).

We were unable to perform post-processing on the stages between proliferation
and fold (comma and bean), which represent a period of morphogenesis during C.
elegans development [221. Confusion between comma and bean is not surprising,
as the comma stage occurs for ~10 minutes, corresponding to ~two frames in our
time-lapse datasets. We used the precise definition of the comma stage
established by Sulston et al. in our classification, but this stage is easily confused
with the previous bean stage, even by a trained human annotator. Combining
these two stages into a single morphogenesis stage, indicative of the cell
movements and rearrangements that occur between proliferation and the fold
stage r22j18], would result in > 88% accuracy (e.g., correct bean ID = 81% +
incorrect ID as comma = 7%,; Figure 6, C). We expect that experimentally, it would
be useful to broadly classify bean and comma together, as a means of quantifying
phenotypic responses that might result in changes in some of the major tissue
level rearrangements that occur during this phase of development, including

dorsal intercalation and ventral enclosure [2231231.


https://doi.org/10.1242/dev.124.15.2889
https://doi.org/10.1242/dev.124.15.2889
https://doi.org/10.1016/0012-1606(83)90201-4
https://doi.org/10.1242/dev.124.15.2889
https://doi.org/10.1093/g3journal/jkab164

Al C

Death
Hatch -
Fold - Proliferation .

|

0.00 0.00 0.00 0.00 0.00
Comma -

Bean| ] Bean- 0. 007 0.00 0.00 005 0.00
Proliferation -
0 25 50 75 100 125 150 175 _ Comma-0.00 042 WEZH 0.04 0.00 000 0.00
Frame 3 —
E Fold- 0.00 0.01 0.02 0.02 0.03 0.00
=
=
B' Hatch- 0.00 0.00 0.00 0.00 WKl O. 0.00
— Death- 0.01 0.02 0.00 0.7 0.00 feX
B
Fold f u Unfertilized- 0.01 0.08 0.00 0.00 0.01 0.32 §ek:i:]
Comma L‘N S
Bean & & N e A o]
protferation | A1 1 o}\o o 56‘@ < Q?@ Q"P\ &‘\“’E
Unfertilized ) < &8
o] 25 50 75 100 125 150 175 Q‘D >

Frame Inferred label

Prediction: proliferation|

Figure 6. Post-processing to improve classification.

(A, B) Example embryo time-lapse movies with classifier annotations appended to the movie.

(A, B) Corresponding classifications per frame. Blue traces are the original classifications and
orange traces are the post-processed classifications.

(C) Confusion matrix comparing post-processed annotations to ground truth annotations for
embryos not used during training.

Using the classifier for high-throughput studies of
nematode development

Identifying developmental outcomes in high-throughput
imaging experiments

In this section, we summarize the results of using our classifier to aid in the
analysis of high-throughput, time-course imaging data. First, we examined the
final state classifications from imaging wild-type embryos and embryos whose
mothers experienced a brief 37 °C heat shock (Figure 7, A and B). These data
supported our initial observations when we were annotating images for ground
truth, as there were few (1%, n = 3/291 embryos) instances of embryonic lethality
in wild-type embryos, and only a slight increase (8%, n = 11/137 embryos) in
embryonic lethality in embryos following heat shock.
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Figure 7. Classifier identifications of developmental outcomes from high-throughput
imaging.

(A, C) Stacked bar graphs depicting the percentage of embryos per developmental stage for each
experiment [control and heat shock (A) and osmotic shock experiment (C)]. Color key indicates
final developmental state.

(B, D) Representative frames from individual time-lapses for each experimental condition, as
indicated with final state classification shown at the end of each image series.

Next, we wanted to analyze the results of the osmotic stress dataset (Figure 7, C
and D), which we performed to collect examples of embryonic lethality (“death”)
for our classifier, given the low occurrence of embryonic lethality in our wild-type
and heat shock datasets (Figure 7, A). To interact with our data visually, we
generated a filmstrip of every 18th frame for every other embryo in our datasets
(Figure 8). We treated embryos with either ® M (control), 8.5 M, or 8.75 M NaCl
solution and allowed them to develop for 16 hours. While C. elegans is capable of
adapting to high-salt environments 243213, embryos treated with high salt solutions
without pre-adaptation results in embryonic lethality at varying penetrances [211s).
We selected two concentrations, 8.5 M and 0.75 M NaCl, as these treatments
robustly resulted in embryonic phenotypes during our imaging. Our classifier was
able to identify developmental outcomes from this perturbation experiment
(Figure 7, C). Specifically, we observed that embryos treated with 8.5 M NaCl
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either arrested in the fold stage (48%, n = 76/158 embryos) or died (37%, n =
58/158 embryos) during the time-lapse. At higher salt concentration (0.75 M
NaCl), the majority of embryos died during imaging (81%, n = 129/160 embryos).
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Figure 8. Micrograph time series data from the osmotic shock experiment.

