
ProteinCartography:
Comparing proteins with
structure-based maps for
interactive exploration

The ProteinCartography pipeline identifies proteins related to a

query protein using sequence- and structure-based searches,

compares all protein structures, and creates a navigable map that

can be used to look at protein relationships and make hypotheses

about function.

Purpose
In the ProteinCartography pipeline, we use protein structural comparisons to

generate interactive maps of protein families for exploration and discovery. This

kind of analysis can be useful for provoking hypotheses about what properties

could be driving functional differences within protein families and identifying

outlier proteins where innovations might be found.

We’re presenting our initial version of the pipeline, which contains the core

functionality, but we intend to continue improving the pipeline itself and adding

features in future versions. For additional information about what’s coming, jump

to the “Next steps.” Check back for new releases and updates!

This pub is part of the platform effort, “Functional annotation: mapping
the functional landscape of protein families across biology.” Visit the
platform narrative for more background and context.
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An updated version of the ProteinCartography pipeline is now available
in this GitHub repository. This version includes minor updates to
configuration parameters, functionality to measure TM-scores for all
proteins compared to the input, and lots of performance improvements
that make the pipeline faster and more reliable.

The version of ProteinCartography used for the analyses in this pub is
v0.4.0-alpha.

We’ve included several examples throughout the pub. The code for that
analysis and the resulting figures are available in the same GitHub
repository and the associated data are on Zenodo.

The strategy
All organisms, from single-celled bacteria to multicellular animals, share common

types of basic building blocks, including proteins. Comparing proteins across the

tree of life can help us understand how different organisms have evolved distinct

traits and discover novel biology. Recent tools that enable searches based on

structural similarity, including Foldseek, have made it possible to compare

proteins from diverse organisms in new, and perhaps more informative, ways [1].

We developed a pipeline that facilitates comparative protein biology by leveraging

these emerging tools to enable users to interactively explore protein families.

The problem
Comparative protein biology is an important and rapidly progressing field. Amino

acid sequences are widely used for these analyses due to the abundance and

ease of working with sequence data, but there are disadvantages to such

methods. For example, small protein sequence changes can result in dramatic

structural changes that alter the function of the protein, and conversely, proteins

with low sequence similarity can have similar folds and perform similar

functions [2]. Comparisons of protein structure could overcome these limitations,

as structures are generally more conserved than protein sequences and are more

closely tied to protein function [3]. Historically, researchers have been limited by

the availability of experimentally determined structures, but recent advances in

protein folding prediction tools, such as AlphaFold and ESMFold, and protein
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search tools like Foldseek have brought us into a new era of protein analysis [4][1]

[5][6].

Three main methods are typically applied to represent protein space:

classification, networks, and maps [7]. These can be created based on sequence,

structure, or other characteristics. Classification sorts proteins into hierarchical

categories. For example, SCOP (structural classification of proteins) and CATH

(class, architecture, topology, homologous superfamily) databases sort protein

domains into categories based on folds or structure [8][9][10]. Networks represent

proteins as nodes that are connected to related proteins by edges [2][7]. The most

common type of network is a sequence similarity network (SSN), where protein

nodes are connected by edges that represent some sequence similarity threshold

defined by the user. Networks are useful because they can be used to cluster

proteins into sub-groups. Finally, maps visualize a high-dimensional protein space

representing complex information (like protein structural characteristics) as a

collection of points in a low-dimensional space, often generated via classic

dimensionality reduction tools like principal component analysis (PCA) and

multidimensional scaling (MDS) [11][12].

Many of the analyses done with these three methods are aimed at understanding

the whole protein universe, or all protein structures that have been experimentally

solved or predicted [7][8][9][10][11][12][13][14][15][16]. While these analyses are extremely

useful for understanding large-scale protein evolution and for understanding how

proteins as a whole relate to each other, they are computationally complex and

can be difficult to interpret if you want to know more about individual proteins or

protein families.

Our solution
We developed a pipeline to rapidly and intuitively identify and visualize groups of

proteins with similar structures across user-defined protein families (Figure 1).

The ProteinCartography pipeline (RRID: SCR_027230) uses a combination of

networks for clustering analysis and maps for visualization and focuses these

protein space representations at the protein family level to allow for rapid and

intuitive analyses. The pipeline starts with a protein of interest provided by the

user and searches available sequence and structure databases. After obtaining

the AlphaFold-predicted structures of each match, the pipeline uses Foldseek to
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perform all-v-all structural comparison, which it uses to generate a similarity

network for identifying groups of structurally related proteins. The pipeline then

performs dimensionality reduction to create a visual “map” for exploratory

analysis. Informative protein features can be overlaid on the map, such as cluster

association, taxonomy, sequence conservation to the query, and annotation

information. This allows you to generate hypotheses about what properties could

be driving functional differences within protein families and identify outlier

proteins where innovations might lie across taxa.

In this pub, we’ll take you through some general uses of the ProteinCartography

pipeline, as well as an example of how the ProteinCartography pipeline works,

what the results look like, and how to analyze them. This is all contained in the

“ProteinCartography in action” section directly after this paragraph. For more in-

depth information about the limitations of ProteinCartography and individual

steps and parameters of the pipeline, see the “Comprehensive overview of the

pipeline” section. To learn more about plans we have for improving the pipeline

see the “Next steps” section and to provide feedback check out the “What do you

think?” section.

ProteinCartography in action
You can use the ProteinCartography pipeline to generate hypotheses and make

predictions about individual proteins. For example, it can identify proteins that are

structurally similar to an input protein, or it can identify outlier proteins.

Downstream analyses could tell you which regions of the protein are important for

function, and further investigation could determine whether these protein regions

differ across clusters. Additionally, you could use the ProteinCartography pipeline

to annotate proteins of unknown function or to provide support for annotation

predictions.

The pipeline also lets you explore subfamilies within larger protein families. For

example, it could be used to make hypotheses about whether distantly related

proteins in the same family are members of the same subfamily. You could use it

to identify especially interesting subfamilies for further examination (like
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subfamilies composed of only proteins from a particular taxonomic group). This is

perhaps the most common use we’ve encountered so far, and we’ll dive into this

use case more below. Importantly, we use the pipeline as a starting point to

generate hypotheses and make predictions, but encourage users to test their

hypotheses and predictions with additional analyses.

