
PreHGT: A scalable
workflow that screens for
horizontal gene transfer
within and between
kingdoms

Horizontal gene transfer (HGT) is the exchange of DNA
between species. It can lead to the acquisition of new
gene functions, so finding HGT events can reveal genome
novelty. preHGT is a pipeline that uses multiple existing
methods to quickly screen for transferred genes.

Purpose
Horizontal gene transfer (HGT) is the exchange of DNA between an
organism and another organism that is not its offspring. It can lead
to the rapid acquisition of novel functional traits in the recipient
species, leaving distinctive genomic patterns behind in the process.
While not all HGT events are maintained in a genome or lead to
adaptive benefit, looking for patterns of HGT across a diverse array
of organisms is one way we can survey for functional novelty. Many
tools exist for computational discovery of HGT events from genome
sequencing data, targeting different genomic patterns and with
varying sensitivity, specificity, speed, and scalability. We designed
the preHGT pipeline to be a flexible and rapid tool for pre-screening
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genomes for HGT events. Our goal was to create a pipeline to screen
for putative HGT events in as many genomes as are publicly
available, or that become available in the future. We wanted an
approach that could successfully screen eukaryotic, bacterial, and
archaeal genomes and that could screen for transfer events between
closely or distantly related species.

The preHGT pipeline uses multiple existing methods for HGT
screening and the elimination of false positives. It quickly produces a
candidate list of genes that researchers can further investigate with
more stringent HGT detection methods, different data modalities, or
wet lab experimentation.

We hope this pipeline will be useful to researchers interested in
exploring HGT in RefSeq or GenBank genomes.

This pub is part of the platform effort, “Software: Useful
computing at Arcadia.” Visit the platform narrative for more
background and context.

The preHGT pipeline is available in this GitHub repository.

The context
Adaptation and evolutionary innovation often occur through vertical
inheritance and gradual evolutionary processes. Lateral transmission
of genomic sequences via HGT is a contrasting evolutionary process
that occurs between species instead of from parent to offspring.
When genes are transferred, HGT can be a source of rapid functional
innovation. Not all HGT events lead to adaptation — some may be
neutral, detrimental, or may not be maintained by natural selection
and are subsequently lost [1]. Nevertheless, HGT has been the

underlying mechanism for many functional adaptations [2][3].

HGT occurs across all domains of life with different frequencies and
via many different mechanisms [4][5][6]. In bacteria, HGT most

2

https://research.arcadiascience.com/useful-computing
https://research.arcadiascience.com/useful-computing
https://github.com/Arcadia-Science/prehgt/tree/v1.0.1
https://doi.org/10.1038/nrg3962
https://doi.org/10.1038/nrmicro.2017.137
https://doi.org/10.1038/s41579-021-00650-4
https://doi.org/10.1099/mic.0.2007/011833-0
https://doi.org/10.1016/j.tig.2020.08.006
https://doi.org/10.1038/nrmicro.2017.41


frequently occurs via transduction, conjugation, or transformation.
As asexual reproducers with dedicated machinery for HGT, horizontal
transfer is one of the most prominent mechanisms for quickly
generating genetic diversity. This can catalyze rapid evolution and
adaptation to different environmental conditions [3]. However,

bacteria also combat HGT by degrading foreign DNA with restriction
enzymes and CRISPR [7][8]. Although eukaryotes can undergo HGT

through transposable elements, hybridization, and viral transfer, the
rate of HGT is relatively low compared to bacteria [5]. This is in part

due to structural barriers such as the nucleus that impede the
transfer of foreign DNA into the recipient's genome. In sexually
reproducing eukaryotes, the frequency of successful horizontal
transfer is further reduced because foreign genomic material must
reach germline cells to be transmitted from parent to offspring [9].

