
Using protein language
models to predict coding
and non-coding
transcripts with plm-utils

We explored the use of embeddings from protein language
models to distinguish between genuine and putative
coding open reading frames (ORFs). We found that an
embeddings-based approach (shared as a small Python
package called plm-utils) improves identification of short
ORFs.

Purpose
We’re interested in detecting small open reading frame (sORF)-
encoded, bioactive peptides in transcriptomes. sORFs are open
reading frames that contain fewer than 300 nucleotides and often
use alternate start codons. Computationally detecting real sORFs is
challenging, and we wanted to more accurately detect sORFs that
encode functional peptides.

We hypothesized that latent information in the embeddings of large
protein language models might contain information about the
coding propensity of amino acid sequences, even though this wasn't
the original use case for such models. We were encouraged toward
this line of thinking because other peptide classification tools that
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identify cleavage peptides [1] and predict peptide bioactivity [2] have

successfully used large protein language models to improve
classification accuracy.

We conducted multiple tests across different datasets and observed
increased accuracy over leading tools when we applied these
innovations to predicting sORF coding potential. On all transcripts
from a set of 16 diverse research organisms, our tool performed
comparably to the leading tool, RNAsamba. However, our method
significantly outperformed that tool for short sequences.
Additionally, on the RNAChallenge dataset, where most tools
struggle, we achieved an accuracy of 33% compared to the average
tool accuracy of 11%. While our approach improves accuracy on this
challenging prediction task, the overall accuracy indicates that
there's still work to be done.

We packaged our approach as a small Python package called “plm-
utils.” Using the Python package infrastructure improved the usability
and portability of our tool and will allow us to expand the package in
the future if it proves useful.

This pub is part of the project, “Software: Implementing useful
and innovative computing.” Visit the project narrative for more
background and context.

The plm-utils Python package is available in this GitHub
repository.

The code to train and evaluate the sORF plm-utils model is
available here.

The context
Advances in ribosome profiling and mass spectrometry have
experimentally demonstrated that some small open reading frames
(sORFs) are not random sequences in genomes but lead to functional
products [3]. This has spurred a greater appreciation for and interest
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in the coding potential of sORFs. Most genomes encode many sORFs,
only a fraction of which are transcribed and even fewer translated.
Most transcribed sORFs occur in the 5′ or 3′ UTR of the main coding
domain sequence in a transcript and perform a regulatory role by
impacting the translation of the mRNA [4]. However, some sORFs

encode translated peptides with functional roles as small proteins.
The majority of sORFs that encode peptides have been identified in
presumed long non-coding RNAs [4][5], although some have also been

found upstream of, downstream of, and overlapping with, transcripts
with longer coding domain sequences [4].

sORFs are alternately referred to as “short” open reading frames [6],

while functional peptide products are referred to as sORF-encoded
polypeptides (SEPs or sPEPs), microproteins, or micropeptides [7].

These peptides are genomically encoded by open reading frames of
fewer than 300 nucleotides (100 codons) and are synthesized via DNA
transcription and ribosomal translation. Most sORFs use codons that
differ from the traditional start codon (AUG) by one nucleotide (UUG,
CUG, GUG, and ACG) [8].

Historically, sORFs have been underrepresented in protein
annotations [9]. sORFs occur frequently throughout genomes, so

several heuristic filters are used in tools that predict protein-coding
regions to reduce false-positive annotations [7]. These filters include

length cutoffs of 300 nucleotides [10] and the use of the AUG (ATG)

start codon [11]. Both of these filters preclude the computational

annotation of sORFs because sORFs are shorter than 300 bases and
the majority start with non-AUG start codons [8][9].

The current tool space
Many computational tools have been developed to identify sORFs in
sequencing data. The majority perform sORF discovery on either
genome or transcriptome assemblies. These tools generally use
evolutionary signatures or sequence heuristics to classify coding
versus non-coding sequences.
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Tools like phyloCSF [12], PhastCons [13], and micPDP [14] use genome

alignments and codon substitution patterns to identify sORFs. The
three main limitations to these tools are the requirement for a
genome assembly, the lack of built-in evidence that the predicted
sORF gets transcribed, and dependence on cross-species
conservation (in some species, sORFs encode evolutionarily young
proteins that aren’t conserved in other species [6]).

