
A high-throughput imaging
approach to track and
quantify single-cell
swimming

Live imaging of swimming cells can yield insight into an

organism’s viability and responses to environmental stimuli. We

developed a microscopy workflow and image analysis pipeline,

SwimTracker, to track motility phenotypes from swimming cells

in high throughput.

Purpose

We need robust, high-throughput methods to observe and quantify biology across

species. Historically, quantitative measurement of single-cell motility, even at low

throughput, has proven challenging partly due to the difficulty of isolating cells [1].

We previously addressed the issue of cell isolation using agar microchambers [2],

an effective but low-throughput method for observing long swimming trajectories

of cells. Here, we develop a new single-cell motility data acquisition and analysis

workflow (SwimTracker) that increases the throughput and versatility of our

previous sample preparation approach (microchambers), and we demonstrate its

application to more sample preparation methods (e.g., swimming in microtiter

plates). We show that this approach enables robust quantitative readouts of

motility even without isolating single cells.
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We developed this strategy by 1) scaling image acquisition using the automation

capabilities of our commercial microscope software, 2) directly comparing two

types of vessels (agar microchambers and 384-well microtiter plates) to increase

the flexibility of the assay, and 3) streamlining and automating the cell tracking

and statistical analyses to make the assay robust and high-throughput.

This resource should be helpful for researchers studying motility in unicellular and

small multicellular organisms. Our approach allows for extremely high throughput

analysis of single-cell motility data (10s of thousands of cells) even without

isolating single cells.

This pub is part of the platform effort, “Microscopy: Visually interrogating
the natural world.” Visit the platform narrative for more background and
context.

All associated code for tracking cell trajectories, calculating motility
metrics, and conducting statistical analysis (the SwimTracker pipeline) is
available in this GitHub repository.

All data, including the raw time-lapse microscopy data and computed cell
trajectories, is available via the BioImage Archive.

The strategy

We're using microscopy to capture phenotypes at high throughput. In this work,

we focus on motility, an evolutionarily conserved, information-rich readout

impacted by many biological processes, including life stage, metabolism, and

physical and sensory interactions with the environment [3][4][5]. Motility is common

to multicellular and unicellular organisms [6][7] and takes diverse forms (e.g.,

walking, jumping, gliding, crawling, etc.). We’re focused on motility in liquid

(swimming), a form of movement common to many protists, an evolutionarily

diverse and under-characterized taxonomic group that is the focus of many

studies at Arcadia [8]. Thus, we needed a flexible and easy method to capture

motility phenotypes in high throughput across many species and environments.
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The problem: Current methods for acquiring and
analyzing motility data don't scale
Our prior approach to in vivo imaging, which let us track individual cells, used agar

microchambers to isolate cells. This works especially well for capturing long

swimming trajectories but doesn’t efficiently scale either to many cells (hundreds

to thousands) or many different species and conditions because each differing

group requires its own agar pad. In addition, our previous motility analysis

workflow is likely too slow for the large dataset size required for our future high-

throughput analyses.

Our solution: A streamlined workflow to acquire,
process, and analyze microscopy videos to study
motility
We created a method to 1) capture cell trajectories from many pooled individuals,

2) extract features of their movement, and 3) compare motility metrics across

groups (Figure 1). Our workflow acquires 20-second brightfield videos at 20

frames per second and then quantifies features of swimming in single-celled

organisms. We increased the data acquisition by loading cells in microtiter plates

and by automating the acquisition of time-lapse microscopy videos using Nikon’s

NIS-Elements software (JOBS) software.

The bulk of this resource is a computational pipeline (“SwimTracker”) for

segmentation, cell tracking, and extracting motility metrics from the time-lapse

microscopy videos (Figure 1). In addition, we generated a set of Jupyter

notebooks that let you aggregate these summary motility metrics, statistically

compare them across different populations of cells, and visualize differences

between them via univariate and multivariate analysis (Figure 1).

We also describe how we applied this strategy to measure swimming in the

unicellular alga Chlamydomonas reinhardtii and validated it regarding imaging

time, sample preparation, and imaging vessel. We less rigorously tested but also

validated that we could track swimming in organisms smaller (5 µm) and much

larger (125 µm) than 8 µm-long Chlamydomonas (Supplemental Figure 1 and

Figure 2).
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Figure 1. Overview of our approach to high-throughput motility data acquisition and
analysis.

We’ve highlighted features of the SwimTracker computational pipeline and its compatibility with
a range of sample preparation options for imaging.