Surprisingly, HGT events leave behind similar signatures in recipient
genomes independent of the domain of life in which the transfer
event occurred. When a gene is transferred, the gene has a different
evolutionary history than that of other genes in the recipient's
genome. This manifests in different ways depending on how closely
related the donor species is to the recipient species. The transferred
gene may conserve the function of the gene in the donor genome,
may carry a transfer-associated gene annotation, may be abnormally
distributed in the species pangenome, or may deviate from species-
specific expectations in GC content or other characteristics [10]. The

strength of these signals often depends on how much time has
passed since the transfer event. Transferred DNA undergoes a
process called amelioration, whereby the sequence accumulates
mutations over time and becomes less and less distinguishable from
the recipient’s genome and more and more different from the
donor’s genome [10]. Other evolutionary processes can further

scramble the strength or clarity of a transfer event signature. For
example, if many speciation events occurred since the time of the
transfer event, it may be difficult to determine whether a horizontal
transfer event occurred or if the incongruent evolutionary history is
due to other evolutionary processes such as incomplete lineage
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sorting [11]. If multiple transfer events of the same gene have

occurred, or if there have been gene duplications and losses post-
speciation, the evolutionary history of a gene may be even more
difficult to disentangle. Lastly, convergent evolution and genome
contamination can confound HGT discovery by genome sequence
analysis as these processes can leave behind similar genomic
signatures as bona fide HGT events [12][13][14].

Given this variation, detecting HGT in genome sequence data can be
difficult, or at the very least, may require multiple strategies to find
different types of transfer events. Luckily, researchers have
developed many computational methods to interrogate the genomic
signatures left behind in genome sequence data by HGT in different
ways (Table 1). These methods fall into two general categories:
parametric and phylogenetic [10].
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Tool Category

Taxonomic

scope

Event

scope Summary

Alien_hunter

[15]

Parametric Bacteria &

archaea

Composition Interpolated

variable order

motifs from

compositional

biases to

identify and

predict

horizontally

transferred

regions in

genomic

sequences.

Alienness

[16]

Phylogenetic

implicit

All Kingdom Measures alien

index and HGT

score from

BLASTp results

on a web

server.

APP

[17]

Phylogenetic

implicit

Bacteria Pangenome Alienness by

Phyletic

Pattern;

Phyletic

pattern of

query gene

distribution in

closely related

genomes.

AnGST

[18]

Phylogenetic

explicit

All All Analyzer of

Gene and

Species Trees;

Compares

gene trees to

species trees

and identifies
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Tool Category

Taxonomic

scope

Event

scope Summary

discrepancies

under a

generalized

parsimony

criterion.

AvP

[19]

Phylogenetic

explicit

All All Alienness vs

Predictor;

Finds

homologous

sequences,

produces

multiple

alignments,

and constructs

a phylogeny to

analyze the

topology for

HGT.

BLAST2HGT

[20]

Phylogenetic

implicit

All Kingdom Measures alien

index, donor

distribution

index, and bit

score

differences

from BLASTp

results.

DarkHorse

[21]

Phylogenetic

implicit

All Kingdom,

sub-

kingdom

Measures

lineage

probability

index from

BLASTp

results.

GeneMates

[22]

Phylogenetic

implicit

Bacteria Pangenome Network

analysis from
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Tool Category

Taxonomic

scope

Event

scope Summary

gene presence-

absence and

SNP variants.

GIPSy

[23]

Parametric,

phylogenetic

implicit

Bacteria Composition Genomic

Island

Prediction

Software;

Predicts

genomic

islands using

features such

as abnormal

GC content

and presence

of mobility

genes.

HGT-DB

[24]

Parametric Bacteria &

archaea

Composition A database of

potential HGT

events

detected using

deviations in

GC content

and codon and

amino acid

usage.

HGT-Finder

[25]

Phylogenetic

implicit

All Sub-

kingdom

Measures

transfer index

from BLASTp

results.

HGTector

[26]

Phylogenetic

implicit

All Sub-

kingdom

Measures

likelihood of

HGT from

between self

and close &
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Tool Category

Taxonomic

scope

Event

scope Summary

distal groups

from BLASTp

results.

HGTphyloDetect

[27]

Phylogenetic

implicit,

phylogenetic

explicit

All All Measures alien

index and

out_pct from

BLASTp

results,

followed by

phylogenetic

inference on

initial

candidates.

HGTree

[28]

Phylogenetic

explicit

Bacteria &

archaea

All A database of

potential HGT

events inferred

using tree

reconciliation.

Islander

[29]

Parametric Bacteria Bacteria Targeted

identification

of tDNAs.

IslandHunter

[30]

Parametric Bacteria Composition Predicts

genomic

islands using

features such

as abnormal

GC content

and presence

of mobility

genes.

IslandPath-

DIMOB

[31]

Parametric Bacteria Composition Predicts

genomic

islands using

dinucleotide
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Tool Category

Taxonomic

scope

Event

scope Summary

composition

and presence

of mobility

genes.

