
Predicting bioactive peptides from
transcriptome assemblies with the
peptigate workflow

Peptigate predicts bioactive peptides from transcriptomes. It integrates
existing tools to predict sORF-encoded peptides, cleavage peptides, and
RiPPs, then annotates them for bioactivity and other properties. We
welcome feedback on expanding its capabilities.

Purpose
Peptides are small protein sequences (less than 100 amino acids in length) with
significant therapeutic and biotechnological potential due to their small size and
the wide variety of biological pathways they participate in. Despite these appealing
traits, experimental discovery of peptides remains challenging, and computational
tools suffer from false positives.

In this pub, we introduce peptigate (peptide + investigate), a workflow that predicts
and annotates bioactive peptides from transcriptomes. Peptigate unites functions
previously distributed across different tools. It predicts small open reading frame
(sORF)-encoded proteins, cleavage peptides, and ribosomally synthesized and
post-translationally modified peptides (RiPPs) from transcriptomes. Peptigate then
annotates them for bioactivity, chemical properties, similarity to known
sequences, and signal peptide presence.

We used peptigate to predict peptides in the human transcriptome, resulting in
2,949 distinct peptides. Comparing these predictions against experimental
datasets, we validated an average of 23% of peptides (49% general cleavage, 20%
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RiPPs, 22% sORF-encoded peptides). A major challenge during this project was the
lack of gold-standard data for validation, as peptide annotations are incomplete
even for humans. We used noisy and incomplete proxies like mass spectrometry
peptidomics databases and ribosomal profiling. With only a quarter of our
predictions confirmed, it's unclear whether mismatches arise from gaps in these
data sources or incorrect predictions. We welcome suggestions for more reliable
ground truth data to improve our pipeline's assessment.

We anticipate that peptigate may be a jumping-off point for new peptide
discovery. For example, if a researcher is interested in identifying peptides in a
tumor microenvironment, they might interact with peptigate as follows. First, the
researcher would identify a transcriptome or group of transcriptomes from their
tumor and non-tumor samples. Next, they’d run peptigate on the transcriptomes.
Using the peptigate output, they’d filter to peptides that are only present in the
tumor samples or perform differential expression analysis and retain transcripts
that encode peptides that are differentially expressed in the tumor
microenvironment.

What else could they do with this information? The researcher could use the
metadata reported by peptigate to form a hypothesis about the cellular role of
these peptides. For example, if the peptides contain a secretory pathway-targeting
signal peptide, they're likely secreted and interact with other cells. Using these
predictions, the researcher could design wet-lab experiments to follow up on their
research interests.

What do you think?

If you think this example resonates with work you’re doing, we’d
love to hear about it and possibly help. We are also open to
learning about other peptigate use cases that others come up
with.

This pub is part of the project, “Software: Implementing useful and
innovative computing.” Visit the project narrative for more background and
context.
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The peptigate pipeline is available in this GitHub repository.

The code and associated data we used to evaluate the peptigate pipeline
are available in this GitHub repository, including the results and evaluation
of running peptigate on the human RefSeq transcriptome.

The context
Peptides are a diverse class of biological molecules present in all three domains
of life. They participate in activities like cellular signaling [1], chemical

messaging [2], and defense/immunity [3][4]. Peptide synthesis occurs via many

pathways, including ribosomal synthesis of small open reading frames (sORFs) [5],

cleavage from precursor proteins, and synthesis by non-ribosomal enzymes [6].

Due to their high specificity and potency, peptides are increasingly recognized for
their therapeutic and biotechnological potential. When compared to small
molecules, peptides offer the advantages of lower toxicity and relative ease of
synthesis. However, they often face challenges such as a short half-life and the
requirement for non-oral delivery methods to bypass digestive degradation and
effectively reach target tissues [7]. In contrast to other biologics like monoclonal

antibodies, peptides theoretically benefit from simpler synthesis processes,
shorter research and development phases, and faster regulatory approvals.
Despite these advantages, peptides generally exhibit lower stability during storage
and handling, similar to the stability issues observed with biologics, necessitating
advanced formulation strategies to ensure efficacy.

Our working definition of “peptide”

While the definition of a peptide varies, for this pub, we’ll define
peptides as small polypeptides comprised of 2–100 amino acids
with standalone biological activity. We refer to these peptides as
“bioactive” to denote their distinct physiological functions,
unlike peptide fragments from protein degradation or those that
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don't function independently, such as intermediary or cleaved
signal peptides [8][9].

