
Automated classification of
time-course imaging data
applied to nematode
embryogenesis

Machine learning is a powerful tool for classifying images in a

time series, such as the developmental stages of embryos. We

built a classifier using only bright-field microscopy images to

infer nematode embryonic stages at high throughput.

Purpose
We’re broadly interested in extracting biological function from label-free, high-

throughput imaging data. As a first pass, we tested the effectiveness of a deep-

learning framework that incorporates temporal information in classifying the

developmental stage of the well-studied nematode, Caenorhabditis elegans. We

trained a classifier that you can use to identify nematode embryo stages from

time-course datasets captured using bright-field microscopy. We hope this tool

will be immediately useful to interrogate embryonic development, reproductive

success, or developmental outcomes following perturbations in C. elegans or

other free-living nematode species. More broadly, you can adapt our approach to

any category of classifiable microscopy time-course data. To this end, we provide

a PyTorch-based pipeline for training and evaluating your own models.

The tool lets you go from imaging nematode embryos to classifying

developmental stages and quantifying the frequency of successful versus
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unsuccessful developmental outcomes. It’s about 80% accurate in calling the

correct stage. We’re not pursuing this project further but welcome your input and

encourage others to incorporate user feedback to improve the functionality of the

classifier if it’s useful to you.

Our code in Python is available in this GitHub repository.

The data we used in our training, validation, and experimentation are on
Zenodo.

We’ve put this effort on ice! 🧊

Background
For most organisms, the effort and expense of genetic or antibody-based labeling

for the purpose of imaging is very high, requiring dedicated team effort and

resources. We want to develop tools that we can readily apply to many organisms,

allowing new understanding of evolutionary solutions to biological problems. In

line with this overarching goal, we set out to leverage the information in label-

free images for phenotyping in a scalable, automated fashion. More broadly, we’d

like to understand the extent to which we can use label-free imaging across as

large a swath of the tree of life as possible to extract phenotypic information and

map traits wherever we find novelty.

Combining deep learning with high-throughput live imaging has the potential for

broad impacts on many fields of biology, scaling from cells to organisms. For

example, deep learning approaches to cell type identification [1][2] and cell

health [3] have the potential to be transformative. Applying these methods to

label-free data [4][5][6] decreases experimental cost and increases our ability to

explore organismal diversity.

Developmental biology is ripe for the application of deep learning approaches to

facilitate discovery and unlock translational potential [7]. The study of
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developmental biology has provided fundamental insights into multicellular life at

the intersection of genetics, molecular, cellular, and evolutionary biology. Seeing

where development goes awry allows us to understand the molecular

underpinnings of disease, from developmental disorders leading to birth

defects [8][9] to the origins of cancer [10]. Not surprisingly, there are concerted

efforts at improving the outcomes of in vitro fertilization by applying deep

learning strategies to human embryo health and viability [11][12].

During embryogenesis, multicellular organisms pass through discrete

developmental stages, including fertilization, cleavage, morphogenesis, and

organogenesis, ultimately hatching into their environment. Animal development is

characterized by sets of shared and species-specific features. For example,

following fertilization, most animal embryos undergo a series of rapid cell

divisions. At some point during this cleavage period, cells undergo a suite of

morphogenetic changes as embryo patterning results in tissue-layer organization

through the process of gastrulation. While embryos from many different

organisms may share similar-looking cleavage stages, within specific lineages

there are often unique morphologies characteristic of distinct taxonomic groups

— animal embryos that look similar at cleavage stages might look very different

during gastrulation. These species-specific differences only compound as

development continues. Thus, there is a need for automated tools to classify key

embryonic stages to unlock high-throughput approaches to developmental

biology.

Finally, to fully understand the development of a particular organism, we need to

be both descriptive and mechanistic. The most common way of accomplishing

this is by perturbing the system, from traditional mutagenesis to drug screening.

If we can devise approaches that take advantage of inherent properties, such as

the data we get from label-free light microscopy methods (e.g., bright-field, DIC,

phase contrast, etc), we can maximize our ability to perform these experiments at

scale, across the tree of life, as we don’t have to invest in bespoke genetic

labeling tools for each new research organism.
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The strategy
As a first step toward a longer-term goal of high-throughput image-based

phenotyping across species, we decided to develop an image analysis pipeline for

training a neural network to classify developmental stages with high accuracy and

minimal human intervention from bright-field movies.