IslandPick

[32]

Phylogenetic

implicit

Bacteria Species,

Strain

Predicts

genomic

islands by

comparing

closely related

genomes.

IslandViewer4

[33]

Parametric,

phylogenetic

implicit

Bacteria &

archaea

See other

tools

Integrates

IslandPick,

IslandPath-

DIMOB, SIGI-

HMM, and

Islander

Near HGT

[34]

Phylogenetic

implicit

Bacteria Species,

Strain

Measures

synteny index

and constant

relative

mutability

from

comparisons

PGAP-X

[35]

Phylogenetic

implicit

Bacteria Pangenome Pan-genome

Analysis

Pipeline;

Pangenome

gene presence

absence

RANGER-DTL

[36]

Phylogenetic

explicit

All All Rapid ANalysis

of Gene family

Evolution

using

Reconciliation-
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Tool Category

Taxonomic

scope

Event

scope Summary

DTL;

Reconciles

gene and

species trees

to detect

duplications,

transfers, and

losses.

RecentHGT

[37]

Phylogenetic

implicit

Bacteria &

archaea

Species,

Strain

Expectation

maximization

algorithm on

global protein

sequence

alignments

RIATA-HGT

[38]

Phylogenetic

explicit

All All Identifies

incongruencies

between gene

trees and

species trees.

SIB

[39]

Parametric Bacteria &

archaea

Species,

Strain

Sequential

Information

Bottleneck;

Signals derived

from k-mer co-

occurrence to

identify

transferred

regions

ShadowCaster

[40]

Parametric,

phylogenetic

explicit

Bacteria &

archaea

Composition Uses a support

vector

machine on

compositional

features to

identify
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Tool Category

Taxonomic

scope

Event

scope Summary

candidates and

then filters

results by

assessing

ortholog

similarity at

increasing

taxonomic

distances.

SigHunt

[41]

Parametric Eukaryotes Composition Sliding

window of 4-

mer

frequencies.

SIGI-HMM

[42]

Parametric Bacteria &

archaea

Composition Predicts

genomic

islands using a

combination

of codon

usage bias and

hidden Markov

models.

T-REX

[43]

Phylogenetic

explicit

All All Tree-based

search for

Reticulate

Evolution;

Incongruities

in

phylogenetic

trees

TF-IDF

[44]

Parametric Bacteria &

archaea

Species,

Strain

Term

frequency-

inverse

document

frequency to
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Tool Category

Taxonomic

scope

Event

scope Summary

identify

unusual

sequence

features

Table 1. Non-exhaustive list of computational tools for HGT discovery.

Composition: Composition different from acceptor genome.
Pangenome: Any set of organisms one can reasonably build a pangenome from
(clade, species, genus).
Kingdom: Cross-kingdom detection, usually by user-defined definition of ingroup
and outgroup.
Sub-kingdom: Any taxonomic level lower than kingdom and higher than species or
strain, usually with decreasing accuracy at higher taxonomic resolution.

Parametric methods analyze the genome of interest to identify
regions that deviate from species-specific expectations in GC
content, codon usage, amino acid usage, k-mer frequencies, gene
annotations, or other characteristics [10]. These methods are fast, but

natural differences in genome uniformity can lead to over-prediction
and they're often limited to recent transfer events for which
amelioration of transferred DNA is limited [10]. Parametric

approaches can also be biased by gene length [45][46], so they may be

difficult or impossible to use on genes, which vary in size, as
opposed to sliding windows across the genome, which are a
consistent length.

Phylogenetic methods detect inconsistencies between gene and
species evolution [10]. This category can be further divided into

explicit and implicit methods. Explicit methods test alternative
evolutionary scenarios using tree-based analysis, while implicit
methods rely on implied phylogenetic relationships derived from
comparative genomic approaches. Gene-by-gene explicit
phylogenetic methods are the gold standard in horizontal gene
transfer detection [10][47]. The most robust of these approaches works

by formally reconciling gene family tree topologies (where each tip is

12

https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1093/nar/26.13.3188
https://doi.org/10.1101/gr.641103
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1038/nrg2386


a protein sequence belonging to a species) with the species tree
topology (each tip is a species) under explicit Maximum Likelihood
inference for models of gene family duplication, transfer, and loss [48]

[49]. These methods identify candidate ancestral HGT events while

accounting for the confounding impacts of gene duplication and loss
on these inferences. Although powerful, these methods require that
gene homology is already known and that gene family trees of these
homologous sequences have already been inferred. Consequently,
these methods are typically ideally suited for focused application to
a set of gene families of special interest and thus are less
computationally tractable to apply at scale than other HGT prediction
methods.