These in vivo imaging methods let you quantitatively compare diverse swimming

phenotypes across groups of interest. We think they’ll be relevant for researchers

interested in understanding the mechanisms of movement, such as

ciliary/flagellar beating and the responses of protists to drugs and other stimuli.

The high throughput enabled by our approach also allows the study of many

species and environmental conditions.

The approach

To develop this swimming assay for single-celled organisms, we first established

an automated protocol for recording time-lapse microscopy videos (see

“Microscopy”) using a unicellular algae Chlamydomonas reinhardtii (see “Cell

culture and preparation for imaging”) in two different sample formats (see “Vessel
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preparation”). The two formats, or vessels, were agar microchambers (we refer to

these as “microchambers”) and individual wells of a 384-well microtiter plate (we

refer to these as “wells”). We compared these two sample formats to see whether

one might be better for particular use cases, potentially increasing flexibility for

the user (spoiler: they both work, but format really matters. More info on that in

“Vessel type strongly impacts motility”).

Sample preparation

Cell culture and preparation for imaging
We ordered wild-type Chlamydomonas reinhardtii strain CC-124 from the

Chlamydomonas Resource Center (University of Minnesota). After receiving the

strain from the culture center, we prepared lawn plates as described previously [9].

We maintained clonal populations from stock streaks by live transfer once every

two weeks on 1.5% agar plates with tris-acetate-phosphate (TAP) medium. We

incubated plates at room temperature under 12:12 light: dark cycles. For all

motility experiments, we transferred cells (1 cm strip using a loop) from lawn

plates to water to induce the mixed-stage cells to become gametes, which are

flagellated and motile [10][11]. We resuspended these cells in water by agitating the

loop against the inside wall of a 1.5 mL microcentrifuge tube containing 500 µL

of sterile Milli-Q water. We wanted to test factors influencing the proportion of

cells that became gametes. To do this, we left tubes on the bench for 4 or 21 h to

compare populations of cells that spent different amounts of time in water and

might be at different stages of transition to gametes. We also compared cells that

we pipetted from either the topmost portion of the water or the middle but above

the pellet of settled cells.

We ordered wild-type Isochrysis galbana strain UTEX987 from the Culture

Collection of Algae at The University of Texas at Austin. After receiving the strain,

we grew 200 mL liquid cultures in Erdschreiber’s medium on an orbital shaker at

120 rpm at room temperature under 12:12 light: dark cycles. We diluted cells two-

fold in synthetic seawater.

We ordered wild-type Paramecium tetraurelia strain 8s 4-d2 from the Culture

Collection of Algae and Protozoa. After receiving the strain, we prepared liquid

cultures in Chalkey’s medium pre-seeded with C. reinhardtii strain CC-124 as a
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food source. We maintained 10 mL cultures on the bench at room temperature

without shaking in T75 cell culture flasks.

Vessel preparation
We imaged cells in two types of vessels — agar microchambers and microtiter

plates (Figure 2).

We made agar microchambers using a PDMS stamp purchased from RMS

Microstamps [2], following our protocol, “Molding microchambers in agar with

PDMS stamps for live imaging” [12]. The dimensions of the stamp's protrusions

resulted in circular indents in the agar that were 100 µm in diameter and 40 µm

deep. Because these microchambers are so small, shallow, and numerous

(~10,000 for a stamp ⅞ in²), pipetting directly into individual wells is impossible;

therefore, we load a single strain or species into each individual stamped piece of

agar.

To prepare samples on agar microchambers, we wetted the surface with 5–10 µL

of water and then added 2 µL of cells onto one section of the agar at a time. We

allowed the drop to spread across the agar and then visually checked the

distribution of cells across the microchambers using an Olympus CK 2 inverted

phase microscope. We repeated this process 2–5 times to ensure the cell density

was somewhat evenly distributed across the microchambers. Before placing the

coverslip (#1.5 thickness for imaging), we used a Kimwipe to wick up water at the

edge of the agar and glass. Finally, we sealed the coverslips using a small

paintbrush to apply VALAP (1:1:1 mixture of vaseline, lanolin, and paraffin) heated

to 70 °C.

To load microtiter plates with either C. reinhardtii or Isochrysis galbana, we

pipetted 20 µL of cells into the bottom of a well of a 384-well, black-walled, glass-

bottom plate (Cellvis, #P384-1.5H-N). To pipette Paramecium tetraurelia, we first

poured organisms into a 12-well plate. We visualized them on a phase contrast

microscope before gently pipetting them using a wide-bore pipette tip (Molecular

BioProducts, ART 200G) and transferring them into wells of the 384-well plate

described above.

