
Raman spectroscopy enables
rapid and inexpensive
exploration of biology

To test its utility in analyzing biological samples, we built an

open-source Raman spectrometer and collected spectra from

chilis, beer, and algae. We could stratify samples, classify

replicates, and link spectra with quantitative traits of beer (ABV)

and chilis (perceived heat).

Purpose

Raman spectroscopy is a non-destructive technique that provides a unique

chemical fingerprint based only on the interaction of light with a sample. It’s been

used extensively in materials science applications and more recently, in biology.

This technique doesn’t require molecular or chemical labeling (it’s “label-free”),

making it a potentially useful tool for studying organisms without genetic tools.

We wondered if we could build a Raman spectrometer using open-source

protocols and use it to rapidly distinguish samples based on chemical properties

in a label-free way, with minimal data processing. We decided to try a hackathon

to test this idea — we selected three types of samples (beer, chilis, and algae) and

found that the spectra were reproducible and had sufficient dynamic range to do

comparative analyses. We were able to use the Raman spectra to differentiate the

three types of samples and to distinguish subgroups of samples within a given

type. Beer sample spectra varied by alcohol content and by type. Chili pepper data

clustered by perceived heat (Scoville units) and color. We could differentiate algae

by genetic background. Finally, we found that specific spectral regions correlate

with quantitative characteristics of beer (alcohol by volume) and chilis (perceived

heat).

Our work highlights the utility and ease of this technique. We hope it will

empower scientists to capture the chemical composition of samples and extract a
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great degree of high-dimensional data from Raman spectra. We imagine this

report could also be useful for science educators who want to use the

OpenRAMAN resource and our code to run a lab class on Raman spectroscopy.

We’d love to know if you try this technique and whether it allows you to

distinguish features in a way that isn’t possible or is more difficult using other

methods.

All associated code for analyzing the spectral data is available in this
GitHub repository.

Data from this pub, including the raw spectra of beer samples, chili
peppers (seeds and flesh), and algal samples, are available in the “data”
folder of the GitHub repo.

The comprehensive parts list that we used to build the OpenRaman is in
the “resources” folder of the GitHub repo.

Background and goals

At Arcadia, we’re mapping genetic and phenotypic diversity across the tree of life

to aid in predictive modeling and biological discovery. We’ve recently shown that

high-dimensional phenotyping can improve the accuracy of phenotypic

models [1] and, likely, genotype-to-phenotype mappings. However, measuring

high-dimensional phenotypes is often laborious, most studies only measure one

phenotype, and phenotyping often requires you to know what you’re looking for

by pre-selecting a specific phenotype to quantify. In this pub, we evaluate the

suitability of Raman spectroscopy for high-throughput, high-dimensional agnostic

phenotype acquisition.

Raman spectra capture information about the chemical composition of a sample.

Samples are briefly exposed to a high-intensity, single-wavelength light source.

Most of the light is reflected or scattered elastically and is the same wavelength

as the incident light. A minor fraction of the scattered light shifts wavelength.

These shifts are caused by energy loss through vibrational or rotational absorption

and shifts are characteristic of specific chemical bonds. Thus, the spectral

distribution and intensity of this inelastically scattered light provide a fingerprint

for the chemical bonds in the sample [2].

Raman spectroscopy of cells has recently been shown to contain holistic

proteomic [3] and expression [4] data. In these studies, the authors used cellular

Raman spectra to predict entire proteomes and single-cell expression profiles.

2

https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0
https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0
https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0/data
https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0/resources
https://doi.org/10.57844/ARCADIA-5953-995F
https://doi.org/10.1186/s11671-019-3039-2
https://doi.org/10.1101/2023.05.09.539921
https://doi.org/10.1038/s42003-018-0093-8


Furthermore, we’ve shown that spectra of differing species reflect their

phylogenetic relationships [5].

To better evaluate the utility of Raman spectroscopy for the analysis of biological

information, we conducted a two-day hackathon [6] where we used a Raman

spectrometer (OpenRAMAN) that we built in preparation to collect spectra for

three types of biological samples (beer, chili peppers, and algal species). We then

looked to see if we could 1) use the spectra for clustering/classification and

trait/feature prediction, and 2) identify the importance of specific wavelengths for

these predictive tasks. We selected samples that were likely to have clear and

quantifiable dimensions of variation, such as alcohol content for beer and

perceived heat for chili pepper.

Raman spectra contain enough information to not only differentiate samples but

also to differentiate sample types based on combinations of features. Skip

straight to these results or continue reading to review our methodology.

The approach

We ran an internal hackathon to quickly assess the utility of Raman spectroscopy

in analyzing complex biological samples. Hoping to answer this question in just a

few days, we chose a low-cost, open-source spectrometer to build ahead of time

and test during the hackathon (OpenRAMAN). We designed our experiment to test

three types of samples with varying attributes that we expected could be

differentiated by their Raman spectra. We selected beer with varying levels of

alcohol content (ethanol) and of different varieties representing different brewing

yeasts, hops, malt, and other ingredients. We chose chilis that ranged in capsaicin

level, color, and state (fresh vs. dried). Finally, we used algae species of varied

genetic backgrounds that we were already using in other projects [7].

Building an open-source Raman spectrometer
We built our Raman spectrometer using instructions from OpenRAMAN and

YouTube (Figure 1).
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Figure 1. Configuration of the OpenRAMAN spectrometer.