The other common strategy for computational sORF identification is
to predict whether a transcript (or an ORF predicted on a transcript)
is coding or non-coding. These tools either use heuristics like codon
substitution and nucleotide composition or train machine learning
algorithms to predict whether a transcript or an ORF contains a
coding sequence. Some tools, like MiPepid or sORFfinder [15][16], are

trained specifically on short sequences, while others, like RNAsamba
and DeepCPP [17][18], are trained on all transcripts but perform well on

sORFs. In both cases, these models often struggle with small training
datasets or heuristics that do not generalize to other species or
sequence types [19].

Our approach
Foundational models of proteins like AlphaFold2 [20] and Evolutionary

Scale Modeling (ESM) [21] have revolutionized computational

approaches to protein research [22]. Protein language models are

trained on large numbers of protein sequences and other
information like multiple sequence alignments or protein structures.
After “learning” patterns in this original data, a model can ingest new
protein sequences and relate them to the existing information in the
model in a process called embedding. In the case of ESM, an
embedded protein sequence is represented as a numerical vector,
typically a high-dimensional array of floating-point numbers. While
embeddings are not directly interpretable by humans, they capture
information about the structure of a protein, including orthogonal
attributes that correlate with structure, like function [21][23][24].
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We wrote a Python package called plm-utils (short for protein
language model utilities) that provides a basic set of tools for
generating and analyzing embeddings of protein sequences using
pre-trained protein language models. It currently only works with
ESM2 models, but we may expand it in the future if doing so opens
new use cases. If other protein language models would be helpful in
your research, please let us know by commenting here or posting an
issue on the plm-utils GitHub repository.

While we set this package up as a general tool for using the
information in protein language models to improve protein
prediction tasks, we developed it specifically to predict whether a
transcript is coding or non-coding. We posited that there may be
latent information in protein sequences that is not currently used by
other tools. This information could be extracted by protein language
models, which might help in the classification of coding transcripts.
We thought this might particularly be true for sORFs because
embeddings of protein language models have helped improve other
difficult tasks with peptides like predicting cleavage peptides [1] and

annotating peptide bioactivity [2].

The resource: plm-utils
Plm-utils is a small Python package that includes functions for
working with protein language models. Currently, it contains code for
building binary classifiers from labeled data using ESM2
embeddings. It also contains helper functions for our first use case,
predicting whether a transcript is coding or non-coding.

First use case: predicting coding vs. non-
coding transcripts
For the task of classifying coding vs. non-coding transcripts, plm-utils
first uses orfipy to find and translate the longest open reading frame
on each contig [25]. Plm-utils considers multiple potential start
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codons (AUG, UUG, CUG, GUG, and ACG) as ORFs in general and
sORFs in particular can use any of these [8][26]. After translating all

possible ORFs, we retain only the longest putative ORF from each
transcript, assuming that this ORF is the one most likely to be
genuine and encode a bioactive protein. Next, plm-utils embeds the
putative translated ORF sequences in the ESM2 model embedding
space (esm2_t6_8M_UR50D). Plm-utils then uses these embeddings
and ground-truth labels to train a random forest classifier. In this
case, a classifier is trained to predict whether the ORFs were
translated from a coding or non-coding transcript. This results in a
model that predicts whether a given amino acid sequence represents
a genuine ORF. In more precise terms, the model classifies a given
amino acid sequence as “coding” or “non-coding” based on its
similarity to the longest ORFs derived from the coding and non-
coding transcripts in the training dataset. The primary output of plm-
utils is a TSV indicating whether a transcript is coding (positive) or
non-coding (negative).

To apply this approach to sORFs specifically, we added a length
filtering step after ORF prediction and before embedding and coding
vs. non-coding classification.

Throughout this pub, we evaluate the capacity of plm-utils to
differentiate between coding and non-coding transcripts, serving as a
preliminary test of its effectiveness. To conduct a thorough
assessment, we developed several models. The performance of each
model varies depending on the specific attributes of the training
data. This means that a model trained on all coding ORFs in a
transcriptome will perform differently than a model trained on only
sORFs. However, every model created using plm-utils is compatible
with any sequencing data that ESM can process (the maximum
sequence length ESM2 can handle is 1,024 amino acids).