6

https://doi.org/10.57844/ARCADIA-V1BG-6B60
https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://researchmicrostamps.com/shop-online/100um-dia-t7dsm


Microscopy

Hardware: Objective, microscopes, cameras
The preferred imaging setup differs depending on whether the cells have been

loaded into agar microchambers or microtiter plates. Therefore, we performed

brightfield time-lapse imaging on two different microscopes. For samples in agar

microchambers, we imaged using an upright Nikon Ni-E microscope equipped

with a Photometrics Kinetix digital sCMOS camera and built-in LED light source.

We imaged samples in glass-bottom microtiter plates using an inverted Nikon

Ti2-E & Yokogawa CSU W1-SoRa confocal microscope fitted with an ORCA-Fusion

BT digital sCMOS camera (Hamamatsu) and a LIDA Light Engine (Lumencor) for

illumination. However, this imaging could be done with any inverted widefield

microscope and camera. We used the same type of objective lens (Nikon Plan Apo

10× 0.45 Air objective) for both microscopes. For both microscopes, we acquired

data using the same software: Nikon NIS-Elements AR (version 5.42.03) and the

“High-Content Analysis” package to implement automation.

Image acquisition parameters
The parameters we used for acquiring image data were:

20 s time-lapses recorded in brightfield at the rate of 20 frames per
second (50 ms exposure time) with a 10× 0.45 NA air objective

Light intensity set to maximize the dynamic range of the acquisition
system

610 nm longpass filter (ThorLabs FGL610S) placed over the light source of
the upright microscope [1]

To prevent phototaxis, we imaged cells using red light as described
previously [2]

We used these parameters to acquire videos on both the upright Ni-E widefield

microscope (using agar microchambers) and the inverted Ti2-E microscope (using

microtiter plates).

Automated acquisition workflow
We increased throughput by automating time-lapse microscopy acquisitions. We

developed the automation workflows using Nikon NIS-Elements JOBS automation

software and provide them on GitHub. While these workflows can only
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immediately be implemented with compatible hardware and software, most

modern microscopy software packages offer the same functionality. The workflow

consists of the following steps:

1. Define the optical configuration: Set optical parameters such as the
objective lens magnification, light intensity, exposure time, and time-lapse
duration.

2. Define the stage area: Set the bounds of the translation stage to either
the limits of the slide area containing agar microchambers or to match the
geometry of the microtiter plate. If possible, define a focus surface to
compensate for sample tilt as the stage is translated across the sample.

3. Define a tiling scheme: Create a grid of tiles that'll encompass the
defined stage area. For imaging cells in microchamber pools, we generally
set the field of view to contain 16 pools and tile with a small amount (1–2%)
of overlap. For imaging cells in microtiter plates, we generally acquire one
time-lapse per well. However, depending on cell density, it might be better
to capture multiple fields of view per well.

4. Run the acquisition: For each field of view defined by the tiling scheme,
acquire a time-lapse with the chosen optical configuration.

The resource

We’re sharing an approach we developed to quantify swimming in small organisms

using a computational pipeline, SwimTracker. While we also focus on the sample

preparation used for measuring swimming unicellular algae, this part of the

workflow is flexible — the rest works using any time-lapse data as input (Figure 1).

SwimTracker takes raw time-lapse microscopy data of swimming cells, applies cell

tracking, and outputs comma-separated value (CSV) files with extracted motility

metrics and MP4 videos with animated trajectories of the tracked cells. Our

GitHub repo for SwimTracker also includes a set of Jupyter notebooks for

performing multidimensional analysis and statistical tests on the data.

In “SwimTracker tracks cells and measures a suite of motility metrics,” we give an

overview of our assay and the statistics SwimTracker calculates. In “Validating our

strategy,” we walk through quality-control checks we ran to ensure our results

weren’t affected by some obvious potential variables. While some of the variables
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we checked had little impact or were somewhat specific to testing the workflow

on C. reinhardtii, it’s worth noting that we found the biggest differences in our

calculated motility metrics based on the vessels in which we confined cells for

imaging. We discuss these tests and recommendations for when to use different

vessel types in “Vessel type strongly impacts motility.”