For additional examples of how we’ve used the pipeline, check out other pubs

that use the ProteinCartography pipeline:

Discovering shared protein structure signatures connected to
polyphosphate accumulation in diverse bacteria [17]

Repeat expansions associated with human disease are present in diverse
organisms [18]

Exploring the actin family: A case study for ProteinCartography [19]

A structurally divergent actin conserved in fungi has no association with
specific traits [20]

Running the pipeline
Before we discuss the results of the pipeline and how to interpret them, we

provide a brief walkthrough of how a run of the ProteinCartography pipeline

typically works. To jump to a detailed description of each step in the

“Comprehensive overview of the pipeline” section, click the link at the beginning

of each step below.

The pipeline generally starts with a protein of interest, or input protein, but it can

start with multiple proteins. A PDB (structure) file and/or FASTA (sequence) file

are required for each input protein. The package provides utilities to fetch these

from UniProt or AlphaFold based on accession number, or to fold short sequences

(less than 400 amino acids) using ESMFold [4][21]. For proteins longer than 400

amino acids, you can use outside tools like ColabFold to fold your proteins and

import them into the pipeline [22].

1. Sequence-based search: The pipeline performs a protein BLAST search
against the NCBI non-redundant (nr) database to identify proteins based
on sequence similarity to the input [23].

2. Structure-based search: The pipeline performs a Foldseek search against
the AlphaFold/UniProt50 v4, AlphaFold/Swiss-Prot v4, and
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AlphaFold/Proteome v4 databases to identify proteins based on structural
similarity to the input [1][5][6][16].

3. Aggregate and filter hits: The pipeline combines BLAST and Foldseek
results and filters hits based on a user-defined length, fragment status, and
whether the protein is marked as inactive.

4. Download hits: Using the combined hits list, the pipeline downloads PDB
files from the AlphaFold database and metadata from UniProt for all hits.
Metadata include fields such as taxonomic information, annotation
information, protein characteristics, and others [5][6][21].

5. Construct all-v-all similarity matrix: Using the downloaded structure files,
the pipeline compares the structure of every protein to the structure of
every other protein to identify the best matches using foldseek search .
For those matches, the pipeline uses foldseek aln2tmscore  to
calculate a similarity score, or a TM-score, where generally, a value of 1
means two structures are identical and values closer to zero mean the
structures are less similar [1][24]. These scores are aggregated in an all-v-all

similarity matrix. For more information about TM-scores, see the
“Construct all-v-all similarity matrix” section.

6. Cluster proteins: The all-v-all similarity matrix is then used to cluster
proteins into groups of similar proteins. The pipeline uses two different
clustering algorithms, Foldseek’s TM-align greedy set clustering and the
Leiden algorithm [1][25]. While both are provided in the final results, we

default to Leiden clustering for visualizations. The Leiden algorithm is a
clustering method that iteratively groups proteins, in this case attempting
to optimize the modularity of the network [25]. More information on

clustering algorithms and why we default to Leiden clustering can be found
in the detailed “Cluster proteins” section.

7. Calculate cross-cluster similarity matrix: Once clusters have been created,
the pipeline performs cluster-related analyses, including calculating the
cross-cluster similarity matrix. The cross-cluster similarity matrix is a
heatmap representing the mean TM-score of all structures in each cluster
versus all other proteins in each other cluster. The diagonal of this matrix
tells us how similar all proteins are within a cluster. We average the values
of the diagonal to determine a “cluster compactness” score that we use as
a heuristic for how well-clustered the proteins are overall.

8. Perform semantic analysis: Using clustering information and metadata
obtained from UniProt, the pipeline performs semantic analysis to evaluate
and visualize the most frequently occurring existing annotations for each
cluster [21]. The pipeline determines the most common annotations per
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cluster and shows them as individual bar charts, as well as the most
commonly used annotation words per cluster and shows them as word
clouds.

9. Create maps: The pipeline uses the all-v-all similarity matrix of TM-scores
to perform dimensionality reduction and create a map of the protein
family. It uses the all-v-all similarity matrix to calculate a principal
component analysis (PCA), which it then uses to calculate a t-distributed
stochastic neighbor embedding (t-SNE) and a uniform manifold
approximation projection (UMAP) [26][27]. For more information on these

dimensionality reduction techniques, see the “Create map” section. Both t-
SNE and UMAP result in 2D maps that are meant for visualization.

10. Generate interactive plots: To make t-SNE and UMAP plots maximally
useful, the pipeline uses the Plotly Python package [28] to create an

interactive and navigable map with color overlays corresponding to protein
metadata, including length, broad taxon, TM-score to input from Foldseek
local search, source (Foldseek vs. BLAST), average pLDDT (structure
quality), and others.
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Figure 1. ProteinCartography at a glance.

ProteinCartography starts with a user input (FASTA and/or PDB) and then runs proteins through both
a BLAST and Foldseek search. It then fetches structures of identified hits and metadata for each
protein. It performs a structural comparison step and then groups proteins with similar structures
together in clusters. Additionally, it does analysis based on each protein and based on each cluster.
Finally, it combines all of the information gathered throughout the analysis and uses it to generate
an interactive map of the data for exploration of the protein family.

Visualizing the mitogen-activated protein kinase 10
(MAPK10) family with ProteinCartography outputs
As an example, we ran mitogen-activated protein kinase 10 (MAPK10), also called

c-Jun N-terminal kinase 3 (JNK3), one of the top 200 most-studied human

proteins, through the ProteinCartography pipeline [29]. We refer to this protein as

MAPK10 throughout this pub and abbreviate it as MK10 in figures. For the input,

we used P53779 (Figure 2, A). The pipeline carried out the steps listed above and

produced the following outputs, which we explore further in the next section:

A UniProt features TSV file containing a summary of the UniProt metadata
as well as clustering information:
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MAPK_aggregated_features.tsv Download

An HTML file containing cross-cluster similarity matrix (Figure 3)

An HTML file containing interactive t-SNE plot with color overlays (Figure
4)

An HTML file containing interacting UMAP plot with color overlays (Figure
5)

An HTML file containing semantic analysis (Figure 6)

A summary of the outputs relevant to our interpretation is in Figure 2, but we will

go through each output throughout the section.
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Figure 2. Fungal and plant MAPK10 proteins identified using ProteinCartography.

(A) The structure of the MAPK10, showing the protein generally has a well-defined structure with
some disordered edges and a confident AlphaFold prediction.

(B) Similarity matrix for the clustering of MAPK10 hits shows a diagonal with a higher within-cluster
TM-score, suggesting the clusters are compact. The protein treated as the query in the comparison
is on the y-axis, and the target is on the x-axis. Colored dots along the axes of the chart correspond
to the colors of the Leiden cluster shown in the maps in C–F. The cluster containing the input
protein is marked with a four-pointed star marker. The two other clusters we focus on further are
annotated with asterisks.