Without a priori knowledge about the donor and recipient genomes
for horizontally transferred genetic material, it becomes necessary to
sample in a taxonomically broad and unbiased manner. In this
respect, implicit phylogenetic methods are particularly well suited to
hypothesis-free discovery of HGT events, as they scale more readily
to hundreds of genomes than do explicit methods. Implicit methods
rely on patterns that correlate with evolutionary history to infer HGT.
For example, you can use BLAST to identify homologous genes with
different taxonomic labels than the query gene, which can be
analyzed to find patterns consistent with HGT [19][25][50][51][52].

Similarly, you can use the pangenome — the full complement of
genes shared between a set of closely related organisms — to
investigate HGT by determining the presence or absence of genes
across all genomes [53][54].

Across the HGT literature and tool space, including both parametric
and phylogenetic methods, genome contamination is often
underappreciated. Contaminant sequences in genomes can look like
HGT events. This has led to rebuttals [14][55] against high-profile

papers [56][57] that claimed detection of high fractions of horizontally

transferred genes, and may more generally impact the biological
interpretation of HGT predictions. At least 0.54% of genomes in
GenBank and 0.34% in RefSeq are contaminated [58]. While some
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methods incorporate careful contamination checks [19], others rely on

filtering heuristics [16] or omit them entirely.

The problem
We sought a scalable computational approach for predicting HGT
candidate genes. We wanted the pipeline to be able to screen for
HGT events across the tree of life and across taxonomic scopes (from
family- to kingdom-level transfers), and to assess the likelihood that
a candidate transfer event was instead the result of genome
contamination.

As other projects at Arcadia are developing explicit phylogenetic
methods for the inference of gene family evolution, we sought a
solution that we could use upstream of this tool to produce
candidate species lists for further validation, and tried to avoid using
trees so as not to duplicate efforts.

Our solution
We built a pipeline that we’re calling “preHGT” to quickly find
preliminary HGT candidates in genomes with gene predictions (RRID:
SCR_027232). Our approach blends parametric and phylogenetic
implicit methods to generate a list of candidate genes that may have
been horizontally transferred (Figure 1). The preHGT pipeline uses
compositional scans, pangenome inference, and BLAST-based
searches. It combines information from these approaches, as well as
annotation information, to highlight candidate genes that are more
likely to be contamination than HGT. By implementing multiple HGT
screens in one pipeline, we aimed to combine approaches that target
different signatures of HGT, to provide a more comprehensive HGT
screening strategy.
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Figure 1. Conceptual overview of the HGT screening approach implemented
in the preHGT pipeline.

Starting from a genus or genera, preHGT scans GenBank and RefSeq and downloads
matching genomes with gene models (coding domain sequences) and annotation
files. The coding domain sequences are represented by colored bars, and genes of
the same identity are the same color. The pipeline uses the input genes from all
genomes of the same genus to build a pseudo-pangenome. These genes are
provided as input to two HGT screening methods — compositional scans and
BLASTp-based approaches. These steps return HGT candidates that are then
annotated to predict function. Information from each of these steps is summarized
and returned in a final table.

As we were designing the pipeline, we were concerned about overall
run times, especially given that BLAST searches can be
computationally expensive. We implemented clustering heuristics at
two key places to keep the pipeline fast. First, we clustered the genes
in input genomes to reduce the number of genes we investigated for
HGT potential. Given our eventual goal of running this pipeline on all
publicly available genomes, we wanted to assess the potential for
HGT in redundant genes only once. We did this by clustering genes
in closely related genomes — those of the same genus — prior to
screening for HGT. Second, we clustered the NCBI BLAST non-
redundant protein database, reducing its size by over half, to
increase the speed of BLAST searches [59].

One of the reasons we were particularly excited to include BLAST in
our pipeline was to take advantage of a rich literature of BLAST-
based HGT predictor indices (Table 1, Table 2). Many creative and
insightful HGT screening methods exist, each with its own strengths.
However, these methods are contained in different tools. Since
BLAST is the most expensive computational step of our pipeline and
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none of the methods rely on a clustered BLAST database, we re-
implemented them in the preHGT workflow. This consolidation
allows HGT screening using a single tool and a single BLAST run
(Table 2).

