A high-throughput imaging
approach to track and
quantify single-cell
swimming

Live imaging of swimming cells can yield insight into an
organism’s viability and responses to environmental stimuli. We
developed a microscopy workflow and image analysis pipeline,
SwimTracker, to track motility phenotypes from swimming cells
in high throughput.
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Purpose

We need robust, high-throughput methods to observe and quantify biology across
species. Historically, quantitative measurement of single-cell motility, even at low
throughput, has proven challenging partly due to the difficulty of isolating cells 1.
We previously addressed the issue of cell isolation using agar microchambers (2],
an effective but low-throughput method for observing long swimming trajectories
of cells. Here, we develop a new single-cell motility data acquisition and analysis
workflow (SwimTracker) that increases the throughput and versatility of our
previous sample preparation approach (microchambers), and we demonstrate its
application to more sample preparation methods (e.g., swimming in microtiter
plates). We show that this approach enables robust quantitative readouts of
motility even without isolating single cells.


https://doi.org/10.7554/elife.76519
https://doi.org/10.57844/ARCADIA-V1BG-6B60

We developed this strategy by 1) scaling image acquisition using the automation
capabilities of our commercial microscope software, 2) directly comparing two
types of vessels (agar microchambers and 384-well microtiter plates) to increase
the flexibility of the assay, and 3) streamlining and automating the cell tracking
and statistical analyses to make the assay robust and high-throughput.

This resource should be helpful for researchers studying motility in unicellular and
small multicellular organisms. Our approach allows for extremely high throughput
analysis of single-cell motility data (10s of thousands of cells) even without
isolating single cells.

e This pub is part of the platform effort, “Microscopy: Visually interrogating
the natural world.” Visit the platform narrative for more background and
context.

e All associated code for tracking cell trajectories, calculating motility
metrics, and conducting statistical analysis (the SwimTracker pipeline) is
available in this GitHub repository.

e All data, including the raw time-lapse microscopy data and computed cell
trajectories, is available via the BioImage Archive.

The strategy

We're using microscopy to capture phenotypes at high throughput. In this work,
we focus on motility, an evolutionarily conserved, information-rich readout
impacted by many biological processes, including life stage, metabolism, and
physical and sensory interactions with the environment [3j4151. Motility is common
to multicellular and unicellular organisms 6171 and takes diverse forms (e.g.,
walking, jumping, gliding, crawling, etc.). We're focused on motility in liquid
(swimming), a form of movement common to many protists, an evolutionarily
diverse and under-characterized taxonomic group that is the focus of many
studies at Arcadia [s81. Thus, we needed a flexible and easy method to capture

motility phenotypes in high throughput across many species and environments.


https://research.arcadiascience.com/microscopy
https://research.arcadiascience.com/microscopy
https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1
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https://doi.org/10.1002/bit.24619
https://doi.org/10.1111/evo.13427
https://doi.org/10.1038/nrmicro2009
https://doi.org/10.1016/j.cub.2020.03.026
https://doi.org/10.1093/biosci/biu175
https://doi.org/10.1016/j.cub.2021.07.066

The problem: Current methods for acquiring and
analyzing motility data don't scale

Our prior approach to in vivo imaging, which let us track individual cells, used agar
microchambers to isolate cells. This works especially well for capturing long
swimming trajectories but doesn’t efficiently scale either to many cells (hundreds
to thousands) or many different species and conditions because each differing
group requires its own agar pad. In addition, our previous motility analysis
workflow is likely too slow for the large dataset size required for our future high-
throughput analyses.

Our solution: A streamlined workflow to acquire,
process, and analyze microscopy videos to study
motility

We created a method to 1) capture cell trajectories from many pooled individuals,
2) extract features of their movement, and 3) compare motility metrics across
groups (Figure 1). Our workflow acquires 20-second brightfield videos at 20
frames per second and then quantifies features of swimming in single-celled
organisms. We increased the data acquisition by loading cells in microtiter plates
and by automating the acquisition of time-lapse microscopy videos using Nikon'’s
NIS-Elements software (JOBS) software.