(C) t-SNE visualization created for MAPK10 and the proteins identified as similar to it. The overlay
applied to the map is shown in the upper right corner of each graph, but briefly, we show Leiden
cluster, broad taxon, source of the protein, the TM-score to the input protein, the average pLDDT of
each protein, and the annotation score of each protein. The star in each map represents the input
protein, and the dotted boxes show the three clusters that we focus on in D–F.

(D) Zoom-in of LC02, the cluster that contains the input protein.

(D′) Semantic analysis of LC02, which contains the input protein.

(E) Zoom-in of LC11, interesting because of its compactness and because it is composed of
primarily proteins from plants.
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(E′) Semantic analysis of LC11.

(F) Zoom-in of LC12, interesting because of its compactness and because it is composed primarily
of proteins from fungi.

(F′) Semantic analysis of LC12.

Exploring the MAPK10 family with
ProteinCartography
Mitogen-activated protein kinase 10 (MAPK10), or c-Jun N-terminal kinase 3

(JNK3), is a serine/threonine kinase that is a member of the MAP kinase family.

MAP kinases are involved in a number of cellular functions, including everything

from proliferation to apoptosis [30]. These proteins form signaling cascades, or

chains of interactions that result in a final signal being delivered. This particular

kinase, MAPK10, is a neuronal kinase that is often involved in stress response,

where its activation results in phosphorylation of several transcription factors that

result in neuronal apoptosis [31].

MAP kinases are found in almost all eukaryotic organisms, but individual MAP

kinases are not always well-conserved. In particular, MAP kinases in the JNK

pathway seem to have emerged more recently in evolutionary time, as they are

usually only described in vertebrates [32], with a somewhat similar pathway

described in yeast as the “HOG pathway” [33]. Using the ProteinCartography

pipeline, we can ask whether MAPK10-like proteins exist in earlier-diverging

organisms, like fungi and plants. Additionally, we can ask if these MAPK10-like

proteins are structurally similar or distinct based on how they cluster, and we can

identify clusters and proteins for further computational or experimental analysis.
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Figure 3. Cross-cluster similarity matrix for MAPK10 suggests some clusters are compact
and distinct.

This interactive cross-cluster similarity matrix is a visual representation that shows the mean TM-
score of all of the structures in each cluster versus all other proteins in each other cluster. The
protein treated as the query in the comparison is on the y-axis, and the target is on the x-axis. The
diagonal of the heatmap shows how similar proteins are within clusters, or how compact clusters
are. The input protein for this analysis can be found in LC02. LC: Leiden cluster.

You can view a static version in Figure 2, B.

First, to determine how well the clustering performed, we looked at the cross-

cluster similarity matrix (Figure 2, B and Figure 3). The diagonal of the matrix

shows how structurally similar proteins are within each cluster, or how compact

the clusters are. We refer to the average value of the diagonal as “cluster

12



compactness.” The goal of clustering is to group similar proteins together, so

when clusters contain structures that are not very similar, it can suggest issues

with the clustering that may have to do with the proteins themselves or the

clustering parameters. Cluster compactness doesn’t take into account all the ways

that the pipeline might fail or succeed, but it does give us a general idea of

whether a run produced interpretable results. We dig into this more in the

“Testing the limits of the pipeline” section. We also consider cluster distinctness

(how similar each cluster is to other clusters) when evaluating clustering. In this

case, the clusters are not very distinct, but we expect this is because we’re

evaluating a family of closely related proteins (Figure 2, B and Figure 3).

For this MAPK10 map, the cluster compactness value is 0.63 (Figure 2, B and

Figure 3), which is around average for the analyses conducted for this pub. Among

the clusters in this analysis, Leiden clusters 11 (LC11) and 12 (LC12) drew our

attention, as they are compact, suggesting that they might hold proteins that are

well clustered. Looking beyond the diagonal, the similarity matrix also tells us

which clusters are similar to each other. In this example, we see that LC02 and

LC06 are quite similar and may be more related to each other than they are to

other proteins in the map (Figure 2, B and Figure 3).
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Figure 4. Interactive t-SNE plot with color overlays for MAPK10.

The input protein is represented by a four-pointed star, which you can toggle on and off using the
“Input Proteins” button. You can change the color overlay using the “color” drop-down. More
information on the color overlays themselves is in the “Plot overlays” section. LC: Leiden cluster.
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Figure 5. Interactive UMAP plot with color overlays for MAPK10.

The input protein is represented by a four-pointed star, which you can toggle on and off using the
“Input Proteins” button. You can change the color overlay using the “color” drop-down. More
information on the color overlays themselves is in the “Plot overlays” section. LC: Leiden cluster.

We next looked at the clusters themselves. Our protein of interest appears in

LC02 (four-pointed star in Figure 2, C–D, Figure 4, and Figure 5). In addition to

looking at which cluster our protein belongs to, overlaying additional information

on the map provides more insight. For example, the pipeline categorizes proteins

based on their broad taxonomic grouping. By examining the taxonomic groupings
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of proteins in the neighborhood of our input protein, we observe that our protein

and the surrounding proteins originate from mammals and other vertebrates

(“Taxon” panels in Figure 2, C–D; “Broad taxon overlay” panels in Figure 4 and

Figure 5). It’s important to note that the taxonomic depth is not uniform and is

instead chosen to be generally interpretable and useful to people while staying

within the limitation presented by the available number of colors. Advanced users

can also customize the taxonomic groups and colors based on their organisms of

interest. In this view, we observe that LC12, one of the tight clusters we saw in

Figure 2, B, contains primarily fungal proteins, whereas LC11 is composed of

primarily plant proteins (“Taxon” panels in Figure 2, D–F; “Broad taxon overlay”

panels in Figure 4 and Figure 5).

Intrigued that we identified clusters of fungal and plant proteins in our MAPK10

analysis, we explored features calculated by the pipeline to determine if these

proteins really are MAPK10 or JNK proteins. We looked at the quality of predicted

structures (mean pLDDT), and found that the proteins in these clusters were high-

quality, or closer to 100 (“pLDDT” panel in Figure 2, C–F; “pLDDT” overlay in

Figure 4 and Figure 5). We also looked at the structural similarity to our input

(TM-score to P53779) and saw that the structures in LC11 and LC12 were generally

structurally related to our input protein (“TM-score” panel in Figure 2, C–F; “TM-

score to input” overlay in Figure 4 and Figure 5). Note that the TM-score to input

values shown in the maps are calculated during the all-v-all comparison step of

the pipeline. During this step, TM-scores are only calculated for pairs of proteins

that meet the default threshold. The rest of the proteins are marked as zero. For

more information see the “Construct all-v-all similarity matrix” section.
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Figure 6. Semantic analysis of MAPK10 provides a human-readable method for
understanding cluster composition.