We implemented the pipeline as both a Snakemake [60] and a

Nextflow [61] workflow, with software environments controlled by

conda or Docker. The modular nature of the workflow will allow us to
incorporate additional methods over time.

The preHGT pipeline does not implement any new algorithms for
HGT candidate screening. However, the pipeline contributes to this
space by:

1. Combining multiple existing HGT screening algorithms in one
pipeline.

2. Using pangenome inference on eukaryotic genomes to inform
a gene’s contamination potential and phyletic distribution, and
to reduce compute required to run the pipeline.

3. Reducing the BLAST database size by clustering similar
proteins, thereby reducing compute required to run the
pipeline and diversifying taxonomic lineages represented in
top hits.

4. Providing multiple information sources to help assess an HGT
candidate’s contamination potential.
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The resource

Figure 2. Overview of the preHGT pipeline steps, inputs, and outputs.

Users provide a genus or genera of interest in a TSV file as input to the pipeline. The
workflow then downloads and parses the available genomes for those genera, builds
a pseudo-pangenome, and predicts and annotates horizontally transferred gene
candidates.

Below we provide an overview of each step in the preHGT pipeline
(Figure 2).

1. Retrieving gene sequences and annotation files. The
pipeline begins with the user providing a genus or genera of
interest in a TSV file. The pipeline then scans GenBank [62] and

RefSeq [63] for matching genomes and downloads gene models

and genome annotation files using ncbi-genome-download.
When a genome is available in both GenBank and RefSeq, only
the RefSeq version is retained.
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2. Building a pseudo-pangenome. For each genus, the pipeline
then combines genes into a pseudo-pangenome by clustering
the nucleotide sequences at 90% length and identity using
mmseqs easy-cluster  [64]. For each cluster, MMSeq2 selects a

single representative sequence by retaining the sequence with
the most alignments. The clustered nucleotide sequences are
then translated into amino acid sequences using EMBOSS
transeq  [65].

We refer to this as a pseudo-pangenome, and not a
pangenome, because we empirically cluster genes based on
sequence similarity and not by constructing orthologous
groups or by considering the evolutionary history of each
sequence [66][67]. We recognize that while this may collapse

functionally different paralogs, it is unlikely to obscure
patterns of HGT from distant donor genomes; paralogous
genes share a common ancestor, so while they may serve
different purposes for the organism, at >90% identity only one
copy of the gene needs to be screened for HGT potential.
Using a pseudo-pangenome is useful in two ways for the
pipeline. First, it reduces the number of genes that are
investigated which reduces run times. Second, it provides
metadata about the gene. Singletons are more likely to be
contaminants, and genes that are only present in a subset of
genomes may have interesting evolutionary histories (e.g.,
gene loss).

3. Screening for HGT candidates. Using the genes in the
pseudo-pangenome, the preHGT pipeline then uses two
approaches to screen for HGT candidates.

Compositional scan. The first approach uses relative
amino acid usage to detect proteins with outlying
composition. It measures relative amino acid usage
using the EMBOSS pepstats  function [65], produces a

distance matrix with the base R function dist() , and
hierarchically clusters the distance matrix with
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fastcluster’s hclust  [68]. It detects outliers by cutting the

resultant tree with height/1.5  and retaining any cluster
that contains fewer than 0.1% of the pseudo-
pangenome size.
Relative amino acid usage is the frequency that each
amino acid is used in each gene, normalized by the
total number of amino acids in that gene. For example,
if alanine is used 27 times in a protein that is 100 amino
acids long, the relative usage would be 27%. Relative
amino acid usage is generally conserved across a
genome and reflects an organism's environment [69]. We

tried many compositional metrics such as
tetranucleotide frequency, GC content, and codon
usage. However, we found that outlying proteins were
driven by abnormal length for all metrics other than
relative amino acid usage.
Given that this is a reference-free approach, genes
returned by this screening method do not have
accompanying donor species predictions, which makes
interpretation more challenging. Aberrant relative
amino acid usage can also arise from mechanisms
other than HGT and this method does not distinguish
between potential sources.

BLASTp scan. The second approach uses BLASTp to
identify homologous proteins. All genes in the pseudo-
pangenome are BLASTed against a clustered version of
NCBI’s nr database (90% length, 90% identity) [59] using

DIAMOND blastp  [70]. The pipeline then adds lineage

information to the BLASTp search using dplyr, dbplyr,
and RSQLite [71]. It scans these results for signatures of

transfer events using multiple, previously published
algorithms (Table 2) [19][25][50][51][52].