The bulk of this resource is a computational pipeline (“SwimTracker”) for
segmentation, cell tracking, and extracting motility metrics from the time-lapse
microscopy videos (Figure 1). In addition, we generated a set of Jupyter
notebooks that let you aggregate these summary motility metrics, statistically
compare them across different populations of cells, and visualize differences
between them via univariate and multivariate analysis (Figure 1).

We also describe how we applied this strategy to measure swimming in the
unicellular alga Chlamydomonas reinhardtii and validated it regarding imaging
time, sample preparation, and imaging vessel. We less rigorously tested but also
validated that we could track swimming in organisms smaller (5 pm) and much
larger (125 um) than 8 um-long Chlamydomonas (Supplemental Figure 1 and
Figure 2).


https://assets.pubpub.org/3o0751q3/Supplemental_Fig1-41730917723347.mp4
https://assets.pubpub.org/8oh0ynwv/Supplemental_Fig2-41730917743432.mp4
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Figure 1. Overview of our approach to high-throughput motility data acquisition and
analysis.

We've highlighted features of the SwimTracker computational pipeline and its compatibility with
a range of sample preparation options for imaging.

These in vivo imaging methods let you quantitatively compare diverse swimming
phenotypes across groups of interest. We think they’ll be relevant for researchers
interested in understanding the mechanisms of movement, such as
ciliary/flagellar beating and the responses of protists to drugs and other stimuli.
The high throughput enabled by our approach also allows the study of many

species and environmental conditions.

The approach

To develop this swimming assay for single-celled organisms, we first established
an automated protocol for recording time-lapse microscopy videos (see
“Microscopy”) using a unicellular algae Chlamydomonas reinhardtii (see “Cell
culture and preparation for imaging”) in two different sample formats (see “Vessel




preparation”). The two formats, or vessels, were agar microchambers (we refer to
these as “microchambers”) and individual wells of a 384-well microtiter plate (we
refer to these as “wells”). We compared these two sample formats to see whether
one might be better for particular use cases, potentially increasing flexibility for
the user (spoiler: they both work, but format really matters. More info on that in
“Vessel type strongly impacts motility”).

Sample preparation

Cell culture and preparation for imaging

We ordered wild-type Chlamydomonas reinhardtii strain CC-124 from the
Chlamydomonas Resource Center (University of Minnesota). After receiving the

strain from the culture center, we prepared lawn plates as described previously 91.
We maintained clonal populations from stock streaks by live transfer once every
two weeks on 1.5% agar plates with tris-acetate-phosphate (TAP) medium. We
incubated plates at room temperature under 12:12 light: dark cycles. For all
motility experiments, we transferred cells (1 cm strip using a loop) from lawn
plates to water to induce the mixed-stage cells to become gametes, which are
flagellated and motile pey111. We resuspended these cells in water by agitating the
loop against the inside wall of a 1.5 mL microcentrifuge tube containing 500 pL
of sterile Milli-Q water. We wanted to test factors influencing the proportion of
cells that became gametes. To do this, we left tubes on the bench for 4 or 21 h to
compare populations of cells that spent different amounts of time in water and
might be at different stages of transition to gametes. We also compared cells that
we pipetted from either the topmost portion of the water or the middle but above
the pellet of settled cells.

We ordered wild-type Isochrysis galbana strain UTEX987 from the Culture
Collection of Algae at The University of Texas at Austin. After receiving the strain,
we grew 200 mL liquid cultures in Erdschreiber’'s medium on an orbital shaker at
120 rpm at room temperature under 12:12 light: dark cycles. We diluted cells two-
fold in synthetic seawater.

We ordered wild-type Paramecium tetraurelia strain 8s 4-d2 from the Culture
Collection of Algae and Protozoa. After receiving the strain, we prepared liquid

cultures in Chalkey’s medium pre-seeded with C. reinhardtii strain CC-124 as a
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food source. We maintained 108 mL cultures on the bench at room temperature
without shaking in T75 cell culture flasks.