The problem
Endogenous peptide discovery is difficult, especially when predicting many
peptides from many species. Before the advent of DNA sequencing technologies,
peptide discovery was primarily an experimental endeavor. Early discoveries in the
first half of the 20th century focused on single peptides implicated in specific
biological actions [10][11][12][13]. Advances in chromatography and mass

spectrometry ushered in a high-throughput discovery era via peptidomics [14][15].

Discoveries facilitated by these technologies as well as genome sequencing
highlighted the underappreciation of peptides as a biological class [16].

In the intervening decades, further refinement of these technologies and
appreciation of different ways peptides are synthesized endogenously have led to
more discoveries of peptides [17][18]. Even still, blind spots persist. Some peptides

are only present under hyper-specific conditions [19], while peptidomics and

ribosomal profiling require expensive infrastructure and expertise and may
require sample-specific preparation techniques that limit usability for new sample
types [20][21][22][23].

Computational tools address this experimental bottleneck by predicting peptides
from genomes and transcriptomes [17]. Sequencing data in particular is amenable

to peptide discovery because it can be analyzed in many different ways, which fits
with the natural diversity of peptides themselves; multiple tools can detect
different types of peptides. However, detecting peptides from sequencing data is
still fairly challenging. Apart from the many different kinds of peptides, the short
nature of peptide sequences makes them difficult to detect and makes detection
susceptible to false positives [5].

Our solution
We introduce peptigate, a workflow that applies previously developed best-in-
class tools to predict and annotate diverse bioactive peptides from transcriptomes
(Figure 1). “Peptigate” is a portmanteau of peptide and investigate. Peptigate
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currently predicts sORF-encoded proteins, cleavage peptides, and ribosomally
synthesized and post-translationally modified peptides (RiPPs). These peptides are
then annotated to predict bioactivity, chemical properties, similarity to known
peptide sequences, and the presence of a signal peptide. These functions were
previously scattered in disparate tools; peptigate unites them to make diverse
peptide prediction simpler.

For multiple reasons, we chose to use transcriptomes as the input. RNA-seq data,
and thus transcriptome assemblies, are comparatively more available than
genomes, especially for less developed research organisms. Transcriptomes are
also smaller and have a higher ratio of gene content than genomes, which reduces
false positives in peptide discovery. However, to make peptigate more flexible, we
also provide a reduced pipeline that takes predicted protein sequences as input.
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Peptigate takes a transcriptome assembly and open reading frames (ORFs) predicted from the
transcriptome contigs as input. It uses these files to predict sORF peptides with plm-utils, cleavage
peptides with DeepPeptide, and RiPP peptides with NLPPrecursor. Predicted peptides are then
annotated for bioactivity using AutoPeptideML, compared to known peptides in the metadatabase
Peptipedia, annotated for signal peptides with DeepSig, and chemical properties calculated with the
Python package peptides.py. The peptide prediction and annotation outputs are reported in a pair of
TSV files. The predicted peptide sequences are also provided in nucleotide (FFN) and amino acid (FAA)
format for convenience. We’ve omitted many intermediate steps in the workflow to focus on the
parts of the workflow that perform predictive tasks.

The resource

The peptigate pipeline is available in this GitHub repository
(DOI: 10.5281/zenodo.12775316).

Peptigate is a Snakemake pipeline that combines existing tools to predict bioactive
peptides from transcriptomes. Below, we highlight how each part of peptide

Figure 1. An overview of the peptigate workflow for predicting bioactive peptides.
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prediction works, covering sORF, cleavage, and RiPP peptide prediction and
annotation.

Predicting small open reading frames

Background on sORFs
Small open reading frames (sORFs) encode peptides that are short upon
synthesis [24] (rather than cleaved later). They’re also known as "short" open

reading frames [25]. The functional peptide products are referred to as sORF-

encoded polypeptides (SEPs or sPEPs), microproteins, or micropeptides [26]. DNA

transcription and ribosomal translation from open reading frames 300 nucleotides
or shorter produces these peptides. Most sORFs use non-traditional start codons
like UUG, CUG, GUG, and ACG, each of which differs by one nucleotide from the
start codon AUG [27].