We selected the well-studied nematode, Caenorhabditis elegans, as a test case

for automated phenotyping because it has a well-defined embryonic lineage and

easily observable morphological stages, undergoes rapid embryonic development

to a free-living larva, and has a large scientific community that leverages these

many strengths for biological discovery. Despite many differences in early embryo

patterning between nematode species, key developmental stages appear

conserved [13][14], so we also wanted to explore whether a classifier trained on C.

elegans development would work out-of-the-box on related nematode species,

unlocking future evolutionary comparative studies.

The problem
To fully leverage high-throughput experimental approaches that involve imaging,

we need automated image processing and analysis workflows. High-throughput

experiments involving time courses often consist of large (100+ GB) datasets that

require lengthy data curation and annotation before analyses can even begin. We

set out to establish a method for classifying embryonic stages from bright-field

image data; a modality that does not require the use of species-specific labeling

tools.

Previous attempts to generate a nematode classifier required technological

innovations in microfluidic approaches to isolate individual embryos and relied on

reporter transgenes to properly orient the embryo [15]. In contrast, we wanted to

create a classifier that performs robustly irrespective of embryo orientation and

solely using bright-field microscopy, to allow for comparative studies in organisms

lacking genetic tools.

Our solution
As a proof-of-principle, we built an automated, high-throughput, experimental,

and computational workflow to image and classify the embryonic stages of C.
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elegans.

Our workflow includes (1) optimizing high-throughput embryo collection and

imaging, (2) embryo segmentation, and (3) classification of known stages of

nematode development as well as the detection of unfertilized oocytes and

embryonic lethality. In constructing this pipeline, we’ve built a trained classifier to

recognize label-free bright-field images of C. elegans embryonic stages, based on

the original descriptions by John Sulston (1942–2018), who generated the first

embryonic lineage map of a multicellular organism. We trained a model based on

manual ground truth annotations using the ResNet-18 neural network

architecture [16]. Our classifier achieves approximately 80% accuracy, accounting

for class imbalances, for classifying embryo developmental stages, independent of

embryo orientation. To test our nematode classifier and to extend the utility of

this tool, we used it to quantify the embryonic lethality associated with induced

environmental stress from heat shock and osmotic stress and tested its ability to

correctly classify embryonic stages of related nematode species.

We anticipate that this pipeline will be useful in collecting population-level details

related to reproductive success or embryonic lethality in phenotyping following

perturbation (e.g., RNA interference or traditional mutagenesis screens). More

generally, we’re excited by the potential of taking this approach to classify other

kinds of time-course data. We hope you’ll be able to apply our workflow for your

own time-course data and would love to hear how it goes, so please drop us a

comment if you try it!

The resource

Building a classifier for nematode embryo stages
We created a classifier to facilitate the characterization of C. elegans embryonic

phenotypes in high-throughput time-course imaging data. In this pub, we

summarize how we trained our model. We also describe the CLI that you can use

to adapt the model to your imaging data acquired with different contrast,

resolution, or magnification (see pipeline documentation).
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This first section provides a brief overview of the workflow (Figure 1), from

collecting the data to using the computational pipeline to classify and extract

labeled time-course data for downstream analyses. To see the classifier in action,

jump to “Using the classifier for high-throughput studies of nematode

development.”

Figure 1. Overview of workflow to train and use our nematode classifier.

(1) We collect embryos by hypochlorite treatment and dispense into 384-well glass-bottom plates
(2) for imaging (3). Post-acquisition, we convert files into the ome-zarr format (4) and then
segment and crop individual FOVs (5) in preparation for ground truth annotation (6). We then train
and validate (7) input data from movies that have ground truth annotation using a ResNet-18
architecture to generate a trained classifier (8). A post-processing filtration step removes transient
errors (9) in state calls. We can then process new experimental data and apply the classifier to that
processed data (10) to generate summary statistics for high-throughput experiments (11).

Embryo isolation and applying “smart” microscopy to
optimize data collection
We isolated embryos from gravid adults by hypocholorite treatment [17] and added

them to a 384-well glass-bottom plate (Cellvis).