Vessel preparation

We imaged cells in two types of vessels — agar microchambers and microtiter
plates (Figure 2).

We made agar microchambers using a PDMS stamp purchased from RMS
Microstamps 2, following our protocol, “Molding microchambers in agar with

PDMS stamps for live imaging” 1121. The dimensions of the stamp's protrusions

resulted in circular indents in the agar that were 100 um in diameter and 40 um
deep. Because these microchambers are so small, shallow, and numerous
(~10,000 for a stamp 7 in?), pipetting directly into individual wells is impossible;
therefore, we load a single strain or species into each individual stamped piece of
agar.

To prepare samples on agar microchambers, we wetted the surface with 5-10 pL
of water and then added 2 uL of cells onto one section of the agar at a time. We
allowed the drop to spread across the agar and then visually checked the
distribution of cells across the microchambers using an Olympus CK 2 inverted
phase microscope. We repeated this process 2-5 times to ensure the cell density
was somewhat evenly distributed across the microchambers. Before placing the
coverslip (#1.5 thickness for imaging), we used a Kimwipe to wick up water at the
edge of the agar and glass. Finally, we sealed the coverslips using a small
paintbrush to apply VALAP (1:1:1 mixture of vaseline, lanolin, and paraffin) heated
to 70 °C.

To load microtiter plates with either C. reinhardtii or Isochrysis galbana, we
pipetted 20 uL of cells into the bottom of a well of a 384-well, black-walled, glass-
bottom plate (Cellvis, #P384-1.5H-N). To pipette Paramecium tetraurelia, we first
poured organisms into a 12-well plate. We visualized them on a phase contrast
microscope before gently pipetting them using a wide-bore pipette tip (Molecular
BioProducts, ART 200G) and transferring them into wells of the 384-well plate
described above.


https://doi.org/10.57844/ARCADIA-V1BG-6B60
https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://researchmicrostamps.com/shop-online/100um-dia-t7dsm

Microscopy

Hardware: Objective, microscopes, cameras

The preferred imaging setup differs depending on whether the cells have been
loaded into agar microchambers or microtiter plates. Therefore, we performed
brightfield time-lapse imaging on two different microscopes. For samples in agar
microchambers, we imaged using an upright Nikon Ni-E microscope equipped
with a Photometrics Kinetix digital sSCMOS camera and built-in LED light source.
We imaged samples in glass-bottom microtiter plates using an inverted Nikon
Ti2-E & Yokogawa CSU W1-SoRa confocal microscope fitted with an ORCA-Fusion
BT digital sCMOS camera (Hamamatsu) and a LIDA Light Engine (Lumencor) for
illumination. However, this imaging could be done with any inverted widefield
microscope and camera. We used the same type of objective lens (Nikon Plan Apo
10x 0.45 Air objective) for both microscopes. For both microscopes, we acquired
data using the same software: Nikon NIS-Elements AR (version 5.42.03) and the
“High-Content Analysis” package to implement automation.

Image acquisition parameters

The parameters we used for acquiring image data were:

e 20 s time-lapses recorded in brightfield at the rate of 20 frames per
second (50 ms exposure time) with a 10x 0.45 NA air objective

e Light intensity set to maximize the dynamic range of the acquisition
system

e 610 nm longpass filter (ThorLabs FGL610S) placed over the light source of
the upright microscope 1

e To prevent phototaxis, we imaged cells using red light as described
previously (2

We used these parameters to acquire videos on both the upright Ni-E widefield
microscope (using agar microchambers) and the inverted Ti2-E microscope (using
microtiter plates).