We extracted every tenth frame from the time-course experiment where we exposed C. elegans
embryos to O (green), 0.5 M (gold), and 0.75 M (purple) NaCl.
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Reliably classifying other nematode species requires species-
specific ground truth annotations

As a final test of our nematode classifier, we imaged embryonic development of
two additional species of free-living rhabditid nematodes: an additional
Caenorhabditid species, Caenorhabditis portoensis, and a more distantly related
species, Oscheius tipulae (Figure 10, A, phylogeny based on 15]). We annotated 15
movies (Figure 9, B for representative images) of each species and used the
trained model to classify the images from these experiments. The original model
performed well at classifying proliferation (90% for C. portoensis, 92% for O.
tipulae), fold (78%, 94%) and hatch (100% for both) in these data, but, as was the
case with the C. elegans data, struggled to correctly classify morphogenesis
stages [bean (22%, 48%) and comma (15%, 7%)] (Figure 9, C). During annotation,
we noticed that O. tipulae failed to hatch during the imaging window of 16 hours.
These data support observations that O. tipulae develops at a slower rate than C.
elegans&nbsp;2s], accounting for the absence of hatch in our confusion matrix

(Figure 9, C).

Given the low performance and high confusion on morphogenesis stages (bean
and comma) we next asked if we could improve classification by training a model
that included ground truth annotations of data from the other two nematode
species. We retrained the network with this additional data, and performance for
all stages increased (e.g., bean correctly classified at 80% and 71% in C.
portoensis and O. tipulae, respectively; Figure 9, C).
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Figure 9. Extending our classifier to other nematode species.

(A) Phylogenetic relationship of the three nematodes studied in this project.

(B) Representative time-lapse images from each species, shown as a filmstrip containing every
10th frame of the original cropped movie.

(C) Confusion matrices for each species based on a classifier model trained only on C. elegans
(left) and a new model trained on ground truth annotations from the additional nematode species

(right).

Finally, we asked whether our model trained with images from additional

nematode species performed better or worse when classifying our original C.

elegans data. The addition of images for other nematode species resulted in

improved performance for some of the stages, specifically proliferation (83% to
91%) and death (79% to 94%) (Figure 10, A-B). While there was improvement at
classifying comma stage (47% to 65%), identification of the bean stage was

poorer in the general model (77% to 56%) (Figure 10, A-B).

We're interested in seeing if these trends might improve with the addition of

more data, and have included all of the documentation necessary to train new

models. If you want to classify developmental outcomes from your own high-

throughput imaging experiments, we suggest using the model trained on all three

species, as it performed better at classifying hatch and embryonic lethality

(death).
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Figure 10. A more general model improves classification accuracy of C. elegans images.

Confusion matrices of validation data for the original network trained on only C. elegans images (A)
versus the network trained on C. elegans and the two additional nematode species (B).

Materials and methods

Species and strains

The following strains were used in this study: C. elegans: N2 (wild-type), DQM327
(omd75[eef-1A.1p::his-58::dendra::3xHA::tbb-2 3'UTR]) I; cpIs80 [eef-
1A.1p::mKate2-C1:mKate2-GLO::PH::3xHA::tbb-2 3'UTR] II. O. tipulae: CEW1. C.
portoensis: EG4788. We maintained all nematode strains used in this study on 60
mm NGM plates on an OP50 E. coli lawn using standard methods [261.