To reduce the collection of empty fields of view (FOVs), we used the “JOBS”

function in Nikon NIS Elements software (version 54203) to perform threshold-

based object detection (Nikon Elements script available here) in a first round of
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imaging, tiling over each well (Figure 2, B). FOVs that passed a minimum object

detection criteria (usually > 3 embryos detected) moved to a second round of

imaging (Figure 2, C and Figure 3). We then imaged these embryo-containing

FOVs every five minutes for a minimum of 14–16 hours, a length of time that

should allow for wild-type C. elegans to hatch into the L1 larval stage [18].

Figure 2. Smart imaging to collect high-throughput nematode embryogenesis data.

(A) We perform imaging in 384-well plates in a subset of wells. In this example, the colored wells
denote potential different treatments in a given experiment.

(B) We perform a round of object detection to limit data collection to FOVs that have a minimum
number of embryos. Example FOV is shown as raw image (top) and after object detection (bottom),
where the dark blue dot indicates a detected object.

(C) Example FOVs that either fail (❌) or pass (✅) object detection.

Image processing
After image acquisition, we preprocess the raw FOVs to crop around each embryo

to obtain images of uniform size that are centered on a single embryo. This

preprocessing step significantly reduces the complexity of subsequent annotation

and analysis — this two-fold approach transforms the problem of object detection

and classification into the problem of image classification. We segmented the

embryos from the temporal fluctuations in intensity by computing the standard

deviation of the raw bright-field movies across the time dimension, then using

Otsu thresholding to generate a background mask (Figure 3, A). We then filtered
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the foreground regions in the background mask using morphological criteria to

exclude regions that did not correspond to a single isolated embryo. Finally, we

obtained movies of single embryos by cropping square bounding boxes of a size

equal to the length of the embryos around each foreground region (Figure 3, B).

Figure 3. Image processing workflow to generate single cropped embryo time-lapses.

(A) Example segmentation workflow for an FOV. We segment data based on standard deviation
over time (left) and perform smoothening in xy (middle), which results in detection of a subset of
embryos in a given FOV. Detected embryos are given a unique ID. As an example, we’ve numbered
starting from 0 in this figure.

(B) Representative, cropped time-lapses from the FOV in the example shown in (A). Scale bar, in
this and all subsequent images, is 10 µm.

Key frame annotation for ground truth
To build a classifier for nematode embryogenesis, we first had to decide on a core

set of developmental stages that would be useful to encode as ground truth. C.

elegans embryogenesis is highly stereotyped, with a defined cell lineage and

rapid development, as embryos hatch in ~12–14 hours into a motile larval stage

(L1). For our classifier, we selected key developmental stages based on the work

of John Sulston and colleagues, whose groundbreaking efforts led to the first cell

lineage map of any animal embryo [18].

While a rare occurrence in our wild-type imaging, we did observe instances of

unfertilized embryos, likely stemming from a result of the hypochlorite bleaching

treatment or from older hermaphrodites that had exhausted their supply of
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sperm [19]. In experimental manipulations or in experiments involving aging, we

expect that recording the frequency of unfertilized embryos would be useful, so

we annotated images of unfertilized embryos (Figure 4, A and B.0). Next, we

binned all of the early cell division events prior to major morphogenetic

movements into a proliferation stage, which would also include all the events

associated with gastrulation (Figure 4, A and B.1). The first major morphogenetic

changes in the embryo are observable by bright-field microscopy imaging

restricted to a single z-plane, and happen ~six hours into development, when the

embryo takes on a characteristic bean morphology (Figure 4, A and B.2). The next

characteristic stage in nematode development is the comma phase (Figure 4, A

and B.3), which Sulston et al. precisely defined as “the moment at which the

ventral surface of the tail lies perpendicular to the long axis of the egg” [18]. In our

movies, this stage only represented a 10-minute imaging window (two frames, as

our time interval was five minutes). Shortly after the comma stage, the embryo

begins to move and progresses through three stages, usually defined as one-,

two-, and three-fold. We binned these stages together as the fold stage (Figure 4,

A and B.4). Finally, the larva hatches into its environment, escaping the eggshell,

which for purposes of ground truth training we annotated as hatch either the

moment we saw the larvae escape or more commonly in our imaging data, the

first frame without an embryo, though sometimes the eggshell is visible in the

frame (Figure 4, A and B.5).
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Figure 4. Schematic and representative images of the developmental stages we used to
create a nematode classifier.