Automated acquisition workflow

We increased throughput by automating time-lapse microscopy acquisitions. We
developed the automation workflows using Nikon NIS-Elements JOBS automation
software and provide them on GitHub. While these workflows can only
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immediately be implemented with compatible hardware and software, most
modern microscopy software packages offer the same functionality. The workflow
consists of the following steps:

1. Define the optical configuration: Set optical parameters such as the
objective lens magnification, light intensity, exposure time, and time-lapse
duration.

2. Define the stage area: Set the bounds of the translation stage to either
the limits of the slide area containing agar microchambers or to match the
geometry of the microtiter plate. If possible, define a focus surface to
compensate for sample tilt as the stage is translated across the sample.

3. Define a tiling scheme: Create a grid of tiles that'll encompass the
defined stage area. For imaging cells in microchamber pools, we generally
set the field of view to contain 16 pools and tile with a small amount (1-2%)
of overlap. For imaging cells in microtiter plates, we generally acquire one
time-lapse per well. However, depending on cell density, it might be better
to capture multiple fields of view per well.

4. Run the acquisition: For each field of view defined by the tiling scheme,
acquire a time-lapse with the chosen optical configuration.

The resource

We're sharing an approach we developed to quantify swimming in small organisms
using a computational pipeline, SwimTracker. While we also focus on the sample
preparation used for measuring swimming unicellular algae, this part of the
workflow is flexible — the rest works using any time-lapse data as input (Figure 1).
SwimTracker takes raw time-lapse microscopy data of swimming cells, applies cell
tracking, and outputs comma-separated value (CSV) files with extracted motility
metrics and MP4 videos with animated trajectories of the tracked cells. Our
GitHub repo for SwimTracker also includes a set of Jupyter notebooks for
performing multidimensional analysis and statistical tests on the data.

In “SwimTracker tracks cells and measures a suite of motility metrics,” we give an

overview of our assay and the statistics SwimTracker calculates. In “Validating our

strategy,” we walk through quality-control checks we ran to ensure our results
weren't affected by some obvious potential variables. While some of the variables


https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1

we checked had little impact or were somewhat specific to testing the workflow
on C. reinhardtii, it's worth noting that we found the biggest differences in our
calculated motility metrics based on the vessels in which we confined cells for
imaging. We discuss these tests and recommendations for when to use different
vessel types in “Vessel type strongly impacts motility.”

SwimTracker tracks cells and measures a suite of
motility metrics

We primarily used Chlamydomonas reinhardtii, a motile, unicellular alga, to
develop this method. We prepared C. reinhardtii gametes in two types of vessels
for brightfield imaging: agar microchambers and 384-well plates (see “Sample
preparation”).
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Figure 2. A schematic of the image-processing pipeline for organisms swimming in agar
microchambers (left, orange) and wells of glass-bottom microtiter plates (right, purple).

We don’t need to detect microchambers or spatially crop the time-lapse video for trajectories in
wells.

We developed “SwimTracker” as a Python-based image processing pipeline to
calculate cell trajectories from the time-lapse videos. It processes images of
samples in agar microchambers (Figure 2, left) with two additional steps than the
workflow for microtiter plates (Figure 2, right). These additional steps are
necessary to detect and crop individual microchambers before cell segmentation
and trajectory calculation. The pipeline detects individual microchambers by first
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Figure 3. Illustrations to visualize cell trajectory quantifications from time-lapse
microscopy data.

applying a Sobel edge filter to the mean intensity projection of the raw time-
lapse. It then applies a Hough transform to the edge-enhanced image so we can
identify and locate individual microchambers. SwimTracker then extrapolates this
uniform, grid-like arrangement of microchambers to determine the locations of
microchambers that the initial segmentation doesn’t detect.



Next, SwimTracker segments cells from the time-lapse to facilitate cell tracking.

First, it subtracts the mean intensity projection from each time-lapse to remove

the static background and enhance the contrast of the cells. Then, the pipeline

binarizes the videos using thresholding (Otsu’s method, Figure 2, “Segmented

cell(s)”). Finally, it tracks cells using btrack (version 0.6.5) r13; with the default

configurations. SwimTracker outputs the trajectories of each segmented cell in

CSV format for subsequent analysis.