While most genomes contain many sORFs, only a few are actively translated and
transcribed. Most transcribed sORFs are within a transcript's 5′ or 3′ UTR of the
primary coding domain sequence (uORF and dORF, respectively). They often play
regulatory roles by influencing the translation of the mRNA [5]. However, some

sORFs encode peptides that are translated into functional small proteins. The
majority of these sORFs have been identified in what were presumed to be long
non-coding RNAs [5][28].

How peptigate predicts sORFs
The peptigate pipeline targets sORFs on contigs without longer ORFs to identify
sORFs that encode functional peptides (as opposed to translation regulators). The
pipeline begins sORF prediction by removing contigs in the transcriptome
assembly that have predicted open reading frames (supplied by the user). Next,
the pipeline tries to remove fragmented contigs that likely contain longer open
reading frames by comparing each remaining transcript against the UniRef50
database using DIAMOND blastp  [29]. If a contig has a match to a protein in

UniRef50 that's longer than 300 nucleotides, we remove these transcripts.
Peptigate then scans the remaining contigs for open reading frames using
common sORF start codons (AUG, UUG, CUT, GUG, and ACG [27]) and retains all

predicted ORFs 300 nucleotides or shorter. It then predicts whether each sequence
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is coding or non-coding using the Python package plm-utils [30]. Plm-utils uses

latent information in the large protein language model Evolutionary Scale
Modeling (ESM) [31][32] to determine whether a short open reading frame is coding

or non-coding [30].

Predicting cleavage peptides

Background on cleavage peptides
Cleavage peptides are generated by enzymatic cleavage (proteolysis) of precursor
proteins. These peptides are initially ribosomally translated while embedded in
the precursor protein and then cleaved to become biologically active. Peptides can
be proteolytically released from proteins by specific [33] or general proteases [34] or

receive additional modifications after cleavage [35]. Cleavage peptides participate

in a variety of biological tasks, including stress response (corticotropin-releasing
hormone), blood sugar regulation (insulin and glucagon), blood clotting
(thrombin), and inflammation (C3a), and phagocytosis (C3b).

Cleavage peptides are different from propeptides and proteolytic degradation
products. Propeptides are parts of proteins that are cleaved during protein
maturation and don’t have a biological function once cleaved. Similarly, proteolytic
degradation products are generated by the ubiquitin or lysosomal pathways and
mostly don't generate functional products, although individual amino acids are
often recycled for new protein synthesis [36][37].

How peptigate predicts cleavage peptides
The peptigate pipeline predicts two classes of cleavage peptides: cleavage
peptides with protease cut sites as well as ribosomally synthesized and post-
translationally modified peptides (RiPPs). Peptigate uses the DeepPeptide tool to
identify cleavage peptides with protease cut sites [38]. DeepPeptide is built atop the

ESM2 large protein language model [31][32] and predicts peptides and propeptides

from protein sequences. The peptides range in length from 5–50 amino acids.

Peptigate uses NLPPrecursor for RiPP prediction [39]. NLPPrecursor was trained

using only bacterial RiPP sequences and thus may work best when run on
bacterial protein sequences [39]. However, many cyclic eukaryotic peptides are
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RiPPs [40]. When run against eukaryotic protein sequences, we think it's possible

that the RiPP peptides detected were once horizontally transferred from bacteria
to eukaryotes; however, we haven't followed up on this hypothesis.

Annotating predicted peptide sequences
Functional annotation of peptide sequences is difficult for many reasons. Most
protein functional annotation tools use sequence similarity or orthology to
compare new protein sequences to proteins of known function. These methods
often generate statistically unreliable results when applied to short sequences; for
short sequences, sequence similarity comparisons typically only work to find
matches that are very similar to sequences that have already been discovered [41].

In some species, peptides encoded by sORFs are under lower purifying
selection [42], or they’re evolutionarily young so they’re not present in other closely

related species [25], decreasing sequence similarity.

Moreover, peptides can exhibit varied functions in different biological contexts
due to their ability to adopt multiple conformations [43], which complicates

functional annotation based solely on sequence similarity. Because some peptide
functions, such as antimicrobial activity, are easier to assay, these functions may
improperly propagate even though they don't reflect in vivo functions [44].