Potential future use cases
We set up the plm-utils Python package so that it can be easily
adapted to future use cases. At the moment, we have building blocks
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in place for embedding sequences, training, and making predictions
from a binary classifier. We think this setup could be well suited for
predicting whether a protein has a specific function or for predicting
traits of a protein such as whether it is membrane-bound. Users
would first need to build a new model using labeled training data for
new use cases. This model could then be used to predict the traits of
new, unseen data.

If you have a use case that would require additional functions in the
plm-utils package, we would love to hear your needs either as a
comment on this pub or as an issue on the GitHub repository.

Plm-utils is better at classifying short coding
sequences than RNAsamba
To assess whether protein language models improve the
classification of coding sequences over existing tools, we first
compared the performance of plm-utils models against RNAsamba
models (version 0.2.5). We chose to compare against RNAsamba
because it performed well across various prediction tasks when
benchmarked against other tools [19].

To assess model performance with diverse sequencing data, we
selected a set of 16 species (Table 1) for which high-quality
annotated reference transcriptomes were available on Ensembl. We
then trained models separately on transcriptomes from each of the
16 species using the above-mentioned procedure. We used each of
the resulting 16 models to make predictions for each of the other 15
species. Note that we did not split the transcriptomes into training
and test sets; we trained models on all transcripts from one species
and then made predictions for all transcripts from each of the other
species.
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Species Abbreviation

Common

name Kingdom Class

Apis mellifera Amel Honey bee Animals Insects

Arabidopsis thaliana Atha Thale cress Plants Eudicots

Caenorhabditis

elegans

Cele Roundworm Animals Chromadorea

Dictyostelium

discoideum

Ddis Slime mold Protozoa Mycetozoa

Drosophila

melanogaster

Dmel Fruit fly Animals Insects

Danio rerio Drer Zebrafish Animals Ray-finned fishes

Gallus gallus Ggal Chicken Animals Birds

Homo sapiens Hsap Human Animals Mammals

Mus musculus Mmus Mouse Animals Mammals

Oryza indica Oind Rice Plants Monocots

Rattus norvegicus Rnor Rat Animals Mammals

Saccharomyces

cerevisiae

Scer Baker’s

yeast

Fungi Saccharomycetes

Schizosaccharomyces

pombe

Spom Fission

yeast

Fungi Schizosaccharomycetes

Tetrahymena

thermophila

Tthe Ciliate

protozoan

Protozoa Ciliates

Xenopus tropicalis Xtro Western

clawed frog

Animals Amphibians

Zea mays Zmay Corn Plants Monocots

Table 1. Species used to train and evaluate plm-utils and RNAsamba models
in the task of predicting coding versus non-coding transcripts.

We performed this procedure for both plm-utils models and
RNAsamba models. We calculated the performance of each model
using Matthew’s correlation coefficient, a measure that quantifies the
quality of binary classifications, ranging from −1 (perfectly wrong;
worse than random) through 0 (no better than random) to +1 (perfect
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prediction). The RNAsamba models (average MCC 0.51) slightly
outperformed the plm-utils models (average MCC 0.43) when trained
and evaluated on all transcripts (Figure 1, A and C). However, the
plm-utils models (average MCC 0.52) significantly outperformed the
RNAsamba models (average MCC 0.15) when the models were
trained and evaluated only on transcripts whose longest putative
ORF was an sORF (< 100 amino acids) (Figure 1, B and D).
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Figure 1. Comparison of species models trained by RNAsamba (A, B) or plm-
utils (C, D).
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(A–D) Heatmaps of Matthew’s correlation coefficient (MCC) depicting the performance
of models trained with whole transcriptomes or short sequences (< 100 amino acids)
alone. Model performance is plotted as 16 × 16 heatmaps in which the x-axis
corresponds to the species on which the model was trained and the y-axis to the
species on which model performance was evaluated. Higher values (dark green)
indicate more accurate predictions, while lower values (white) indicate less accurate
predictions.
(E–F) We subtracted the MCCs (plm-utils MCC  − RNAsamba MCC ) to compare the
two approaches. Positive values (purple) indicate when plm-utils performed better.
While the two tools performed similarly for the general task of predicting coding
versus non-coding sequences, plm-utils outperforms RNAsamba for predicting short
coding sequences.