To quantify swimming behavior, we calculated 11 metrics that capture various

aspects of a unicellular organism's movement based on existing

methodologies r141. We describe all 11 metrics in Table 1, six of which we illustrate

in Figure 3.

Motility metric
Total time*

Total distance*

Net distance*

Max sprint length
Confinement ratio*

Mean curvilinear
speed*

Mean linear speed

Mean angular speed*
Number of rotations

Number of direction
changes

Pivot rate

Description

Total time of cell trajectory

Total distance traveled along a trajectory

Distance between the start and end point of the trajectory
Maximum distance traveled in a given time interval

The ratio of net distance to the total distance

The average speed of a cell along its curved trajectory

Average speed of a cell along a straight path between its start and
end point

Average rate of angular change
Number of rotations a cell makes along its trajectory

Number of times a cell changes its direction minus the total number
of sign changes in its velocity

The ratio of the number of direction changes to the total distance

Table 1. Table of motility metrics that SwimTracker calculates to characterize a cell’s

trajectory.

Metrics with asterisks are illustrated in Figure 3.
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Raw trajectories require filtering

In our trajectory data, some traces of single cells were clearly problematic. For
example, in wells, many cells swim in and out of the focal plane, leading to many
short trajectories and the possibility of capturing more than one trajectory per
cell. Furthermore, non-motile or minimally motile cells in both wells and
microchambers can lead to trajectories with long temporal duration but little
spatial displacement. To eliminate trajectories from minimally motile cells and
reduce the likelihood that we were analyzing more than one trajectory per cell, we
filtered trajectories to be at least 10 s in duration (total time) and 20 um in length
(total distance). Both filters are implemented in “I_compute-summary-motility-

metrics.ipynb.”

Validating our strategy

We performed a series of tests to evaluate the impact of experimentally
controllable parameters on the data acquisition and analysis workflow. First, we
tested whether our imaging parameters (e.g., duration, temporal sampling density,
light exposure) affected swimming behavior. Next, because we wanted to apply
this approach to assay gametic swimming, we examined two experimental factors
influencing the life history transition to gametes. Finally, we tested whether
different vessels produce different swimming statistics.

Imaging time doesn’t affect swimming

We wanted to image as briefly as possible to enable large-scale data acquisition
across organisms or samples, but acquisition time could impact the motility
statistics. Therefore, we assessed whether motility measures changed across the
acquisition period (Figure 4, “2_temporal-variation-in-motility-metrics.ipynb”). We

computed linear regressions between each individual metric and image
acquisition time to calculate correlation coefficients for these relationships
(Figure 4, Supplemental Table 1). Ten of the eleven metrics weren't correlated with

imaging time (p > 0.1 in all cases, linear regression, Supplemental Table 1), the

exception being max sprint length, which weakly correlated (p = 0.048,
Supplemental Table 1). In the scatter plots below, we highlight the three metrics

we focus on for the rest of the analyses (Figure 4). Overall, we found that on these
timescales, the swimming behavior of the cells isn't influenced by the imaging
duration.


https://github.com/Arcadia-Science/2024-unicellular-tracking/blob/v1.0.0/notebooks/1_compute-summary-motility-metrics.ipynb
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Figure 4. Scatter plots showing the variation of several motility metrics over the duration
of an imaging experiment in microchambers.

Each point in the scatter plot corresponds to an individual cell’s trajectory at a particular 20 s
interval during the experiment. Linear regressions show no significant correlation between imaging
duration and confinement ratio and mean curvilinear speed (p > 0.1, linear regression) but a slight
correlation with max sprint length (p < 0.05, linear regression). Note that we translated the stage
between each time-lapse such that in each 20 s time interval, we imaged a different group of cells.
Multiple points exist at each 20 s interval in the scatter plots because each field of view contains
multiple microchambers.