Peptigate attempts to overcome these challenges by annotating predicted peptide
sequences using multiple approaches. First, peptigate compares against known
peptide sequences by BLASTing each predicted peptide sequence against the
Peptipedia database using DIAMOND blastp  [29][45][46]. Peptipedia is a

metadatabase with peptide sequences from 76 databases encompassing 213
bioactivities (as of March 23, 2024). Peptigate reports the top match for each
peptide.

Next, peptigate annotates signal peptides in predicted peptide sequences using
DeepSig [47]. Signal peptides are short peptide sequences (16–30 amino acids long)

that mark proteins for secretion [48]. Signal peptides can provide clues as to the

function of a protein depending on the presence and the class of the signal
peptide [49].
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Peptigate predicts the function of predicted peptide sequences using
AutoPeptideML [50]. AutoPeptideML is a tool that allows users to build and use

models for peptide bioactivity prediction through machine learning best practices.
It uses the ESM large protein language model (ESM2-8M) internally to improve
prediction accuracy [31][32]. Currently, peptigate uses 16 models built in the

AutoPeptideML preprint (antibiotic, anticancer, ACE inhibitor, antifungal, anti-
MRSA, antimalarial, antimicrobial, antioxidant, antiparasitic, antiviral, blood-brain
barrier crossing, neuropeptide, quorum sensing, toxic, and tumor t-cell
antigen) [50]. However, the Matthews correlation coefficient of these models ranges

from approximately 0.02 to 0.73, indicating a wide performance range and a
general inability to predict peptide bioactivity. Nevertheless, this approach is state-
of-the-art, so we’ve included it in the peptigate pipeline.

Peptigate also calculates peptide chemical characteristics using the Python
package peptides.py. Peptigate calculates metrics like molecular weight, charge,
and hydrophobicity. These attributes can be used to compare peptides or to
assess whether a given peptide is suitable for a downstream task (e.g., removing
hydrophobic peptides because they’ll be difficult to synthesize).

Last, peptigate determines the nucleotide sequences that encode the predicted
peptide protein sequences. The nucleotide sequences are three times as long as
the amino acid sequences, which can improve sequence searches against large
databases and other comparisons. Peptigate doesn't use these sequences directly
for annotation, but they're provided to the user as an output so they can be further
analyzed (e.g., via sequence similarity clustering with MMseqs2 [51]).

We think there's still room for improvement in our approach to peptide
annotation, especially for bioactivity prediction. We welcome feedback or
suggestions on how to improve our approach.

Limitations of the peptigate pipeline
While we tried to generate a comprehensive tool, peptigate is still limited. Below,
we outline specific tasks that peptigate doesn't yet perform and highlight why
including these approaches is difficult.
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Peptigate doesn't predict non-bioactive peptides. It's focused on predicting
bioactive peptides, so it doesn't predict degradation products from the ubiquitin
or lysosomal degradation pathways or digestion (e.g., tryptic cleavage). It also
doesn't predict sORFs that occur in the 5′ or 3′ UTR of longer ORFs, as most of
these sORFs regulate the translation of the transcripts they occur in and don't have
bioactivity beyond this niche role [5].

There are also some classes of bioactive peptides that peptigate doesn't yet
predict. In particular, peptigate doesn't predict nonribosomal peptides synthesized
by nonribosomal peptide synthetase(s) (NRPSs). NRPSs synthesize peptides
independent of messenger RNA and ribosomes. Each enzyme typically contains
multiple catalytic domains that help accomplish a specific peptide synthesis step.
Multiple NRPS enzymes are usually required to synthesize a peptide, and these
enzymes are usually co-located together in the genome (and co-expressed on
polycistronic transcripts in the case of bacteria). We didn't include NRPS prediction
in peptigate because we were unsure how to identify which NRPS enzymes belong
to a single NRPS peptide. We were also unsure if we'd be able to predict the
peptide sequence generated through this mechanism.

There are also several annotation tasks that peptigate doesn't currently perform.
In general, we omitted tools that are only accessible through a browser, don't have
commercial-compatible licenses, or aren’t easily installable through a package
manager or a container. We considered including the tools DeepLoc to predict the
sub-cellular localization of a peptide [52], PeptideRanker to assess the likelihood

that a peptide is bioactive [53], and PepScore to assess whether a peptide is stable

in humans [54], but ultimately didn’t include them. We're also interested in

predicting the immunogenicity of peptide predictions but didn't find an accurate
tool for this.