Embryo isolation

We isolated nematode embryos by hypochlorite treatment of a minimum of three
60 cm NGM plates of gravid adults using a standard protocol 171. Briefly, we
washed gravid hermaphrodites off NGM plates using M9 media, then
concentrated and treated with hypochlorite for 6-8 min, then washed repeatedly
with M9 to remove the unreacted hypochlorite. To concentrate embryos following
the final M9 wash for dispensing into 384-well plates for imaging, we decanted
the M9 wash and examined 1 pl of embryo suspension. Our target concentration
was ~50-75 embryos/ul. If too concentrated, we added an appropriate volume of
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M9, usually ~50-100 pul. We added 1 ul of embryo suspension to individual wells in
a 384-well glass-bottom plate (Cellvis) containing 50 ul of M9 per well. For
hyperosmotic perturbation experiments, we added embryos to the appropriate
NaCl concentration (0.5 M or 8.75 M). To disperse embryos throughout the well,
we gently pipetted the suspension up and down using a 200 ul pipette. We
settled embryos to the bottom of the well in preparation for imaging by
performing a brief centrifugation (1 min, 600 x g) in a table-top centrifuge
(Sorvall X Pro Series) at room temperature (~21°C).

Microscopy

We performed all imaging experiments on a Nikon Ti2-E compound inverted
microscope, equipped with an ORCA-Fusion BT digital sSCMOS camera and
configured for widefield imaging. We collected all data using a Plan Apo 20x 0.75
NA Air objective. We performed acquisition using High Content Analysis NIS-
Elements software (version 54203). We performed object detection to select
FOVs that contained a minimum number of embryos by designing a custom JOBS
script to perform thresholding (script available here). Following tiled scans of wells
containing embryos, we then imaged FOVs that met the object detection criteria
every five minutes for 14-16 hours, to allow for embryos to complete development
and hatch as L1 larvae.

Image processing and model training

We performed all image processing in Python. Briefly, we converted raw images
from each dataset from Nikon's ND2 format to Zarr format, cropped embryos from
each raw FOV, and calculated the moving mean and moving standard deviation for
all cropped embryos.

We used PyTorch with PyTorch Lightning to facilitate dataset loading and model
training. We wrote a custom dataloader to aggregate the time-lapse frames from
all annotated cropped embryos and split the aggregated frames (from 95 C.
elegans movies) into training, validation, and test sets. After training, we used the
model checkpoint with the highest validation accuracy to infer (use the tool to
provide a best guess for) stage labels for all cropped embryos. Finally, we post-
processed the inferred labels (as described in Figure 6) to generate the final
summary statistics shown in Figure 7. To calculate the confusion matrices, we
generated an independent set of manually annotated embryos (from 55 C.
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elegans movies and 15 movies from C. portoensis and O. tipulae) that were not
among the embryos used during training. For re-training a network on all three
species of nematodes, we annotated additional frames (from 15 movies per
species) for training, validation, and test sets as above.

We wrote a separate CLI script to perform each of these steps (e.g., ND2
conversion, embryo cropping, model training, label classification, post-processing,
etc.). Please see the README in our GitHub repo for more details and examples of
how to use each of these scripts. We used ChatGPT and GitHub Copilot to write
some code.

We added timestamps for figures using a Napari plugin (napari-timestamper).

Key takeaways

We trained a ResNet-18 neural network to identify key developmental stages of
nematode embryos and classify endpoint results from high-throughput imaging
experiments, distinguishing between embryonic lethality and successful hatching.
We chose a deep learning model that relied on supervised learning and human
annotation of key frames, but trained a model that took advantage of the dynamic
nature of the time-course data. While the model performed well at identifying
most of the developmental stages as well as classifying lethality and hatching, we
found it classified the subtle differences that make up the key morphogenesis
phases of nematode development less robustly. Finally, we found that we needed
to add image data from other species to train a new model that could perform
well in identifying stages of nematodes beyond C. elegans.

We hope that C. elegans researchers who want to phenotype mutants at scale or
use forward or reverse genetic approaches at high throughput will find this tool
useful. More broadly, we hope that our workflow and approach might be useful to
anyone wanting to apply deep learning to time-course data.

27


https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://socket.dev/pypi/package/napari-timestamper

Next steps

While we're not pursuing this work further, as our scientific strategy has shifted,
we’'d be interested in hearing whether this approach is useful for building
classifiers for other time-course imaging data. We hope that the basic tools we've
included in our GitHub repository will be a useful starting point for anyone

interested in building a classifier with their own imaging data. We're particularly
curious if researchers who would find this tool useful for their own science have
the required computational expertise to use it based on the documentation we’ve
provided. If you do use this resource, we'd love to hear about your experience.
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