SwimTracker can capture subtle effects on motility

We wanted to evaluate SwimTracker's ability to capture subtle changes in motility.
We've worked extensively with the single-celled alga Chlamydomonas reinhardtii
and have previously used differing sample preparations to alter its motility ¢1. We,
therefore, evaluated the influence of two factors on motility. We include the data
here not to focus on the results but to show an example of the type of univariate
comparisons that SwimTracker can quickly generate.

First, we induced gametogenesis in actively growing vegetative populations for
differing amounts of time (either 4 h or 21 h ey11]) with the expectation that
longer induction will result in more gametes in the population. Gametes have
motility that differs from vegetative cells [41. Second, following induction, we
collected cells from the top of the water column and cells from the middle of the
water column, expecting that the more motile cells would be higher in the water
column. We then evaluated whether SwimTracker could capture the expected
differences in motility.
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We found that while neither the position in the tube nor time in water
significantly impacted the mean angular speed or confinement ratio, they both
influenced the mean curvilinear speed (Figure 5). Cells we pipetted from the top
of the tube were 17% faster (as indicated by the mean curvilinear speed) than
those from the middle (p = 0.046, Mann-Whitney U) (Figure 5, A). Moreover, cells
that spent only four hours in water swam on average 24% faster than those that
spent 21 h in water (p = 0.039, Mann-Whitney U) (Figure 5, B). These results
showed that both the position of cells in the tube and the time spent in water can
affect motility. This was unsurprising, but shows how SwimTracker can be used for

1-dimensional comparisons between variables of interest.
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Figure 5. Kernel density estimates of motility metrics for cells grouped by different
experimental variables.

(A) Distributions of confinement ratio, mean curvilinear speed, and mean angular speed for cells
we pipetted from the top of the tube (light green) versus the middle of the tube (dark green).

(B) Distributions of the same metrics for cells that spent 4 h in water (light blue) vs. 21 h in water
(dark blue) before imaging.

Statistical significance: * indicates p < 0.05; ns indicates p > 0.05 as determined by Mann-
Whitney U tests.

Vessel type strongly impacts motility

While we'd ideally collect motility data that reflects normal behavior in a realistic
environment, vessel type may impact the motility we're measuring. Therefore, we
examined the effect of the sample format (the “vessel”) on cell swimming (see
“Vessel preparation” in Sample Preparation). Our goal was to test whether cells

behave differently in the two types of vessels, agar microchambers vs. microtiter
plate wells, which differ in total volume, confinement, and the number of cells
they can accommodate (Figure 2). While the agar microchambers 2] are extremely

useful for imaging many cells of a single species, the sample preparation is
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Figure 6. The choice of vessel type influences the distribution of certain motility
metrics.

The distributions of the confinement ratio and mean curvilinear speed are much narrower for
pools than for wells, while the mean angular speed appears less impacted.

**** indicates p < 0.001 and ns indicates p > 0.85, Mann-Whitney U.

laborious and difficult to apply to many conditions or strains. Some of our future
motility work requires comparisons between many treatments, so we wanted to

see if we could quantify cell trajectories in microtiter plates.

We found that swimming behavior in microchambers differed substantially from
that in wells of microtiter plates. We compared confinement ratio, mean
curvilinear speed, and mean angular speed from cell trajectories in
microchambers to those in wells (Figure 6). We expected that the confinement
ratio, which is the net distance of a cell track divided by the total distance, would
vary between microchambers and wells because of their differing physical
dimensions (Figure 2). In line with this expectation, we found that the cell
movement was more confined in microchambers (lower confinement ratio) than
cells in wells (microchambers: 0.11 + 0.09; wells: 0.50 + 0.23; Mann-Whitney U, p
< 0.001) (Figure 6, A and B).