Peptigate pipeline inputs and outputs
The peptigate pipeline takes three user-provided input files: a transcriptome
assembly and annotated ORFs from that assembly in both amino acid and
nucleotide format. These files are then used to predict sORF and cleavage
peptides.
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Peptigate also relies on databases and models. These are either packaged in the
peptigate repository or the pipeline downloads them. The sORF prediction tool
plm-utils, the cleavage peptide prediction tool NLPPrecursor, and the bioactivity
annotation tool AutoPeptideML all require model weights. The plm-utils model is
packaged in the peptigate GitHub repository, while the pipeline downloads the
AutoPeptideML and NLPPrecursor models. Peptigate also downloads the two
databases on which it depends, UniRef50 and Peptipedia. Once downloaded and
prepared, the peptigate pipeline will use these same files repeatedly unless they're
moved or changed.

Peptigate outputs six files, two FASTA files, and four TSV files. The two main
outputs are a pair of TSV files, “peptide_predictions.tsv” and
“peptide_annotations.tsv.” The predictions file provides the peptide identifiers,
sequences, and the tools that predicted each peptide. The second annotation file
provides information from each annotation approach discussed above. The FASTA
files and the partner TSV files provide the predicted peptides’ amino acid and
nucleotide sequences.

We also adapted peptigate to run when the user only has protein sequences as
input. In this scenario, peptigate predicts sORF proteins by length-filtering to
proteins less than 100 amino acids. Cleavage peptide prediction and annotation
proceed as in the main pipeline, although without nucleotide reporting.

Evaluating the peptigate pipeline

The code and associated data we used to evaluate the
peptigate pipeline are available in this GitHub repository (DOI:
10.5281/zenodo.13239486), including the results and evaluation
of running peptigate on the human RefSeq transcriptome.

We used peptigate to predict peptides in the human transcriptome to understand
the tool’s accuracy. Starting from the human RefSeq transcriptome (click here to
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download the transcriptome), we predicted open reading frames using
TransDecoder. We recognize that this approach doesn't fully take advantage of
existing annotations for the human transcriptome, but it matches our
recommended preprocessing for peptigate. Peptigate predicted 4,235 distinct
peptides in the human transcriptome (Table 1). After removing DeepPeptide-
predicted propeptides — a part of a protein cleaved during activation or
maturation that lacks independent function — 2,949 peptide sequences remained.

We next wanted to evaluate the accuracy of these predictions. Because not all
human peptides have been annotated, we lacked a ground truth against which to
compare our peptide predictions. We decided to compare the predicted peptide
sequences against orthogonal data sources such as databases of previously
observed peptides, public annotations, and ribosomal profiling data. We reasoned
that if we observed matches between these data sources and our predictions, this
would provide evidence that the peptide is likely real. However, this approach is
flawed because any disagreement could mean that databases are incomplete, our
predictions are at least partially wrong, or some combination of the two. Even still,
we moved forward with this approach because we were unable to identify a better
gold standard dataset for evaluation.

Prediction tool
within peptigate
pipeline

Number of
predicted
peptides

Peptipedia NCBI
metadata RibORF Total

(distinct)

DeepPeptide
(predicts cleavage
peptides)

263 130 NA NA 130 (49%)

NLPPrecursor
(predicts RiPPs) 431 87 NA NA 87 (20%)

plm-utils
(predicts sORFs) 2,255 291 287 288 486 (22%)

Total 2,949 508 287 288 703 (24%)

“NA” indicates that orthogonal information wasn't available. “Distinct” refers to distinct amino acid
sequences; each sequence is counted once even if it’s validated by multiple datasets. It represents the
fraction of predicted peptides validated by orthogonal datasets.

Table 1. Summary of peptides predicted by peptigate and orthogonal validation
information.
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We started by comparing peptigate’s predictions to peptides in the Peptipedia
database [46]. Peptipedia is a metadatabase comprised of peptides from 76

databases, including human peptide-containing databases like Peptide Atlas [55].

Using the annotation results generated by the peptigate pipeline, we checked
whether the predicted peptides had a hit against any peptide in Peptipedia. More
cleavage peptides had hits to peptides in Peptipedia than sORF peptides: 49% of
peptides predicted by DeepPeptide, 20% of peptides predicted by NLPPrecursor,
and 13% of peptides predicted by plm-utils had hits against at least one peptide in
the database (Table 1). Our findings suggest that at least one-quarter of peptigate-
predicted peptides are likely real.