(A) Schematic and (B) images showing the seven classes we selected for annotation. We annotated
images irrespective of orientation so our classifier could correctly identify stages in both lateral
and dorso-ventral orientations. White arrows indicate invagination at the bean stage and yellow
arrows indicate the orientation of the growing tail with respect to the rest of the embryo, as
described by Sulston et al .

To add functionality to our classifier for downstream experiments, we wanted to

annotate images of embryonic lethality or death (Figure 4, A and B.6). We looked

through our original dataset, and not surprisingly, given the high fidelity of C.

elegans embryogenesis [20], we were only able to find two examples (out of 291) of

embryos dying during imaging. In an attempt to generate more images of

embryonic lethality, we heat-shocked wild-type L4-stage animals (the last

developmental stage before becoming gravid adults) at 37 °C for one hour and

collected embryos the following day. However, even in this dataset, we were only

able to identify an additional two examples of “death.”
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Rather than troubleshoot heat shock conditions, we decided to use a

pharmacological perturbation strategy to induce embryonic lethality. A previous

attempt to build a C. elegans embryo classifier used several perturbation

strategies, including high salt [15]. We found that at 0.2 M NaCl, the concentration

used by Atakan and colleagues, we still observed insufficient incidence of

embryonic lethality. Given that Atakan and colleagues found high embryonic

lethality in the context of a microfluidic chamber (in addition to 0.2 M NaCl), it’s

possible that this level of lethality (~30%) depended on other environmental

factors in addition to the hyperosmotic stress. In other studies not utilizing a

microfluidics chamber, researchers have used higher salt concentrations to

induce hyperosmotic stress [21]. Thus, we performed an additional round of

imaging using 0.5 M and 0.75 M NaCl. At 0.5 M NaCl, we noticed that many

embryos were arrested during fold stages. At 0.75 M NaCl, we saw pronounced

embryonic lethality. We therefore used images from this 0.75 M NaCl dataset as

additional ground truth annotations for training a classifier to recognize death.

Machine learning using a ResNet-18 architecture to create a
nematode classifier
We trained a ResNet-18 [16] convolutional neural network (CNN) architecture in

PyTorch (Figure 5). We started with a pre-trained ResNet-18 and adapted the

model to our task via transfer learning. We replaced the first convolutional layer to

allow for multiple input channels. We pooled annotated movies of unperturbed,

heat-shocked and osmotically perturbed embryos to train and evaluate a model

that generalizes to diverse perturbations. In order to make the model invariant to

orientation and small differences in the size of the embryo, we augmented the

input images with transforms such as random rotations and random scaling.

We tested several different data transformations when selecting an optimally

performing model, comparing model performance on raw data as input (Figure 5,

A and B) to measures of temporal fluctuations, such as moving average over time

and moving standard deviation over time (Figure 5, C and D). We eventually chose

to use the moving standard deviation and the moving mean with a window size of

five frames (Figure 5, C and D) as encoding temporal dynamics as input data

improved stage classification accuracy for almost all stages as compared to raw

data (Figure 5, B and D). The best-performing model classified most stages (bean,

fold, hatch, and death) with >77% accuracy (Figure 5, D). Confusion resulted
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during classification of the comma stage from bean-stage embryos, and, to a

lesser extent, between unfertilized and dead embryos (Figure 5, D).

Figure 5. Encoding dynamics into a ResNet-18 CNN improves nematode classifier
performance.

We initially trained a ResNet-18 CNN architecture using raw data as input into the model (A)
resulting in a confusion matrix (B). Ground truth annotations are shown along the y-axis and
classifications along the x-axis. After testing several different input data transformations, we found
that using the moving standard deviation and moving mean with a window size of five frames (C)
performed better than using raw data (A) as inputs into the neural network (see Materials and
methods for additional details), as shown by a test confusion matrix (D) from annotations across
experiments. The best-performing model (D) performs at high accuracy for most stages (> 77% for
proliferation, bean, fold, hatch, and death) with poor performance for comma (47%) and detection
of unfertilized embryos (61%).