One modification we made throughout is using length-
corrected bit scores output by DIAMOND blastp  instead
of raw bit scores. Bit scores are sensitive to gene length,
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so using corrected bit scores reduces biases associated
with gene length in HGT screening [72].

The choice of database will dramatically impact the
results produced by this screen. We chose to use a
clustered version of the NCBI nr database [59] both to

make the BLASTp step faster and to ensure the results
contain a variety of taxonomic lineages in cases where
many near and distant homologs exist. Using this
database, combined with our methods of choice
(Table 2), the preHGT pipeline screens for HGT events
that occur in seven domains of NCBI’s taxonomy:
bacteria, archaea, fungi, plants, metazoa, other
eukaryotes, and viruses (“kingdom” taxonomic
resolution). It will also screen for HGT events between
lineages that are in the same domain as the query
genus but are different up to the family level from that
genus (“sub-kingdom” taxonomic resolution).
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Index Tool

Taxonomic

resolution

Data

used

Calculated

by

Aggregate

hit

support+

[19]

AvP Kingdom All bit

scores

Subtracting

the sum of

normalized

bit scores in

the donor

group from

the sum of

normalized

bit scores in

the acceptor

group.

Alien index

[50]

NA Kingdom Minimum

E-value

Subtracting

the

transformed

E-value of

the best

donor hit

from the

transformed

E-value of

the best

non-self

acceptor hit.

HGT score

[51]

NA Kingdom Maximum

bit score

Subtracting

the best

non-self

acceptor hit

bit score

from the

best donor

hit bit score

and

normalizing

this value.
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Index Tool

Taxonomic

resolution

Data

used

Calculated

by

Donor

distribution

index

[52]

NA Kingdom Number

of hits per

kingdom

Measuring

the

dispersion

query

homologs

across

groups by

determining

the number

of hits per

kingdom

against the

total

number of

possible

kingdoms.

Gini

coefficient

NA Kingdom Number

of hits per

kingdom

Measuring

inequality

among

values of a

distribution,

where

values are

the number

of BLAST

hits

observed

for each

kingdom.

Entropy NA Kingdom Number

of hits per

kingdom

Measuring

disorder

among

values,

where
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Index Tool

Taxonomic

resolution

Data

used

Calculated

by

values are

the number

of BLAST

hits

observed

for each

kingdom.

Transfer

index

[25]

HGT-

Finder

Kingdom,

Sub-

kingdom

All bit

scores

Considering

taxonomic

distances

between

query and

hit, bit score

ratios, and

rank and

total

number of

BLAST hits.

Table 2. Algorithms that parse BLASTp results to predict HGT
candidates.

*NA: Not applicable.
Aggregate hit support is calculated by subtracting the sum of all

normalized BLAST bit scores for all hits in an in-group from an out-
group. We use a different normalization equation than the original
method, which leads to different results.

4. Annotation. We then annotate the HGT candidates. For each
candidate HGT amino acid sequence, we use two different
approaches for ortholog annotation. First, the pipeline uses
KofamScan for KEGG ortholog annotation [73]. Next, the

pipeline uses HMMER3 hmmscan  to assign annotations to HGT
candidates. hmmscan  compares each HGT candidate sequence
against hidden Markov models (HMMs) of proteins in a
database. We built a custom HMM database to target specific
annotations of interest. The HMM database currently contains

+
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Virus Orthologous Groups from VOGDB and biosynthetic
genes and can be extended in the future to meet user
annotation interests.

5. Reporting. The last step combines all information that the
pipeline has produced and outputs the results in a TSV file.
The results include the GenBank protein identifier for the HGT
candidate, BLAST and relative amino acid usage scores,
pangenome information, gene and ortholog annotations, and
contextualizing information about the gene such as position in
the contiguous sequence.

Types of HGT events that the pipeline
screens for
While we tried to create a fast and generalized pipeline, preHGT is
better at detecting some patterns of HGT than others. ​​The preHGT
pipeline screens for HGT events where the donor and recipient differ
in taxonomy at the family level or above. It is most likely more
accurate when the transfer events occur between more distantly
related organisms and where the recipient gene retains homology to
the gene in the donor genome. We anticipate the primary use of this
approach will be to identify candidate transfer events and donor and
recipient groups to which more granular approaches can be applied
to better disentangle the evolutionary history of the gene.