We compared mean curvilinear speeds and found that cells were > 2x faster on
average in microchambers than cells in wells (microchambers: 33 + 17 um/s; wells:
13 £ 10 um/s; Mann-Whitney U, p < 0.001) (Figure 6, A and C). A previous study
examined the effect of microchamber size on C. reinhardtii swimming using
microfluidics. They varied the diameter but not the height of their trap sizes and
found that cells swam faster in wider traps (200 um diameter, 30 um height) 1.
The vessel types that we examined varied from each other in not only x and y
dimensions but also in z, resulting in substantial differences in volumes (see
Figure 2).

We observed no effect of vessel type on mean angular speed (Figure 6, B and C).
Taken together, these results demonstrate that the choice of vessel type
influences the distribution of measurements for certain aspects of swimming,
highlighting the critical importance of selecting the correct sample preparation
method for the specific experimental task.


https://doi.org/10.7554/elife.76519

While the two-dimensional plots were informative, we wanted a more holistic
sense of motility differences without selecting the metrics to describe them a
priori. We performed a principal component analysis (PCA) on six metrics (Figure
7, Table 1). We selected these six metrics because they're ratio-based and not
biased by trajectory duration. Because of the limited depth of focus, the
trajectories we obtained from microchambers have a longer duration, on average,
than those from cells in wells. This PCA analysis revealed a separation between
microchamber and well trajectories with limited overlap in PC 1 (Figure 7, A). This
component's most heavily weighted features are max sprint length, confinement
ratio, and mean curvilinear speed (Figure 7, B). This suggests that these two types
of motility differ in speed and amount of turning, which is consistent with our
analysis of the individual metrics. And these two classes of trajectories can be
almost completely separated based on our metrics (Figure 7, A; PC1).
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Figure 7. Principal component analysis (PCA) on motility metrics of Chlamydomonas
reinhardtii swimming in two different vessels.

(A) Separation of trajectories between groups as a function of the first two principal components.

(B) The weights for each of the six motility metrics are included in the PCA. The first PC seems to
discriminate the trajectories based on how fast and straight they are, while the second PC is
dominated by confinement.

Taken together, these results demonstrate that our workflow lets us analyze
motility for a much greater number and diversity of samples and allows us to
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distinguish subtle behavioral differences across experimental conditions.

Additional methods

We used ChatGPT to suggest wording ideas and then chose which small phrases
or sentence structure ideas to use. We also used ChatGPT to help clarify and
streamline text that we wrote. Additionally, we used Grammarly Premium to help
copy-edit draft text to match Arcadia's style and to help clarify and streamline text

that we wrote.

Key takeaways

Our computational pipeline, SwimTracker, lets you quantify swimming trajectories
of single-celled organisms from time-lapse microscopy datasets in high
throughput. If you aim to acquire high-resolution, single-cell tracks of only a few
types of cells for extended periods of time, agar microchambers are optimal.
However, if cell trajectories of a population of cells are sufficient and your goal is
to compare many treatments, then microtiter plates are best.

Takeaways

1. SwimTracker works on brightfield microscopy videos to quantify a suite of
motility metrics for single cells that swim.

2. SwimTracker works on isolated cells (in agar microchambers) and groups of
cells (in microtiter plates).

3. Choosing a vessel type for organisms can influence the throughput of the
assay and even cell swimming behavior.

Next steps

We plan to use SwimTracker to compare motility from populations of
Chlamydomonas algae with different genetic backgrounds (e.qg., hybrid progeny
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from a genetic cross, as well as mutant strains that model specific diseases) and

under different environmental parameters (e.g., nutrients, drug treatments).

In the future, we'll use data-adaptive and machine-learning-based approaches to
classify cell motility behavior, allowing us to rapidly identify environmental or
genetic parameters impacting motility.

We did some preliminary work to confirm that this imaging workflow could work
on organisms of various sizes, including organisms both smaller (5 um)

(Supplemental Figure 1) and larger (125 um) (Supplemental Figure 2) than C.

reinhardtii (8 um). We'd love to hear how our approach works as a motility assay
for swimming organisms within or beyond that size range and whether you can
adapt it for other types of locomotion (e.g., crawling, gliding, etc).
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