Improving classifier performance with post-processing
Although our trained network classified developmental stages with reasonable

accuracy (Figure 6, A and Aʹ), we noticed that many of the errors in the
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classification of our test data occurred due to transient confusion between non-

sequential stages (e.g., between proliferation and fold) or confusion between

embryonic lethality (death) and fold stages (Figure 6, B and Bʹ). To correct

confusion between non-sequential stages, we first applied a median filter (using a

window size of seven frames) to the classified stages to remove transient errors.

Then, we eliminated developmentally impossible stage transitions (such as going

backward in development or skipping stages). To eliminate confusion between

embryonic lethality and the fold stage, we took into account the developmental

outcome of the individual time-lapse — i.e., if an embryo hatched successfully at

the end of the time-lapse, we eliminated any transitions prior to the death stage

(Figure 6 Aʹ and Bʹ). Overall, post-processing improves stage classification

accuracy for bean, comma, fold and death (Figure 5, D versus Figure 6, C).

We were unable to perform post-processing on the stages between proliferation

and fold (comma and bean), which represent a period of morphogenesis during C.

elegans development [22]. Confusion between comma and bean is not surprising,

as the comma stage occurs for ~10 minutes, corresponding to ~two frames in our

time-lapse datasets. We used the precise definition of the comma stage

established by Sulston et al. in our classification, but this stage is easily confused

with the previous bean stage, even by a trained human annotator. Combining

these two stages into a single morphogenesis stage, indicative of the cell

movements and rearrangements that occur between proliferation and the fold

stage [22][18], would result in > 88% accuracy (e.g., correct bean ID = 81% +

incorrect ID as comma = 7%; Figure 6, C). We expect that experimentally, it would

be useful to broadly classify bean and comma together, as a means of quantifying

phenotypic responses that might result in changes in some of the major tissue

level rearrangements that occur during this phase of development, including

dorsal intercalation and ventral enclosure [22][23].
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Figure 6. Post-processing to improve classification.

(A, B) Example embryo time-lapse movies with classifier annotations appended to the movie.

(A′, B′) Corresponding classifications per frame. Blue traces are the original classifications and
orange traces are the post-processed classifications.

(C) Confusion matrix comparing post-processed annotations to ground truth annotations for
embryos not used during training.

Using the classifier for high-throughput studies of
nematode development

Identifying developmental outcomes in high-throughput
imaging experiments
In this section, we summarize the results of using our classifier to aid in the

analysis of high-throughput, time-course imaging data. First, we examined the

final state classifications from imaging wild-type embryos and embryos whose

mothers experienced a brief 37 °C heat shock (Figure 7, A and B). These data

supported our initial observations when we were annotating images for ground

truth, as there were few (1%, n = 3/291 embryos) instances of embryonic lethality

in wild-type embryos, and only a slight increase (8%, n = 11/137 embryos) in

embryonic lethality in embryos following heat shock.
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Figure 7. Classifier identifications of developmental outcomes from high-throughput
imaging.

(A, C) Stacked bar graphs depicting the percentage of embryos per developmental stage for each
experiment [control and heat shock (A) and osmotic shock experiment (C)]. Color key indicates
final developmental state.

(B, D) Representative frames from individual time-lapses for each experimental condition, as
indicated with final state classification shown at the end of each image series.

Next, we wanted to analyze the results of the osmotic stress dataset (Figure 7, C

and D), which we performed to collect examples of embryonic lethality (“death”)

for our classifier, given the low occurrence of embryonic lethality in our wild-type

and heat shock datasets (Figure 7, A). To interact with our data visually, we

generated a filmstrip of every 10th frame for every other embryo in our datasets

(Figure 8). We treated embryos with either 0 M (control), 0.5 M, or 0.75 M NaCl

solution and allowed them to develop for 16 hours. While C. elegans is capable of

adapting to high-salt environments [24][21], embryos treated with high salt solutions

without pre-adaptation results in embryonic lethality at varying penetrances [21][15].