SwimTracker tracks cells and measures a suite of
motility metrics
We primarily used Chlamydomonas reinhardtii, a motile, unicellular alga, to

develop this method. We prepared C. reinhardtii gametes in two types of vessels

for brightfield imaging: agar microchambers and 384-well plates (see “Sample

preparation”).
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Figure 2. A schematic of the image-processing pipeline for organisms swimming in agar
microchambers (left, orange) and wells of glass-bottom microtiter plates (right, purple).

We don’t need to detect microchambers or spatially crop the time-lapse video for trajectories in
wells.

We developed “SwimTracker” as a Python-based image processing pipeline to

calculate cell trajectories from the time-lapse videos. It processes images of

samples in agar microchambers (Figure 2, left) with two additional steps than the

workflow for microtiter plates (Figure 2, right). These additional steps are

necessary to detect and crop individual microchambers before cell segmentation

and trajectory calculation. The pipeline detects individual microchambers by first
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Figure 3. Illustrations to visualize cell trajectory quantifications from time-lapse
microscopy data.

applying a Sobel edge filter to the mean intensity projection of the raw time-

lapse. It then applies a Hough transform to the edge-enhanced image so we can

identify and locate individual microchambers. SwimTracker then extrapolates this

uniform, grid-like arrangement of microchambers to determine the locations of

microchambers that the initial segmentation doesn’t detect.
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Next, SwimTracker segments cells from the time-lapse to facilitate cell tracking.

First, it subtracts the mean intensity projection from each time-lapse to remove

the static background and enhance the contrast of the cells. Then, the pipeline

binarizes the videos using thresholding (Otsu’s method, Figure 2, “Segmented

cell(s)”). Finally, it tracks cells using btrack (version 0.6.5) [13] with the default

configurations. SwimTracker outputs the trajectories of each segmented cell in

CSV format for subsequent analysis.

To quantify swimming behavior, we calculated 11 metrics that capture various

aspects of a unicellular organism's movement based on existing

methodologies [14]. We describe all 11 metrics in Table 1, six of which we illustrate

in Figure 3.

Motility metric Description

Total time* Total time of cell trajectory

Total distance* Total distance traveled along a trajectory

Net distance* Distance between the start and end point of the trajectory

Max sprint length Maximum distance traveled in a given time interval

Confinement ratio* The ratio of net distance to the total distance

Mean curvilinear

speed*

The average speed of a cell along its curved trajectory

Mean linear speed Average speed of a cell along a straight path between its start and

end point

Mean angular speed* Average rate of angular change

Number of rotations Number of rotations a cell makes along its trajectory

Number of direction

changes

Number of times a cell changes its direction minus the total number

of sign changes in its velocity

Pivot rate The ratio of the number of direction changes to the total distance

Table 1. Table of motility metrics that SwimTracker calculates to characterize a cell’s
trajectory.

Metrics with asterisks are illustrated in Figure 3.
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Raw trajectories require filtering
In our trajectory data, some traces of single cells were clearly problematic. For

example, in wells, many cells swim in and out of the focal plane, leading to many

short trajectories and the possibility of capturing more than one trajectory per

cell. Furthermore, non-motile or minimally motile cells in both wells and

microchambers can lead to trajectories with long temporal duration but little

spatial displacement. To eliminate trajectories from minimally motile cells and

reduce the likelihood that we were analyzing more than one trajectory per cell, we

filtered trajectories to be at least 10 s in duration (total time) and 20 µm in length

(total distance). Both filters are implemented in “1_compute-summary-motility-

metrics.ipynb.”

Validating our strategy
We performed a series of tests to evaluate the impact of experimentally

controllable parameters on the data acquisition and analysis workflow. First, we

tested whether our imaging parameters (e.g., duration, temporal sampling density,

light exposure) affected swimming behavior. Next, because we wanted to apply

this approach to assay gametic swimming, we examined two experimental factors

influencing the life history transition to gametes. Finally, we tested whether

different vessels produce different swimming statistics.

Imaging time doesn’t affect swimming
We wanted to image as briefly as possible to enable large-scale data acquisition

across organisms or samples, but acquisition time could impact the motility

statistics. Therefore, we assessed whether motility measures changed across the

acquisition period (Figure 4, “2_temporal-variation-in-motility-metrics.ipynb”). We

computed linear regressions between each individual metric and image

acquisition time to calculate correlation coefficients for these relationships

(Figure 4, Supplemental Table 1). Ten of the eleven metrics weren't correlated with

imaging time (p > 0.1 in all cases, linear regression, Supplemental Table 1), the

exception being max sprint length, which weakly correlated (p = 0.048,

Supplemental Table 1). In the scatter plots below, we highlight the three metrics

we focus on for the rest of the analyses (Figure 4). Overall, we found that on these

timescales, the swimming behavior of the cells isn't influenced by the imaging

duration.
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Figure 4. Scatter plots showing the variation of several motility metrics over the duration
of an imaging experiment in microchambers.