View the analysis code we used to investigate peptide matches
against the Peptipedia peptide database.

For cleavage peptides, we expected to predict more peptides than are present in
databases because the DeepPeptide paper predicted 1.3× the known number of
peptides in humans (352 in UniProt, 458 predicted) [38]. To determine whether

predicted cleavage peptides that didn't have matches in the Peptipedia database
might still be real, we looked for signals associated with cleavage peptides. For
example, most (but not all) annotated cleavage peptides are cleaved from
precursor proteins that contain an N-terminal signal peptide [56]. Signal peptides

target a protein to the secretory pathway and allow cleaved peptides to reach their
final destination [57]. Many cleavage peptides function as hormones or other

signaling molecules, making export from the cell a key step in their biogenesis [57].

Of the 133 predicted peptides with no BLAST hit, 28 are predicted from precursor
proteins with signal peptides. We also investigated whether the precursor proteins
contained propeptides, as many precursor proteins contain these constructs that
help with protein folding, stability, or targeting [58]. A further eight precursor

proteins contained propeptides. These results suggest that some cleavage peptide
predictions that didn't match known peptides are biologically plausible.

View the analysis code we used to identify signal peptides and
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propeptides in the precursor proteins of cleavage peptides.

We anticipated that sORF-encoded peptides would have a lower hit rate than
cleavage peptides when compared against peptides in databases. While
Peptipedia contains 76 databases, it doesn’t include dedicated sORF catalogs like
sORFs.org [59]. Further, cleavage peptides were discovered many decades before

sORF-encoded peptides [60][61][62][63], and so we expect more cleavage peptides to

be annotated than sORFs. In addition, many sORFs are thought to be evolutionarily
young [25], meaning we wouldn’t expect homology to peptides from other species.

Even still, because so few sORF-encoded peptides had matches against the
Peptipedia database, we next focused on validating this class of peptide
predictions.

We first looked at the annotations for each transcript. Since we started with a
RefSeq transcriptome, all transcripts are labeled as curated coding, curated non-
coding, predicted coding, or predicted non-coding by their accession number. Of
the 2,255 predicted sORF-encoded peptides, 13% are labeled as curated coding
(Table 1). We anticipate that many more transcripts are actually coding; recent
research has shown that many transcripts labeled as non-coding actually contain
sORFs that encode peptides [64][65][66][67][68][69][70][71][72]. However, the observed

overlap validates a subset of our sORF predictions and demonstrates that the
Peptipedia database is partially incomplete with regard to sORF-encoded peptides
with known coding potential.

Given that Peptipedia is incomplete with regards to sORFs, we tested how many
predicted sORF-encoded peptides are supported by ribosomal profiling data.
Ribosome profiling data is generated by sequencing fragments of mRNA that are
protected by ribosomes, offering a snapshot of translation in action [73] — if one of

our predicted sORF-encoded peptides appears in a ribosome profiling dataset, it
would lend credence to the idea that this is a real, translated peptide. A recent set
of papers developed a tool called RibORF that predicts open reading frames from
ribosomal profiling data and uses this tool to re-analyze over 600 ribosomal
profiling datasets from humans [54][74]. 13% of sORF-predicted peptides overlapped

with RibORF predictions (Table 1), 265 (189 canonical, 61 non-coding, nine
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extension, and six truncation). This overlap supports the idea that these sORFs are
translated into proteins.

View the analysis code we used to compare sORF-encoded
peptides against ribosomal profiling data.

The fraction of sORF-predicted peptides that appeared in ribosomal profiling data
underwhelmed us, so we tried to validate these sequences using other orthogonal
datasets. First, we checked whether peptigate predicted true non-coding RNAs as
coding. Of the three we tested (XIST, HOTAIR, NEAT1), peptigate predicted none to
be coding. These findings confirm that peptigate effectively discriminates between
coding and non-coding RNAs.

View the analysis code we used to search for non-coding RNAs
in sORF-encoded peptides.

We next wanted to measure the relative translation potential of the predicted
sORFs. If an sORF is able to recruit a ribosome for translation, it's potentially more
likely to be translated into a protein. To estimate translation potential, we
measured the Kozak sequence similarity score for each predicted sORF and
compared the distribution against ORFs > 300 nucleotides in the human
transcriptome. The Kozak consensus sequence functions as a translation initiation
start site and enhances translation efficiency by directing ribosomes to the correct
start codon [75]. Six base pairs occur upstream and one base pair downstream of

the start codon in a transcript [75]. The exact sequence varies, so each Kozak

sequence can be scored in comparison to the most common sequence motif [76].