We selected two concentrations, 0.5 M and 0.75 M NaCl, as these treatments

robustly resulted in embryonic phenotypes during our imaging. Our classifier was

able to identify developmental outcomes from this perturbation experiment

(Figure 7, C). Specifically, we observed that embryos treated with 0.5 M NaCl
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either arrested in the fold stage (48%, n = 76/158 embryos) or died (37%, n =

58/158 embryos) during the time-lapse. At higher salt concentration (0.75 M

NaCl), the majority of embryos died during imaging (81%, n = 129/160 embryos).
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Figure 8. Micrograph time series data from the osmotic shock experiment.

We extracted every tenth frame from the time-course experiment where we exposed C. elegans
embryos to 0 (green), 0.5 M (gold), and 0.75 M (purple) NaCl .
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Reliably classifying other nematode species requires species-
specific ground truth annotations
As a final test of our nematode classifier, we imaged embryonic development of

two additional species of free-living rhabditid nematodes: an additional

Caenorhabditid species, Caenorhabditis portoensis, and a more distantly related

species, Oscheius tipulae (Figure 10, A, phylogeny based on [15]). We annotated 15

movies (Figure 9, B for representative images) of each species and used the

trained model to classify the images from these experiments. The original model

performed well at classifying proliferation (90% for C. portoensis, 92% for O.

tipulae), fold (78%, 94%) and hatch (100% for both) in these data, but, as was the

case with the C. elegans data, struggled to correctly classify morphogenesis

stages [bean (22%, 48%) and comma (15%, 7%)] (Figure 9, C). During annotation,

we noticed that O. tipulae failed to hatch during the imaging window of 16 hours.

These data support observations that O. tipulae develops at a slower rate than C.

elegans&nbsp;[25], accounting for the absence of hatch in our confusion matrix

(Figure 9, C).

Given the low performance and high confusion on morphogenesis stages (bean

and comma) we next asked if we could improve classification by training a model

that included ground truth annotations of data from the other two nematode

species. We retrained the network with this additional data, and performance for

all stages increased (e.g., bean correctly classified at 80% and 71% in C.

portoensis and O. tipulae, respectively; Figure 9, C).
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Figure 9. Extending our classifier to other nematode species.

(A) Phylogenetic relationship of the three nematodes studied in this project.

(B) Representative time-lapse images from each species, shown as a filmstrip containing every
10th frame of the original cropped movie.

(C) Confusion matrices for each species based on a classifier model trained only on C. elegans
(left) and a new model trained on ground truth annotations from the additional nematode species
(right).

Finally, we asked whether our model trained with images from additional

nematode species performed better or worse when classifying our original C.

elegans data. The addition of images for other nematode species resulted in

improved performance for some of the stages, specifically proliferation (83% to

91%) and death (79% to 94%) (Figure 10, A–B). While there was improvement at

classifying comma stage (47% to 65%), identification of the bean stage was

poorer in the general model (77% to 56%) (Figure 10, A–B).

We’re interested in seeing if these trends might improve with the addition of

more data, and have included all of the documentation necessary to train new

models. If you want to classify developmental outcomes from your own high-

throughput imaging experiments, we suggest using the model trained on all three

species, as it performed better at classifying hatch and embryonic lethality

(death).
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Figure 10. A more general model improves classification accuracy of C. elegans images.

Confusion matrices of validation data for the original network trained on only C. elegans images (A)
versus the network trained on C. elegans and the two additional nematode species (B).

Materials and methods

Species and strains
The following strains were used in this study: C. elegans: N2 (wild-type), DQM327

(bmd75[eef-1A.1p::his-58::dendra::3xHA::tbb-2 3’UTR]) I; cpIs80 [eef-

1A.1p::mKate2-C1::mKate2-GLO::PH::3xHA::tbb-2 3'UTR] II. O. tipulae: CEW1. C.

portoensis: EG4788. We maintained all nematode strains used in this study on 60

mm NGM plates on an OP50 E. coli lawn using standard methods [26].