Each cluster has a different-colored ranked bar chart and word cloud that correspond to their
Leiden cluster color in the interactive maps. The bar chart summarizes the most common full
annotation and the word cloud summarizes the most common annotation words.

View an interactive version of this figure in a new tab.

To provide additional context, the pipeline generates simple semantic analysis

visualizations that summarize existing annotation information for proteins

retrieved from UniProt (Figure 6). Comparing the three clusters of interest, we

see the top annotation for the cluster containing our input protein is “Stress-

activated protein kinase JNK (EC 2.7.11.24)”, while the top annotation in LC11 is

“Mitogen-activated protein kinase (EC 2.7.11.24)” and in LC12 is “Mitogen-

activated protein kinase HOG1 (MAP kinase HOG1) (EC 2.7.11.24)” (Figure 2, D′, E′,
F′, Figure 6). “EC 2.7.11.24” refers to the enzyme class to which these MAPK

proteins belong, suggesting that they do all fit in the same enzyme class. The

HOG pathway from yeast is similar to the JNK pathway [33], so it makes sense that

LC12, which is primarily composed of yeast proteins, would contain many proteins

annotated as a HOG1 protein. To determine how useful these annotations are, we

can overlay the UniProt annotation score on the map (“Annotation score” panels
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in Figure 2, C–F; “Annotation score overlay” drop-down in Figure 4 and Figure 5).

The annotation score is assigned by UniProt and ranges from 1 to 5, where a

score of 5 means that the annotation is backed by experimental evidence, and a

score of 1 generally means that annotations were predicted or inferred [21]. For

both of these clusters, there are several proteins supported by an annotation

score of 4 or 5, suggesting that at least some of the annotations in each cluster

are likely backed by experimental evidence (“Annotation score overlay” panels in

Figure 2, C–F; “Annotation score overlay” drop-down Figure 4, and Figure 5).

Thus, using the ProteinCartography pipeline, we could now hypothesize that there

are MAPK10 or MAPK10-like proteins in fungi and plants. However, we would want

to test these hypotheses with additional experiments.

Pursuing hypotheses generated with
ProteinCartography
From a large list of candidates, the pipeline helped us identify specific groups of

proteins of interest in diverse taxonomic groups and make predictions about their

function in relation to our input. In this case, it’s especially interesting to note

that the sequence identity of the proteins identified in plants and fungal species

is quite low (~30%) and these were identified via Foldseek, suggesting that the

pipeline was able to identify relatives that would have been missed using a BLAST

search alone (Figure 3, Figure 4). However, because the pipeline provides

information based on predicted protein structures, further analysis would be

necessary to draw definitive conclusions about protein function. For this example,

downstream analyses like assessing the presence or absence of interacting

proteins upstream and downstream of MAPK10 in the signaling cascade, looking

for the conservation of specific and known catalytic residues, determining

evolutionary history, or performing biochemical assays to directly test protein

function, could be used to help determine the function of proteins of interest.

18

https://doi.org/10.1093/nar/gkaa1100


Comprehensive overview of the
pipeline
For users interested in learning more about the inner workings of the

ProteinCartography pipeline, the following section dives into the details and

parameters that we used to build it. It also provides additional in-depth

information for each step and a meta-analysis that tests the limits of the pipeline.

To jump straight to the next section, “Next steps,” click here.

To run the pipeline, clone the GitHub repository and follow the instructions there

for installation. The current version of the pipeline takes around 30 to 90 minutes

to run for small- to average-sized (< 400 amino acids) proteins, assuming default

search parameters.

Input proteins
To run the pipeline, you will need a FASTA and/or PDB file for your input

protein(s). The pipeline accepts a single or multiple input proteins. Each input

protein will be used to perform independent BLAST and Foldseek searches. You

can fetch FASTA and PDB files for most proteins in UniProt. The pipeline can fold

proteins less than 400 amino acids in length using ESMFold [4]. You can generate

PDB files for larger structures using tools such as ColabFold [22].

After running this pipeline on a variety of proteins, we noticed that certain

proteins resulted in more interpretable and useful maps than others. For example,

shorter proteins with high structure quality tended to have the best performance.

While we are working to improve the pipeline to be effective at analyzing a broad

diversity of proteins, we wanted to provide some guidance to users regarding

what proteins might work well in this preliminary release. We therefore performed

a meta-analysis to identify the limits of the pipeline.

Testing the pipeline limits by sampling from the most-studied
human proteins
To identify the characteristics that make proteins appropriate for the current

version of the pipeline, we analyzed a set of proteins sampled from the list of the

200 most-studied human proteins, as reported in [29]. We selected 25 proteins

from a distribution of two features we noticed are important: protein length and
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structure quality, represented by average pLDDT [34] (Figure 7, Table 1). The pLDDT

is a value that represents how a predicted structure will align with an experimental

structure at each residue based on the distance difference, so by averaging this

value across the length of the protein, we can determine how much of the protein

lacks a defined structure. We used these 25 proteins as individual input proteins

for 25 separate runs of the ProteinCartography pipeline.

Figure 7. Characteristics of the 200 most-studied human proteins.

(A) Distribution of protein length across the 200 most-studied human proteins reported in Li &
Buck (2021) that had structures available on UniProt.

(B) Distribution of the average pLDDT across the 200 most-studied human proteins from the same
study. The average pLDDT was found by taking the average value of the per-residue pLDDT for each
protein. The colors correspond to the confidence levels associated with pLDDT as represented by
the key.

(C) Bivariate analysis of the length versus the average pLDDT for each protein. Based on this plot,
we randomly sampled 25 of the 200 proteins. The proteins we sampled are represented by red dots.
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UniProt ID Protein name

Protein symbol

(in figures)