We scored each Kozak sequence as performed in [76]: using the sequence motif

GccA/GccAUGG, we designated upper-case letters as highly conserved (scored +3)
and lower-case letters as common (scored +1). We didn't score the start codon
(bolded letters). The maximum score is 13. On average and across transcript types
(inherited from RefSeq labels), sORFs have lower Kozak sequence scores than
other transcripts (Welch’s two-sample t-test, estimate = 1.4, p < 0.001, 95% CI [0.8,
1.07]). However, the sORF Kozak sequence scores occurred within the same range
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as those of other transcripts, with both coding and non-coding sequences
achieving the maximum Kozak sequence score of 13. Given the range of Kozak
scores observed, these results suggest that some predicted sORFs are likely to
recruit ribosomes and be translated into proteins.

View the analysis code for calculating and comparing Kozak
sequence scores in sORF-encoded peptides versus normal open
reading frames.

Overall, we struggled to identify a gold-standard, ground-truth dataset to use
when evaluating peptigate. It's unclear to us what a "good" expected hit rate is
against different orthogonal datasets. We expect some hits, as we'd expect some
fraction of our predicted peptides to have been previously discovered. However,
it's unclear how many bioactive peptides exist or how many have been discovered.
A peptidomics mass spectrometry and machine learning paper published in 2022
suggested that, to date, only 300 peptides in humans have confirmed
bioactivity [56], so our predictions aren't many orders of magnitude away from

what we might expect, and there may be room for new human peptide discovery.
We welcome suggestions for different validation datasets that can be used to
validate computational peptide predictions.

Additional methods
We used ChatGPT to help refactor some Python scripts executed by the Snakefile,
write first drafts of doc strings, and clean up character lines to reduce them to
under 100 characters. We also used ChatGPT and Notion AI to suggest wording
ideas, and then we chose which small phrases or sentence structure ideas to use.

Key takeaways
1. Peptigate is a workflow for predicting and annotating bioactive peptides

from transcriptomes. It combines existing state-of-the-art tools to predict
peptides encoded by small open reading frames and cleavage peptides. It
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annotates predicted peptides to provide insights into their potential
function.

2. Peptigate is designed to better inform researchers as they make decisions
about follow-up functional studies. This may require multiple peptigate
prediction runs across diverse transcriptomes or additional prediction tasks.
For example, if a researcher is interested in a specific bioactivity that isn't
tested in peptigate, it may be useful to build additional bioactivity prediction
models with AutoPeptideML.

3. Only about a quarter of peptigate predictions match peptides predicted in
orthogonal datasets, highlighting a need for more comprehensive and
reliable validation methods and datasets.

Next steps
1. Identifying ground-truth data. One of the things we struggled with during

this project was a lack of gold-standard data for prediction. Given that
peptide annotations are incomplete, even for the human genome and
proteome, it wasn't clear what to use as ground truth, true positive, and true
negative data. We used orthogonal datasets like mass spectrometry
peptidomics databases and ribosomal profiling as proxies, but these
datasets are noisy and incomplete. We'd love new ideas for ground truth
data we can use to assess our pipeline.

2. Improving bioactivity annotations. Bioactive peptides participate in
almost all aspects of metabolism, making them interesting for both basic
and translational research. Even if we can produce confident peptide
sequence predictions, it’s difficult to computationally predict the bioactivity
of those sequences because of their short length. We're interested in
identifying new tools or orthogonal tests that we can incorporate into
peptigate to improve bioactivity annotations.

3. Including more tools for peptide prediction and annotation. As
described in the “Limitations…” section above, peptigate doesn't predict all
types of peptides or incorporate all possible annotation tools. We'd like to
expand the types of peptides and annotations included if we can overcome
the challenges outlined in the limitations section.

4. Making the pipeline easier to use. We wrote peptigate as an experimental
pipeline. While we tried to assemble a reasonable pipeline, we identified
many areas where we could improve the quality of our software engineering.
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If peptigate proves useful, we plan to improve the quality of the software by
adding things like installation from a package manager and automated tests.
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