Embryo isolation
We isolated nematode embryos by hypochlorite treatment of a minimum of three

60 cm NGM plates of gravid adults using a standard protocol [17]. Briefly, we

washed gravid hermaphrodites off NGM plates using M9 media, then

concentrated and treated with hypochlorite for 6–8 min, then washed repeatedly

with M9 to remove the unreacted hypochlorite. To concentrate embryos following

the final M9 wash for dispensing into 384-well plates for imaging, we decanted

the M9 wash and examined 1 µl of embryo suspension. Our target concentration

was ~50–75 embryos/µl. If too concentrated, we added an appropriate volume of
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M9, usually ~50–100 µl. We added 1 µl of embryo suspension to individual wells in

a 384-well glass-bottom plate (Cellvis) containing 50 µl of M9 per well. For

hyperosmotic perturbation experiments, we added embryos to the appropriate

NaCl concentration (0.5 M or 0.75 M). To disperse embryos throughout the well,

we gently pipetted the suspension up and down using a 200 µl pipette. We

settled embryos to the bottom of the well in preparation for imaging by

performing a brief centrifugation (1 min, 600 × g) in a table-top centrifuge

(Sorvall X Pro Series) at room temperature (~21°C).

Microscopy
We performed all imaging experiments on a Nikon Ti2-E compound inverted

microscope, equipped with an ORCA-Fusion BT digital sCMOS camera and

configured for widefield imaging. We collected all data using a Plan Apo 20× 0.75

NA Air objective. We performed acquisition using High Content Analysis NIS-

Elements software (version 54203). We performed object detection to select

FOVs that contained a minimum number of embryos by designing a custom JOBS

script to perform thresholding (script available here). Following tiled scans of wells

containing embryos, we then imaged FOVs that met the object detection criteria

every five minutes for 14–16 hours, to allow for embryos to complete development

and hatch as L1 larvae.

Image processing and model training
We performed all image processing in Python. Briefly, we converted raw images

from each dataset from Nikon's ND2 format to Zarr format, cropped embryos from

each raw FOV, and calculated the moving mean and moving standard deviation for

all cropped embryos.

We used PyTorch with PyTorch Lightning to facilitate dataset loading and model

training. We wrote a custom dataloader to aggregate the time-lapse frames from

all annotated cropped embryos and split the aggregated frames (from 95 C.

elegans movies) into training, validation, and test sets. After training, we used the

model checkpoint with the highest validation accuracy to infer (use the tool to

provide a best guess for) stage labels for all cropped embryos. Finally, we post-

processed the inferred labels (as described in Figure 6) to generate the final

summary statistics shown in Figure 7. To calculate the confusion matrices, we

generated an independent set of manually annotated embryos (from 55 C.
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elegans movies and 15 movies from C. portoensis and O. tipulae) that were not

among the embryos used during training. For re-training a network on all three

species of nematodes, we annotated additional frames (from 15 movies per

species) for training, validation, and test sets as above.

We wrote a separate CLI script to perform each of these steps (e.g., ND2

conversion, embryo cropping, model training, label classification, post-processing,

etc.). Please see the README in our GitHub repo for more details and examples of

how to use each of these scripts. We used ChatGPT and GitHub Copilot to write

some code.

We added timestamps for figures using a Napari plugin (napari-timestamper).

Key takeaways
We trained a ResNet-18 neural network to identify key developmental stages of

nematode embryos and classify endpoint results from high-throughput imaging

experiments, distinguishing between embryonic lethality and successful hatching.

We chose a deep learning model that relied on supervised learning and human

annotation of key frames, but trained a model that took advantage of the dynamic

nature of the time-course data. While the model performed well at identifying

most of the developmental stages as well as classifying lethality and hatching, we

found it classified the subtle differences that make up the key morphogenesis

phases of nematode development less robustly. Finally, we found that we needed

to add image data from other species to train a new model that could perform

well in identifying stages of nematodes beyond C. elegans.

We hope that C. elegans researchers who want to phenotype mutants at scale or

use forward or reverse genetic approaches at high throughput will find this tool

useful. More broadly, we hope that our workflow and approach might be useful to

anyone wanting to apply deep learning to time-course data.
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Next steps
While we’re not pursuing this work further, as our scientific strategy has shifted,

we’d be interested in hearing whether this approach is useful for building

classifiers for other time-course imaging data. We hope that the basic tools we’ve

included in our GitHub repository will be a useful starting point for anyone

interested in building a classifier with their own imaging data. We’re particularly

curious if researchers who would find this tool useful for their own science have

the required computational expertise to use it based on the documentation we’ve

provided. If you do use this resource, we’d love to hear about your experience.
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