Q9UM73 ALK tyrosine kinase receptor ALK

Q96RI1 Bile acid receptor NR1H4

P43235 Cathepsin K CATK

P08603 Complement factor H CFAH

P00374 Dihydrofolate reductase DYR

P98170 E3 ubiquitin-protein ligase XIAP XIAP

P49841 Glycogen synthase kinase-3 beta GSK3B

P01112 GTPase HRas RASH

P68871 Hemoglobin subunit beta HBB

P04439 HLA class I histocompatibility antigen, A alpha chain HLAA

P01834 Immunoglobulin kappa constant IGKC

P14174 Macrophage migration inhibitory factor MIF

P53779 Mitogen-activated protein kinase 10 MK10

Q15596 Nuclear receptor coactivator 2 NCOA2

Q99497 Parkinson disease protein 7 PARK7

P62937 Peptidyl-prolyl cis-trans isomerase A PPIA

Q13451 Peptidyl-prolyl cis-trans isomerase FKBP5 FKBP5

P27986 Phosphatidylinositol 3-kinase regulatory subunit alpha P85A

O75530 Polycomb protein EED EED

P28074 Proteasome subunit beta type-5 PSB5

P19793 Retinoic acid receptor RXR-alpha RXRA

P50120 Retinol-binding protein 2 RET2

P00441 Superoxide dismutase [Cu-Zn] SODC

Q93009 Ubiquitin carboxyl-terminal hydrolase 7 UPB7

P40337 von Hippel-Lindau tumor suppressor VHL

Table 1. The 25 proteins we sampled from the 200 most-studied human proteins.
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We evaluated the quality of the clusters generated using the cluster compactness

metric discussed above (Figure 8, A). In addition to protein length and average

pLDDT, we explored how metrics such as the number of domains, the fraction

sequence identity to the input, and the TM-score to the input impacted

compactness (Figure 8, B–F). For each of these metrics, we determined the value

for every protein in each map and examined how their distributions varied in

comparison to compactness (Figure 8). Among the 25-protein sample, shorter

proteins with higher pLDDT and fewer domains tended to result in maps with

more compact clusters than longer proteins with lower average pLDDT values and

more domains (Figure 8, B–D). Proteins with lower pLDDT values could be lower-

confidence predictions, but they could also be proteins with more intrinsic

disorder. In either case, these proteins might not be appropriate for

ProteinCartography analysis using structural comparisons. Additionally, AlphaFold

structures are treated as rigid bodies and are aligned as such in the alignment

step of our analysis. Slight differences due to protein dynamics could therefore

be missed by alignment. This is something to consider especially when working

with proteins that contain multiple domains connected by flexible regions (Figure

8, D).

The TM-scores shown here are calculated during the all-v-all structural

comparison, which does not evaluate every possible protein-protein comparison

comprehensively and therefore may contain missing values. For more information

see the “Construct all-v-all similarity matrix” section. This means that zeros don’t

necessarily represent non-matches. They just represent less good matches

relative to the rest of the proteins. To visualize the median without the presence

of these zero-values, we supply a median TM-value for each analysis with (white

circle) and without (white diamond) zeros (Figure 8, F).
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Figure 8. Protein characteristics affect the output of the ProteinCartography pipeline.

(A) Cluster compactness for the analyses conducted using each of the 25 sampled proteins as
input proteins.

(B–D) Length (B), average pLDDT (C), and number of PFAM domains (D) of all the proteins identified
and clustered in each analysis. The black dot represents the input protein and the white dot
represents the median. Note that smaller proteins with higher pLDDT and fewer domains tend to
have more compact clusters.

(E–F) Fraction sequence identity (Frac. seq. ident.) (E) and TM-score (F) compared to the input for
each protein identified and clustered in each analysis. Green represents Foldseek hits identified
based on structural similarity, and pink represents BLAST hits identified based on sequence
similarity. White circles show the median for each, and the white diamonds show the median for
each with the zeros removed.

There are also certain proteins that are not well represented in the AlphaFold

database. For example, viral proteins have been excluded from the current draft of

the AlphaFold database, meaning searches involving these proteins will be

limited [5][6]. We wanted to know whether the taxonomic diversity or total number

of hits in an analysis impacted pipeline performance. The number of hit proteins

didn’t correlate well with cluster compactness for our limited analysis (Figure 9, A,

B, F). However, there are clear cases when having very few proteins resulted in
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poor analyses. For example, NCOA2 only had 93 proteins identified and had the

lowest cluster compactness (Figure 9, D, F). We also observed that more diverse

taxonomic distributions may result in more compact clusters, but need additional

analyses to determine if this trend holds (Figure 9, C–F).

Figure 9. Protein family diversity may impact clustering.

(A) Bivariate plot showing the number of combined hits (Foldseek and BLAST) vs. cluster
compactness for the 25 proteins sampled.

(B) Bivariate plot showing the number of hits, either Foldseek (green) or BLAST (pink) vs. cluster
compactness for the 25 proteins we sampled.

(C) Bivariate analysis showing the number of species in each analysis result vs. the cluster
compactness for each of the 25 analyses.

(D) Proteins are ordered by their cluster compactness, as represented by the colored bar — more
compact clusters are at the top and less compact clusters at the bottom.

(E) For each of the 25 analyses, we sorted hits into a broad taxon, and graphed the proportion of the
total number of hits in each broad taxon bucket as a bar chart.

(F) The total number of proteins represented in each analysis.

In summary, we advise you to consider the characteristics of each input protein

when analyzing it with the ProteinCartography pipeline, as not all proteins are

equally appropriate for structural comparison and could instead be evaluated
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using sequence, shapemer (or short fragment of a protein structure), or protein

language model embedding comparisons. We will continue to use these 25

proteins throughout the following sections to evaluate our methods.

Protein searches
Once you’ve designated an input protein or proteins, the first step of the

ProteinCartography pipeline involves searching protein structure and sequence

databases.

Sequence-based search
The pipeline performs a sequence-based search for each input protein using

NCBI Protein BLAST to search against the full NCBI non-redundant (nr)

database [23]. It runs BLAST using a query to the web API. You can customize the

number of hits returned with a default cutoff of 3,000. In general, there is no

taxonomic constraint applied. Because we’re querying such a large database and

asking for relatively few hits, we also don’t generally use an E-value cutoff for our

BLAST search. In our runs so far, the median sequence identities for our BLAST

hits have been consistently higher than for our Foldseek hits, and generally above

50% (Figure 8, E). However, including quality cutoffs in our BLAST search or

including the ability for users to set a cutoff for this is something that we hope to

include in future versions.

From the BLAST search, the pipeline retrieves a list of RefSeq or GenBank

identifiers. To retrieve predicted structures from AlphaFold and retrieve protein

metadata, it maps these identifiers to UniProt accessions [21]. At this step, some

proteins are usually lost because not all proteins present in the non-redundant

NCBI database are present in UniProt.

Structure-based search
For the structure search, the pipeline uses a Foldseek web API query to search

against the AlphaFold/UniProt50 v4, AlphaFold/Swiss-Prot v4, and

AlphaFold/Proteome v4 databases using the 3Di search mode with no taxonomic

restraints [1][5][6][16]. The AlphaFold/UniProt50 v4 database uses MMseqs2

clustering at 50% sequence identity and returns a representative from each

cluster that has the highest structure quality (average pLDDT) instead of all of the

most closely related proteins [16]. The AlphaFold/Swiss-Prot v4 database contains
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UniProt proteins with high-quality annotations [35]. The AlphaFold/Proteome v4

database contains proteomes from a set of 48 model organisms and global

health-related organisms [6]. The pipeline currently runs the Foldseek structure-

based search step using a query to the web API, and each database search

returns a maximum of 1,000 sequences. This is a constraint set by Foldseek.