Our experimental setup comparing plm-utils and RNAsamba has two
differences that arise because the tools work differently. First, the
models don’t use the same sequence data to make predictions.
Although both models predict whether a transcript is coding or non-
coding, the plm-utils models do so based on the amino-acid
sequence of each transcript’s longest putative ORF. In contrast, the
RNAsamba models do so based on the full nucleotide sequence of
the transcript itself. Second, the plm-utils models incorporate a
correction for class imbalance (unequal numbers of coding and non-
coding transcripts in the training data) by using a balanced class
weight in the random forest classifier. This ensures that both classes
are treated equally despite their unequal proportions. The
RNAsamba models don't include this correction. Because many
species contain relatively few coding transcripts whose longest ORF
is an sORF, this difference likely partially explains the difference in
performance we observed between plm-utils and RNAsamba models
trained only on transcripts whose longest putative ORF was an sORF.
In addition, embedding sORFs using ESM allows plm-utils to take
advantage of information in a larger corpus of protein sequences,
even when there are very few input sequences.

Plm-utils generally predicts coding vs. non-
coding sORFs more accurately than other
tools
Next, we assessed how well plm-utils performed on a challenging
prediction task compared to other tools. A recent large-scale
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benchmarking study identified 27,283 transcripts (16,243 coding;
11,040 non-coding) that were challenging for many tools to classify
as coding [19]. The authors named the dataset “RNAChallenge” and

observed an average accuracy of 10.8% (Figure 2). The protein-coding
transcripts in this dataset are shorter than the average transcript:
approximately 80% of the ORFs on the protein-coding transcripts
were less than 300 nucleotides long, highlighting that most tools
struggle with classifying sORFs as coding or non-coding.

We first built a model to predict coding versus non-coding
transcripts using diverse species input. Using the same species listed
in Table 1, we separated coding from non-coding transcripts. We
reduced homology between our input sequences by clustering at
80% sequence identity using MMseqs2 (version 15.6f452) [27]. We

then used plm-utils to translate sequences, limiting to sORFs by
filtering to transcripts with a maximum predicted ORF of < 100 amino
acids. We then embedded these sequences and trained a model. We
ran the plm-utils model on the RNAChallenge dataset and calculated
the performance (Figure 2). The F1 score, a metric that balances
precision (the accuracy of positive predictions) and recall (the ability
to identify all actual positive cases), is the highest for plm-utils.
However, the RNAChallenge dataset contains some sequences that
are highly similar to some sequences that we used to train the plm-
utils model. While this was also true for models and tools evaluated
by the benchmark, we wanted to control for this in our evaluation.
We therefore removed sequences from RNAChallenge that were at
least 80% similar to sequences used during training. This reduced
the RNAChallenge dataset to 16,180 sequences (8,847 coding; 7,333
non-coding). Evaluating the performance on this dataset, the F1
Score decreased by ~6%. Plm-utils still outperformed all but two
tools covered in the benchmarking paper, longdist and NCResNet
(Figure 2) [28][29]. Both of these tools performed poorly on other

benchmarks that assessed their ability to predict coding vs. non-
coding transcripts in non-human species (regardless of transcript or
ORF length) [19]. This likely indicates over- or under-fitting to the

RNAChallenge dataset and an inability to generalize well across
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Figure 2. Performance of plm-utils and other tools on the RNAChallenge
dataset.

We produced the two rows reporting on plm-utils while the rest of the rows
reporting on specific tools are copied from Singh and Roy. We calculated the “All
tools*” row by averaging all values in Table 1 of Singh and Roy; note that this is not
an average for values in this figure, but for the 58 tool and model combinations
evaluated in an independent benchmarking paper.

diverse biological datasets [19]. While we haven’t compared directly,

we expect plm-utils to perform better across species and sequencing
contexts.