The parametric approach we implemented screens for genes with
outlying relative amino acid usage compared to the rest of the genes
in the genome. This requires that the donor and acceptor species
differ in amino acid composition, and that these differences persist
in the transferred genes, a scenario that is most typical of recent
transfer events among evolutionarily divergent species.

The BLAST-based implicit phylogenetic approaches we implemented
screen for genes that exhibit a greater degree of sequence similarity
among designated taxonomic outgroups than within ingroups. In the
original tools and papers in which these algorithms were generated,
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the authors implemented or validated their approaches at specific
taxonomic levels that the preHGT pipeline adheres to (Table 2). Some
are designed to screen for cross-kingdom transfer events, while
others can screen for sub-kingdom-level events. However, because
the chance of spurious inference of homology increases among
more closely related species, results should be more carefully
scrutinized at lower taxonomic levels (e.g., order, family). Homology
detection also becomes increasingly difficult at larger taxonomic
distances, so the pipeline may miss highly diverged homologs.

Additional considerations and caveats

How we deal with contamination and other sources
of false positives
HGT screens often return many false positives [56][57]. We used

contextualizing information about HGT candidates to reduce the
number of false positives reported by the pipeline.

Contamination is the biggest source of false positives in BLAST-
based HGT screening algorithms. Many genomes in GenBank and
RefSeq are contaminated [58]. Contamination arises from impure

sampling, contaminated reagents, lab cross-contamination,
sequencing artifacts, or reference database errors [74]. To combat the

presence of contamination, we incorporated multiple corroborating
lines of evidence to assess whether contamination is more likely
than HGT. First, we determine the length of the contiguous sequence
within which the candidate gene is found. Short contiguous
sequences are more likely to be contaminants [58][75]. Next, we

determine how many genes are in the candidate gene’s cluster from
our pseudo-pangenome approach. Depending on the contamination
source, it is unlikely that the same contamination will occur in
multiple genomes [76]. Therefore, if a homolog is present in multiple

genomes, it is less likely to be a contaminant. Lastly, for BLAST-based
results, we assess the percent identity between the donor and
acceptor genes. Amelioration deteriorates sequence identity after a
transfer event [10], so the more similar two genes are, the more likely
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similarity is driven by contamination. Many methods use a cutoff of
70%–80% identity for contamination [16][77], but we instead weigh this

against other corroborating information.

In the future, we hope to further contextualize contamination
potential against the general contamination score for the acceptor
genome. The more contamination a genome contains, the more
likely a candidate is to be a contaminant itself.

BLAST-based methods may also generate false positives arising from
alignment errors or alignment due to sequence similarity that does
not arise from shared ancestry, such as from convergent evolution or
random chance. Alignment errors from short or low-complexity
sequences or from short, highly conserved domains may give the
appearance of a horizontal transfer event. To protect against this, we
filter corrected bit scores to those greater than 100, or, to rescue true
homologs that are very divergent, with a query coverage of greater
than 70%. We also provide gene annotations from multiple
annotation sources to highlight hits that might be ultra-conserved,
such as those from ribosomal proteins. Over time, we hope to curate
a list of genes that the preHGT pipeline frequently detects as false
positives and to develop a strategy to filter them out.

Verifying bona fide HGT requires work beyond
preHGT
The preHGT pipeline provides a list of candidate HGT events. These
candidates need to be carefully scrutinized to determine whether
they are biologically interesting and whether they are more or less
likely to be false positives. We built preHGT as a generalized
precursor to more in-depth HGT analysis (Figure 3). We envision that
preHGT can inform genome selection for comprehensive explicit
phylogenetic inference, which can help disentangle alternate
evolutionary trajectories, or highlight when not enough information
is available to support HGT inference.
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Figure 3. Funnel of methods for HGT screening and validation.

Implicit phylogenetic and parametric approaches are fast, generalized methods for
screening for HGT in genes or genomes, but these methods are prone to false
positives. Explicit phylogenetic methods can help eliminate some false positives or
determine when there is not enough evidence to support HGT candidacy.
After these computational approaches, validation requires additional methods.
Alternative data modalities like transcriptome sequencing or laboratory experiments
like FISH or PCR can provide additional evidence in support of HGT. While powerful,
these methods require curated information about the donor and acceptor genomes
and the candidate genes and thus can usually only be used after initial exploration.