Aggregate, filter, and download hits
Using the combined set of BLAST and Foldseek hits, the pipeline queries the

UniProt database to retrieve metadata for each protein, including the protein

name, gene name, organism, protein length, cross-references to annotation

databases such as Pfam and InterPro, and other metadata (see example TSV) [21]

[36][37]. It then uses this metadata to filter and remove hits based on user-defined

size cutoffs (if applied), whether the protein is marked as a fragment, and whether

the protein is marked as inactive.

Next, the pipeline downloads the structure files (PDB files) for the proteins that

are in the AlphaFold database, which includes only protein structures predicted

using AlphaFold [5][6]. We again lose some proteins at this step that were

identified via BLAST but don’t have AlphaFolded structures, but one could use

AlphaFold or ESMFold to fold these unfolded proteins [4][5].

Protein structure comparisons

Construct all-v-all similarity matrix
Once all of the structures have been obtained and compiled in a single folder, the

pipeline uses Foldseek to compare every protein structure to every other protein

structure to create an all-v-all comparison for network analysis [1][16][38]. This works

by first performing foldseek search  on the user’s machine, this time searching

each hit against every other hit that was downloaded from AlphaFold [1]. From

these alignments, the pipeline obtains E-values for each comparison. The pipeline

uses the default E-value threshold of 0.001 set by Foldseek to determine which

pairs of proteins to compare using TM-align. The pipeline then aligns any pairs of

structures with E-values that satisfy the threshold using foldseek aln2tmscore

to obtain a TM-score (template modeling score). A TM-score is a metric for the

structural similarity of protein structures that ranges from 0–1 [24]. A TM-score of 1

means the compared structures are identical, while two protein structures with
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scores above 0.5 are usually similar and proteins with scores of 0.17 or lower are

likely unrelated [24]. Any comparisons that did not satisfy the threshold E-value do

not return a TM-score; we set these missing values to 0 for the purposes of

clustering. In addition to the E-value threshold, foldseek search  defaults to

returning a maximum of 1,000 TM-scores for each protein analyzed, including the

input. This means that not all comparisons will have calculated TM-scores. We also

treat these missing values as 0 for the purposes of clustering.

This type of thresholding is common in network analyses to help slice the space

into groups of differing depths [39][40][41], but we have not yet determined the

optimal thresholding parameters for our analyses. Consequently, in our

visualizations, there is an inflated number of comparisons with a TM-score of 0 —

users should treat these zeros as missing values, rather than a true absence of

structural similarity. In future versions of the pipeline, we plan to explore these

thresholds in a more principled way to determine what is appropriate for different

types of analysis and will provide configuration parameters for users to tune the

stringency of filtering. We will also provide complete TM-score calculations for

input proteins for visualization purposes.

Next, the ProteinCartography pipeline arranges TM-scores into an all-v-all

similarity matrix. Additionally, the pipeline adds the score of each hit protein

compared to the input protein(s) to the output TSV file and uses it in the final

visualization steps.

Cluster proteins
After generating an all-v-all similarity matrix, the pipeline groups proteins into

clusters based on how similar they are to each other. Originally, we used

Foldseek’s TM-align greedy set clustering algorithm to generate structural

clusters [16]. Foldseek’s clustering algorithm utilizes Linclust and MMseqs2 [16][42]

[43]. Briefly, protein structures are represented as 3Di sequences [1]. Linclust

extracts short sections of these sequences and uses them to sort the sequences

into groups. The longest sequence in each group is identified as the

representative. Foldseek’s structural clustering uses the representatives in an

initial structural alignment, the output of which feeds into MMseqs2 clustering.

During this step, MMseqs2 clusters representatives based on TM-score. MMseqs

clustering is a greedy set-cover algorithm, meaning that it chooses a single
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representative structure and adds it into a new or existing cluster, and repeats

this until all sequences belong to clusters [42].

In our 25-protein analysis, we observed that many analyses only contained a small

number of structural clusters as defined by Foldseek. 15 out of 25 maps contained

fewer than five clusters (Figure 10). Moreover, these clusters didn’t tend to be

very compact. While Foldseek’s clustering method may be appropriate for some

uses, we wondered whether other clustering algorithms may be better suited for

our intended use case.

In particular, we were interested in Leiden clustering, a method that has become

popular for identifying groupings within single-cell expression networks [25][44][45].

Leiden clustering is another algorithm used to identify communities, or

preliminary clusters, within a pre-existing network in a three-phase process. First,

proteins are grouped to find the highest-quality community separations. Next, the

algorithm undergoes a refinement step where proteins can be switched to other

communities. Finally, the network is aggregated [25]. This process is generally

done several times. We used the implementation of Leiden clustering found in

the popular single-cell RNA-seq analysis package Scanpy [45]. This implementation

takes a matrix of counts and performs principal component analysis (PCA),

generating a neighborhood graph using an implementation of uniform manifold

approximation projection (UMAP). We used parameters n_pcs = 30 and

n_neighbors = 10 for this implementation of Leiden clustering and performed

Leiden clustering until optimized (scanpy default, n_iterations = −1).
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Figure 10. Leiden clustering produces more numerous and compact clusters than Foldseek
TM-align greedy set clustering.

(A) Cluster compactness for Leiden clusters (left) and structural clusters calculated using the
Foldseek clustering algorithm (right) for each of the 25 analyses completed using the randomly
sampled proteins from the 200 most-studied human proteins.

(B) Number of clusters for Leiden clusters (left) and structural clusters calculated using the
Foldseek clustering algorithm (right) for each of the 25 analyses.

(C–D′) Bivariate analysis of protein length vs average pLDDT for the full 200 most-studied proteins,
with the sampled proteins represented by colored dots and the non-sampled proteins shown in light
gray. Dots are colored based on cluster compactness of Leiden clusters (C), cluster compactness
of structural clusters (C′), number of Leiden clusters (D), and number of structural clusters (D′).
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To compare the clustering methods, we applied each to the 25 proteins we

sampled in Figures 7–9 (Figure 10). To determine which algorithm better sorted

the proteins into clusters, we measured cluster compactness and number of

clusters in the resulting map (Figure 10). In all 25 cases, the structural similarity

scores within clusters were higher when using Leiden clustering (Figure 10, A, C,

C′) and there were more clusters (Figure 10, B, D, D′), suggesting that Leiden

clustering might be more appropriate for identifying sub-groups within groups of

structurally similar proteins. We hypothesize that Foldseek’s structural clustering

might be better for larger-scale analyses looking across families, but did not test

this.