Each point in the scatter plot corresponds to an individual cell’s trajectory at a particular 20 s
interval during the experiment. Linear regressions show no significant correlation between imaging
duration and confinement ratio and mean curvilinear speed (p > 0.1, linear regression) but a slight
correlation with max sprint length (p < 0.05, linear regression). Note that we translated the stage
between each time-lapse such that in each 20 s time interval , we imaged a different group of cells.
Multiple points exist at each 20 s interval in the scatter plots because each field of view contains
multiple microchambers.

SwimTracker can capture subtle effects on motility
We wanted to evaluate SwimTracker's ability to capture subtle changes in motility.

We’ve worked extensively with the single-celled alga Chlamydomonas reinhardtii

and have previously used differing sample preparations to alter its motility [9]. We,

therefore, evaluated the influence of two factors on motility. We include the data

here not to focus on the results but to show an example of the type of univariate

comparisons that SwimTracker can quickly generate.

First, we induced gametogenesis in actively growing vegetative populations for

differing amounts of time (either 4 h or 21 h [10][11]) with the expectation that

longer induction will result in more gametes in the population. Gametes have

motility that differs from vegetative cells [4]. Second, following induction, we

collected cells from the top of the water column and cells from the middle of the

water column, expecting that the more motile cells would be higher in the water

column. We then evaluated whether SwimTracker could capture the expected

differences in motility.
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We found that while neither the position in the tube nor time in water

significantly impacted the mean angular speed or confinement ratio, they both

influenced the mean curvilinear speed (Figure 5). Cells we pipetted from the top

of the tube were 17% faster (as indicated by the mean curvilinear speed) than

those from the middle (p = 0.046, Mann–Whitney U) (Figure 5, A). Moreover, cells

that spent only four hours in water swam on average 24% faster than those that

spent 21 h in water (p = 0.039, Mann–Whitney U) (Figure 5, B). These results

showed that both the position of cells in the tube and the time spent in water can

affect motility. This was unsurprising, but shows how SwimTracker can be used for

1-dimensional comparisons between variables of interest.
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Figure 5. Kernel density estimates of motility metrics for cells grouped by different
experimental variables.

(A) Distributions of confinement ratio, mean curvilinear speed, and mean angular speed for cells
we pipetted from the top of the tube (light green) versus the middle of the tube (dark green).

(B) Distributions of the same metrics for cells that spent 4 h in water (light blue) vs. 21 h in water
(dark blue) before imaging.

Statistical significance: * indicates p ≤ 0.05; ns indicates p > 0.05 as determined by Mann–
Whitney U tests.

Vessel type strongly impacts motility
While we'd ideally collect motility data that reflects normal behavior in a realistic

environment, vessel type may impact the motility we're measuring. Therefore, we

examined the effect of the sample format (the “vessel”) on cell swimming (see

“Vessel preparation” in Sample Preparation). Our goal was to test whether cells

behave differently in the two types of vessels, agar microchambers vs. microtiter

plate wells, which differ in total volume, confinement, and the number of cells

they can accommodate (Figure 2). While the agar microchambers [2] are extremely

useful for imaging many cells of a single species, the sample preparation is
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Figure 6. The choice of vessel type influences the distribution of certain motility
metrics.

The distributions of the confinement ratio and mean curvilinear speed are much narrower for
pools than for wells, while the mean angular speed appears less impacted.

**** indicates p < 0.001 and ns indicates p > 0.05, Mann–Whitney U.

laborious and difficult to apply to many conditions or strains. Some of our future

motility work requires comparisons between many treatments, so we wanted to

see if we could quantify cell trajectories in microtiter plates.

We found that swimming behavior in microchambers differed substantially from

that in wells of microtiter plates. We compared confinement ratio, mean

curvilinear speed, and mean angular speed from cell trajectories in

microchambers to those in wells (Figure 6). We expected that the confinement

ratio, which is the net distance of a cell track divided by the total distance, would

vary between microchambers and wells because of their differing physical

dimensions (Figure 2). In line with this expectation, we found that the cell

movement was more confined in microchambers (lower confinement ratio) than

cells in wells (microchambers: 0.11 ± 0.09; wells: 0.50 ± 0.23; Mann–Whitney U, p

< 0.001) (Figure 6, A and B).