After phylogenetic analysis, more analysis is still required to reject
the null hypothesis that no transfer event occurred. The appropriate
experiments for this will depend on the HGT candidate event itself.
For example, if a bacterial gene has been transferred into a
eukaryotic genome, it may be appropriate to interrogate the
candidate gene for the presence of introns, or if transcriptome
information is available, for the presence of transcription- and
eukaryotic-specific RNA modifications such as 5′ caps or Kozak
sequences. In the lab, PCR, FISH, or Southern blots may confirm the
presence of the sequence in the genome of interest, while Western
blot or mass spectrometry can confirm that the gene is transcribed
and translated into a protein.

Limitations of the preHGT pipeline
Given our approach, we have identified multiple shortcomings. The
most conspicuous limitation is our focus on genes. The preHGT
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pipeline can only scan genomes with gene models. We elected not to
implement genome annotation as an early step in the pipeline given
that annotation procedures differ for eukaryotic versus bacterial and
archaeal genomes, and that eukaryotic genome annotation remains
a challenging problem from the genome alone [78][79]. This limits the

preHGT pipeline to those genomes with gene models (approximately
21%) and creates blind spots for HGT detection across the tree of life.
Of 56 eukaryotic phyla with genomes, only 45 have at least one
genome with gene models. Similarly, by treating genes in their
entirety as the unit that is horizontally transferred, we are unlikely to
detect genes for which only a nested region of the coding sequence
was horizontally transferred.

There are also limitations born out of our decision to use
composition or BLAST-based HGT screening methods. First, these
methods require that the gene has not ameliorated to the
composition of the acceptor genome or that it maintains detectable
homology to the donor genome. This may limit our detection of
ancient HGT events. Second, these methods will be less sensitive to
HGT events that occur between closely related organisms. Third,
since BLAST-based approaches rely on taxonomies, there are risks
since taxonomies may be wrong and since they do not account for
branch lengths in the relatedness of species. Lastly, false positives
may arise from alignment between short or low-complexity
sequences or from natural sequence similarity such as what might
arise from convergent evolution or from highly conserved gene
sequences. To combat both cases, we have implemented filtering
criteria to help eliminate these issues.

Lastly, we did not integrate an explicit phylogenetic approach to
better resolve the evolutionary histories of HGT candidates. We
elected to forgo this step because another team at Arcadia is
developing a tree-based workflow. We are currently experimenting
with how to facilitate handoff between the two tools to rapidly
enable this next step in validation.
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Additional methods
We used ChatGPT to add comments to our code and suggest
wording ideas. We also used ChatGPT to add comments to external
code to help us better understand how it worked when trying to
implement some existing tools in another language.

Key takeaways
preHGT is a scalable pipeline that screens for potential HGT
events in genomes with gene models across the tree of life
and taxonomic scales.

The pipeline leverages compositional and BLASTp scans,
pangenome inference, annotation, and reporting techniques
to provide comprehensive results.

Multiple checks and filters defend against false positives,
including contamination detection and sequence alignment
artifact filtering.

The pipeline is implemented in both Snakemake and Nextflow.
Its modular design means it’s easily extensible to incorporate
more methods in the future.

preHGT aims to identify HGT events that users further
investigate with other approaches such as tree-based ones.

Next steps
Our follow-up plans include:

1. Eukaryotic HGT prediction: We plan to run the pipeline on all
eukaryotic genomes in GenBank and RefSeq that have gene
models and to make the results available.

2. Building a user interface for results exploration: We plan
to build a simple user interface to explore results produced by
the pipeline. Exploration modes will allow users to dive into
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gene transfer events by donor or acceptor taxonomy,
predicted functions of genes involved, or by strength of result,
and to visualize the results in their genomic context.

3. Adapting the pipeline to take transcriptome assemblies
as input: We plan to extend the pipeline to run on assembled
transcriptomes by incorporating upstream gene prediction
rules. We will then run the pipeline on the transcriptomes in
the NCBI Transcriptome Shotgun Assembly database and
make the results publicly available.

4. Integrating new algorithms for HGT screening: Other
algorithms exist for the interpretation of BLASTp results. We
plan to integrate those from other tools into this pipeline in
the future.

We welcome feedback on the user experience, the results we
include, or additional algorithms or metrics that would be helpful to
incorporate.
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