The current version of the pipeline provides both structural clustering using

Foldseek’s algorithm and Leiden clustering results in the final

“aggregated_features.tsv” file, but it defaults to Leiden clustering in plots and

analyses. We have not fully optimized the standard parameters and this could

contribute to the differences in clustering quality for different protein families. In

future iterations of the pipeline, we hope to experiment more with these

parameters to develop more generalizable clustering approaches.

Cluster analysis

Calculate cross-cluster similarity matrix
To allow for a better understanding of the quality and content of the clusters, the

pipeline calculates a cross-cluster similarity matrix (Figure 2, Figure 11). For each

cluster, it calculates the mean TM-score of all structures in that cluster versus all

other proteins in each other cluster. Clusters with a greater mean cross-cluster

TM-score are more structurally similar (with a maximum value of 1). Within this

visualization, the y-axis represents the protein that is treated as the query protein,

while the x-axis represents the target protein in each comparison. The diagonal of

the matrix represents the similarity of all proteins within a cluster, which we can

use to assess cluster compactness (cmx), or the average value of the diagonal.

Clusters with a low within-cluster mean TM-score are likely to contain assortments

of unrelated or dissimilar proteins. The pipeline visualizes the results of this

comparison using a heatmap.

30



Figure 11. Cross-cluster similarity matrices allow for evaluation of clustering
effectiveness.

(A, C, E, G) Structures of Hemoglobin subunit beta (A), Peptidyl-prolyl cis-trans isomerase A (C),
Retinol-binding protein 2 (E), and Complement factor H (G) structures. In all cases the color of the
structure corresponds to the per-residue pLDDT value represented in the key on the right. The cmx
value is the “cluster compactness” score for each analysis. The number under each protein name is
the corresponding accession number.

(B, D, F, H) Similarity matrices for Leiden clusters produced from the analyses for Hemoglobin
subunit beta (B), Peptidyl-prolyl cis-trans isomerase A (D), Retinol-binding protein 2 (F), and
Complement factor H (H).

While the cluster compactness score provides a general idea of the quality of the

clustering, the heatmaps produced with each run of the pipeline can help users

more thoroughly evaluate clustering effectiveness for their analyses. We show

heatmaps from analysis of four example proteins, hemoglobin subunit beta (HBB),

peptidyl-prolyl cis-trans isomerase A (PPIA), retinol-binding protein 2 (RET2), and

complement factor h (CFAH) from our sample of most-studied human proteins

(Figure 11). These examples reflect a range of potential outcomes for clustering.

The first three proteins all have high cluster compactness (HBB: 0.79, PARK7: 0.71,

RET2: 0.85), but their heatmaps reflect variable levels of interpretability. Clusters

in the HBB analysis show a high level of compactness, with clusters 00, 02, 03,

04, 06, 07, and 08 showing mean TM-scores > 0.5 along the diagonal (Figure 11,

A–B). However, examining the other cells of the matrix reveals that several of

these clusters may not be very distinct — for example, clusters 00, 03, 04, and 08

show high levels of mutual similarity, suggesting that these clusters might be

combined into a single larger cluster (Figure 11, A–B).
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The PPIA analysis shows a similar result, where several clusters could potentially

be fractions of a larger cluster (Figure 11, C–D). Particularly interesting with the

PPIA matrix, there are strong horizontal lines that suggest there are some clusters

that are similar to all other clusters (Figure 11, C–D). The RET2 analysis shows a

more extreme example: most clusters, except 01 and 12 (and, to a lesser extent,

04 and 10) show relatively strong similarity to all other clusters, suggesting that

the clustering analysis was not able to identify distinguishable sub-groupings

(Figure 11, E–F). In some cases, such as for large proteins like CFAH, clustering

does not appear to produce compact or distinct clusters (Figure 11, G–H). For

these types of proteins, the large number of domains and lower overall pLDDT

might impede structural comparisons due to the limitations of rigid-body

structural comparison, and other types of comparison networks — such as

sequence, shapemer, or protein language model embedding — might be more

amenable to clustering analysis.

Perform semantic analysis
The pipeline retrieves protein metadata from UniProt, which can include gene

and protein names [21]. While not always reliable, especially for understudied

organisms, these annotations can provide a more human-readable method of

understanding what kinds of proteins exist in each cluster [46]. To summarize

protein annotations from each cluster, we implemented a visualization that we

refer to as “simple semantic analysis.” For each Leiden cluster, the pipeline

aggregates the most frequently occurring annotations and individual annotation

words, and represents these as a ranked bar chart and proportional word cloud,

respectively (Figure 5).

For example, the semantic analysis plot for the MAPK10 analysis is shown in

Figure 5. Our input protein is in LC02, where the most represented annotation is

“Stress-activated protein kinase JNK (EC 2.7.11.24)”. In the word cloud, we can

also see,“JNK,” “Mitogen-activated,” and “MAPK,” all suggesting that clustering

analysis correctly aggregated these proteins together, since we know that

MAPK10 is a member of the JNK family. LC11, a cluster composed of primarily

plant proteins, has the top annotation “Mitogen-activated protein kinase (EC

2.7.11.24),” suggesting it comes from the same enzyme class, EC 2.7.11.24. For

LC12, a primarily fungal cluster, the top annotation is “Mitogen-activated protein

kinase HOG1 (MAP kinase HOG1) (EC 2.7.11.24),” which is consistent with the
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literature showing that the JNK pathway is similar to the fungal HOG pathway [33].

This analysis can provide broader biological context for the contents of each

cluster.

Visualization

Create maps
The pipeline uses standard dimensionality reduction approaches to create a visual

representation of protein space. It starts by using the original all-v-all similarity

matrix to calculate a principal component analysis (PCA) with 30 components [47].

The PCA results are then passed to an analysis to calculate the t-distributed

stochastic neighbor embedding (t-SNE) and the uniform manifold approximation

projection (UMAP) [26][27]. For the t-SNE, it returns two components, the perplexity

is set to 50, and the number of iterations to run is set to 2,000. For the UMAP, it

returns two components, the number of neighbors is set to 80, and the minimum

distance between neighbors is set to 0.5. The parameters used here are defaults

used in other analogous analyses, but in the future, we plan to optimize them for

our particular use cases.