Taken together, we find that a simple classifier built atop the ESM2
large protein language model improves the classification of sORFs as
coding or non-coding. However, the overall performance of plm-utils
on the RNAChallenge dataset is still low (~33% accurate). This dataset
is enriched in sORFs, highlighting that there’s still room for
improvement on this classification task. We think using ESM
embeddings captures information about the secondary structure of
proteins, as large protein language models have previously been
shown to have high accuracy on structural predictions for some
peptides [30]. This may mean this method struggles with very short
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peptides or peptides with certain structural features. Indeed,
evidence of functional sORFs in the 3–15 amino acid length range
suggests we may be missing this class of sORFs [6].

Additional validation
We built a pipeline, peptigate, that predicts and annotates peptides
from transcriptomes [31]. Peptigate uses plm-utils to predict sORF-

encoded peptides. While evaluating this pipeline, we ran plm-utils on
the human transcriptome to identify sORF-encoded peptides. We
compared these results against orthogonal datasets like databases
of known peptides, ribosomal profiling, and strength of translation
initiation site sequences. We found orthogonal support for 22% of
plm-utils predictions and didn’t detect any false positives (true non-
coding sequences predicted to be coding). For more insights on plm-
utils outputs and predictions, view those results here.

Methods
We used ChatGPT and GitHub Copilot to help write, clean up, and
add comments to our code. We also used ChatGPT to suggest
wording ideas and then chose which small phrases or sentence
structure ideas to use.

Key takeaways
The plm-utils Python package encodes a set of helper
functions for working with protein language models. It
currently only works with Evolutionary Scale Model (ESM), a
protein language model trained on millions of protein
sequences. It has functions to embed sequences in ESM2,
train a binary classifier using labeled protein sequences, and
predict the classification of new proteins using that model.
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Our first use case for plm-utils is predicting whether a
transcript is coding or non-coding. We used plm-utils to
predict coding versus non-coding transcripts in general, as
well as when the transcript encodes an sORF. sORFs are small
open reading frames of less than 300 bases that sometimes
encode peptides.

In a set of diverse research organisms, plm-utils is
outperformed by the state-of-the-art tool RNAsamba for the
general task of predicting coding versus non-coding
transcripts [plm-utils Matthew’s correlation coefficient (MCC) =
0.43; RNAsamba MCC = 0.51]. However, plm-utils significantly
improves prediction when the transcript encodes an sORF
(plm-utils MCC = 0.52; RNAsamba MCC = 0.15). This is likely
due, in part, to latent information captured by protein
language models.

Plm-utils also improves the prediction accuracy (33%) on a
challenging dataset, RNAChallenge, over most tools (average
11%).

Next steps
While plm-utils improves prediction accuracy over most tools,
predicting the coding potential of short sequences (< 100 amino
acids) remains challenging. We would love feedback or ideas on how
to improve accuracy in this task, with or without using protein
language models.

We have several ideas to potentially improve accuracy:

1. Using larger models: We currently use the smallest model
(esm2_t6_8M_UR50D), but there are larger models available
(esm2_t48_15B_UR50D, esm2_t36_3B_UR50D,
esm2_t33_650M_UR50D, esm2_t30_150M_UR50D,
esm2_t12_35M_UR50D). Other prediction tasks on peptides
haven’t seen improved accuracy with larger ESM models [2]. In
preliminary testing, we didn’t see an improvement in accuracy
for sORF coding prediction, but this should be more
extensively tested and validated.
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2. Exploring ESM3: The newly released ESM3 model [32] may
offer potential improvements. ESM2 was trained on 49.9
million protein sequences from UniRef50 [33][34], while ESM3
was trained on 2.78 billion protein sequences [32]. These new
sequences may improve ESM’s ability to encode information
about short sequences.

3. Refining training data sources: We used Ensembl for labeled
training data (coding vs. non-coding transcripts). Some
transcripts initially labeled as non-coding are later found to
encode sORFs [35][36][37][38][39][40][41][42][43]. Building models that
only include validated coding and non-coding transcripts from
diverse sources could improve model accuracy. However, this
type of curation task would likely take a substantial amount of
time.

In the meantime, we plan to use plm-utils to identify sORF-encoded
peptides in transcriptome assemblies using the peptigate
pipeline [31].
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