We compared mean curvilinear speeds and found that cells were > 2× faster on

average in microchambers than cells in wells (microchambers: 33 ± 17 µm/s; wells:

13 ± 10 µm/s; Mann–Whitney U, p < 0.001) (Figure 6, A and C). A previous study

examined the effect of microchamber size on C. reinhardtii swimming using

microfluidics. They varied the diameter but not the height of their trap sizes and

found that cells swam faster in wider traps (200 µm diameter, 30 µm height) [1].

The vessel types that we examined varied from each other in not only x and y

dimensions but also in z, resulting in substantial differences in volumes (see

Figure 2).

We observed no effect of vessel type on mean angular speed (Figure 6, B and C).

Taken together, these results demonstrate that the choice of vessel type

influences the distribution of measurements for certain aspects of swimming,

highlighting the critical importance of selecting the correct sample preparation

method for the specific experimental task.
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While the two-dimensional plots were informative, we wanted a more holistic

sense of motility differences without selecting the metrics to describe them a

priori. We performed a principal component analysis (PCA) on six metrics (Figure

7, Table 1). We selected these six metrics because they’re ratio-based and not

biased by trajectory duration. Because of the limited depth of focus, the

trajectories we obtained from microchambers have a longer duration, on average,

than those from cells in wells. This PCA analysis revealed a separation between

microchamber and well trajectories with limited overlap in PC 1 (Figure 7, A). This

component's most heavily weighted features are max sprint length, confinement

ratio, and mean curvilinear speed (Figure 7, B). This suggests that these two types

of motility differ in speed and amount of turning, which is consistent with our

analysis of the individual metrics. And these two classes of trajectories can be

almost completely separated based on our metrics (Figure 7, A; PC1).

Figure 7. Principal component analysis (PCA) on motility metrics of Chlamydomonas
reinhardtii swimming in two different vessels.

(A) Separation of trajectories between groups as a function of the first two principal components.

(B) The weights for each of the six motility metrics are included in the PCA. The first PC seems to
discriminate the trajectories based on how fast and straight they are, while the second PC is
dominated by confinement.

Taken together, these results demonstrate that our workflow lets us analyze

motility for a much greater number and diversity of samples and allows us to
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distinguish subtle behavioral differences across experimental conditions.

Additional methods

We used ChatGPT to suggest wording ideas and then chose which small phrases

or sentence structure ideas to use. We also used ChatGPT to help clarify and

streamline text that we wrote. Additionally, we used Grammarly Premium to help

copy-edit draft text to match Arcadia's style and to help clarify and streamline text

that we wrote.

Key takeaways

Our computational pipeline, SwimTracker, lets you quantify swimming trajectories

of single-celled organisms from time-lapse microscopy datasets in high

throughput. If you aim to acquire high-resolution, single-cell tracks of only a few

types of cells for extended periods of time, agar microchambers are optimal.

However, if cell trajectories of a population of cells are sufficient and your goal is

to compare many treatments, then microtiter plates are best.

Takeaways
1. SwimTracker works on brightfield microscopy videos to quantify a suite of

motility metrics for single cells that swim.

2. SwimTracker works on isolated cells (in agar microchambers) and groups of
cells (in microtiter plates).

3. Choosing a vessel type for organisms can influence the throughput of the
assay and even cell swimming behavior.

Next steps

We plan to use SwimTracker to compare motility from populations of

Chlamydomonas algae with different genetic backgrounds (e.g., hybrid progeny
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from a genetic cross, as well as mutant strains that model specific diseases) and

under different environmental parameters (e.g., nutrients, drug treatments).

In the future, we'll use data-adaptive and machine-learning-based approaches to

classify cell motility behavior, allowing us to rapidly identify environmental or

genetic parameters impacting motility.

We did some preliminary work to confirm that this imaging workflow could work

on organisms of various sizes, including organisms both smaller (5 µm)

(Supplemental Figure 1) and larger (125 µm) (Supplemental Figure 2) than C.

reinhardtii (8 µm). We’d love to hear how our approach works as a motility assay

for swimming organisms within or beyond that size range and whether you can

adapt it for other types of locomotion (e.g., crawling, gliding, etc).
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