Both UMAP and t-SNE are non-linear, graph-based methods for dimensionality

reduction [26][27]. They are both meant for visualization — we do not treat the 2D

maps generated by these techniques as fully representative of the higher-

dimensional relationships between proteins. They each follow the same general

principle: create a high-dimensional graph, then reconstruct it in a lower-

dimensional space while retaining the structure. t-SNE moves the graph from

high-dimension to lower-dimension, point by point, while UMAP compresses the

high-dimensional graph [26][27]. We provide both in this pipeline so that the user

can choose which visualization is easier to navigate for each protein family. Often,

t-SNE creates more space between clusters, while the UMAP plot appears more

connected. However, users should not interpret distances in the 2D axis of UMAP

or t-SNE plots as quantitative.

Generate interactive plots
Finally, the pipeline uses all the data collected above to create an interactive and

navigable map that you can use to explore the protein family (Figure 2, Figure 3).

The pipeline produces HTML file maps that allow dynamic visualization, built
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using the Plotly Python package [28]. This lets you interact with graphs and apply

multiple overlays as shown in the above examples and detailed more thoroughly

below. A toggle button allows you to see the input protein(s) in the map as black,

four-pointed star markers and metadata for each protein is displayed in a tooltip

when the mouse cursor hovers over a point. In addition to the interactive plot, the

pipeline produces a file that contains all the UniProt features along with the

information calculated throughout the pipeline for each protein.

Plot overlays

To empower researchers and make these plots maximally useful, the pipeline has

a color drop-down that colors points according to protein metadata. The default

view colors each point by its Leiden cluster. Clustering (separating the protein

structures into similar groups based on the all-v-all similarity matrix) and mapping

(visualization via dimensionality reduction) take place independently in the

pipeline. However, at this final step, these two representations of protein space

are combined when the results of the clustering analysis are overlaid onto the

map.

You can color points by the following:

Leiden cluster

Annotation score, a metric to measure the annotation content of a UniProt
protein [21]

Broad taxon, which can be either eukaryotic- or bacterial-focused with this
current version of the pipeline; see the GitHub README for how to
customize the taxonomic groups

Length

Source (Foldseek vs. BLAST)

TM-score vs. the input protein (this TM-score is the value from the
Foldseek local search and may not reflect the true TM-score due to E-value
thresholding)

Fraction sequence identity vs. the input protein

Average pLDDT of the protein

[Experimental] Concordance vs. the input protein (see below)
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Using this visualization and the accompanying file containing this information in a

tabular format, we can begin to make predictions and hypotheses about the

relationship of proteins to each other and even how these proteins might

function.

Additional methods
We used ChatGPT to write, clean up, and comment code. We also used it to

suggest wording ideas that we edited extensively.

Next steps
This pipeline is a work in progress — we are actively building and adding features.

Many of the features we hope to improve and add are recorded as GitHub issues

in the ProteinCartography GitHub repository. As we move forward, we hope to

build in four important areas: broad software improvements, validation, new

analysis features, and linkages with other software packages. We lay out our plans

below but would love feedback on what you’d like to see us tackle next.

Broad software improvements
We built the ProteinCartography pipeline using Snakemake, which lets us develop

flexible workflows that can run on most computers. However, we plan to provide a

Nextflow version of the pipeline in the future. Additionally, we plan to decrease

our reliance on APIs in general, but in particular, we hope to avoid using the

Foldseek API. This will also allow us to support different databases for

comparisons. It’s really important to us that this pipeline is not just useful, but

also usable, so we plan to work on increasing usability and adding features that

allow researchers to more easily interpret the space.

Validation
To provide users with more definitive and useful information, we must first

provide more validation and principled statistical analysis. We plan to develop a
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clearer understanding of what characteristics make proteins amenable to analysis

using the pipeline by performing additional large-scale analyses of diverse

proteins and performing statistical tests to understand how well different protein

features correlate with pipeline results. To perform such validation, we also need

to expand our metrics for evaluating pipeline performance from focusing on

cluster compactness to also include cluster distinctness, evaluation of over- and

under-clustering, annotation distinctness (how well annotations line up with

clusters), and other measures. By assessing these metrics, we will also be able to

develop automated methods for parameter selection to identify sensible defaults

that work well across protein families of diverse size and composition.

Additionally, we plan to explore the current parameters of the pipeline and how

we might be able to optimize them for different use cases.

Finally, we are currently working on in-lab biochemical validation to show that the

interesting predictions and hypotheses we have been able to make about protein

function based on the results of the pipeline are actually indicative of true

functional differences. We’re looking for proteins with established purification

protocols and assays that come from diverse and interesting protein families. If

you have any suggestions for proteins that fit these criteria and would be

especially useful for this type of biochemical validation, please let us know in a

comment!

New analyses and features
While our pipeline is able to aggregate results from sequence and structural

searches and provide maps for exploration, the pipeline does not yet perform

detailed analysis of the features within proteins that make them distinct from

each other. We’d like to add analyses that allow us to identify the specific regions

of proteins that result in differences between clusters.

We want to make overall exploration of the maps easier and more intuitive by

employing analyses to identify interesting proteins or outliers that might be of

particular interest. We also want to find easy ways of pointing out which areas of

the maps have high-quality clusters and which areas of the map users should

consider avoiding. We’d like to find ways to identify the specific structural

features between clusters that make them unique.
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For example, we are interested in identifying proteins that are convergently

evolved — composed of divergent sequences but which fold into similar

structures — as well as proteins with high sequence identity but apparently

divergent structures. The current version of the pipeline provides a rudimentary

measure of the relationship between sequence identity and structural similarity,

which we call “concordance.” This is a simple measure that subtracts structural

similarity from sequence identity. More positive values mark proteins with greater

structural similarity than sequence identity, while negative values mark the

opposite. While the current measure is not statistically principled, as TM-score

and sequence identity do not follow the same linear scale, we are exploring

methods to compare sequence identity to structural similarity to identify proteins

that meaningfully diverge or converge from expectations.

Software linkages
We’d like to incorporate phylogenetic information and sequence information to

complement the structural information that the pipeline provides. Additionally,

we’d like to integrate this pipeline with other resources from Arcadia, including

NovelTree and PreHGT [48][49].

If you use it, let us know in a comment on this pub! We’d love to hear your use

case and what you learned from your own protein mapping. Additionally, we

welcome outside suggestions as GitHub issues and contributions through pull

requests.

What do you think?
We’d particularly interested in getting your feedback on the following:

Would this kind of pipeline be useful for your own work?

How could we make it more useful for you?

Do you have any recommendations for types of analyses or validation?

Do you have any recommendations for protein families that you think
would be particularly interesting to look at?
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