(A) Photograph of the assembled OpenRAMAN spectrometer.

(B) Corresponding schematic with labeled parts and the path of green, yellow, orange, and red light.
We used a green laser (532 nm), but we’ve depicted its path in blue to make the image color-blind-
friendly.

We built our spectrometer according to the directions for the “Starter Edition”

with a few minor changes. Namely, we made the 3D-printed components using

inexpensive fused deposition modeling instead of the suggested selective laser

sintering due to tool availability. We also modified the inner diameter of the

camera bracket from 32 mm to 34 mm to accommodate our camera lens. Finally,

the 550 nm dichroic mirror was not available, so we replaced it with a 567 nm

dichroic mirror (Thorlabs DMLP567). For ease of communication with our analysis

computer, our camera (Teledyne Flir BFS-U3-16S2M-CS) used a universal serial

bus 3 interface instead of a gigabit ethernet interface.

We’ve put together a comprehensive parts list that includes all the parts we used,

plus other necessary tools and materials, which you can find here:

OpenRaman starter edition (comprehensive

BOM) - 2020-06_3 - STARTER EDITION Download
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ASSY.csv

Data collection and sample preparation
From the options available at Berkeley Bowl West (Berkeley, CA, USA), we selected

a variety of beers differing in alcohol content (alcohol by volume, ABV) and style.

We collected the characteristics of these beers from both brewery webpages and

the beer information aggregation website Untappd. These data reflect the values

as of March 21st, 2024; given their crowdsourced origin, they’re likely to change

over time. For sample preparation, we poured beer into weigh boats, where we

agitated the beer to reduce bubbles and carbonation before pipetting 5 µl of

each sample onto Parafilm and placing it in the sample chamber of the

spectrometer.
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Icon Beer Brewery

ABV

(%) Style IBU

Untappd

rating

(out of

five)

Untappd

tags

Dark Majik Lough Gill

(Sligo,

Ireland)

11.0 Imperial

Irish

oatmeal

coffee

stout

0 3.91 Coffee;

Smooth;

Rich; Sweet;

Boozy

Sneaky AF Del Cielo

Brewing Co

(Martinez,

CA)

10.0 Triple

IPA

0 3.99 Balanced;

Aromatic;

Light Bodied;

Earth; Piney

Big Love Almanac

(Alameda,

CA)

9.0 Hazy

double

IPA

0 3.88 Hoppy;

Citrus;

Smooth;

Strong; Light

Bodied

Gnomes

Gone Rogue

Original

Pattern

(Oakland,

CA)

8.1 Hazy

double

IPA

0 4.13 Hazy; Juicy;

Hoppy;

Pineapple;

Malty

Otto’s

Jacket

Cellarmaker

(Oakland,

CA)

7.0 West

Coast

IPA

58 3.99 Malty,

Smooth,

Caramel ,

Sweet Dry

Kimchi Sour Dokkaebier

(Oakland,

CA)

6.6 Sour 14 3.56 Light Bodied;

Crisp;

Citrusy;

Hoppy;

Grainy

Love Almanac

(Alameda,

CA)

6.1 Hazy

IPA

0 3.88 Ginger; Tart;

Light Bodied;

Spicy; Smoky

Colour Me

Murphy

Original

Pattern

Brewing

(Oakland,

CA)

6.0 Irish red

ale

0 3.86 Clean,

Citrus,

Orange, Dry,

Hoppy
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Icon Beer Brewery

ABV

(%) Style IBU

Untappd

rating

(out of

five)

Untappd

tags

Hunky Jesus Laughing

Monk (San

Francisco,

CA)

5.5 Blood

orange

pale ale

0 3.71 Dark;

Smooth;

Coffee; Thin;

Flat

Kolschtastic Gigantic

Brewing Co

(Portland,

OR)

5.2 Kolsch 25 3.60 Light Bodied;

Clean; Floral;

Sweet;

Hoppy

Temescal

Pils

Temescal

Brewing

(Oakland,

CA)

5.0 Pilsner 3.71 3.71 Light Bodied;

Clean; Floral;

Sweet;

Hoppy

Helles

(Long

Nights

Edition)

Wayfinder

(Portland,

OR)

4.9 Lager 20 3.90 Light Bodied;

Clean; Crisp;

Bright; Floral

Even MORE

IRISH

Jesus

Evil Twin

Brewing

(North

Haven, CT)

4.7 Dry

stout

0 3.64 Dark;

Smooth;

Coffee; Thin;

Flat

Party Wave Headlands

(Lafayette,

CA)

4.2 Light

lager

14 3.83 Light Bodied;

Smooth;

Effervescent;

Straw-like;

Watery

Table 1. Beer varieties sampled.

We selected 20 chili peppers from Berkeley Bowl West (Berkeley, CA, USA),

aiming for a wide distribution of spiciness and color. We dissected fresh and dried

whole chili pepper varieties into two different sample types (flesh and seed) using

razor blades on aluminum foil. Crushed red pepper flakes contain both seeds and

flesh, so we selected a fragment of flesh and a fragment of seed for testing. We

cut the flesh into roughly 0.5 cm  pieces and collected spectra from the interior

face. We found that spectra from whole seeds were qualitatively similar to

dissected seeds, so we’re presenting only spectra captured from whole seeds
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here, but included the data acquired from the pepper flesh in our GitHub repo.

We used forceps to transfer pepper samples onto Parafilm for data collection.
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Icon

Chili

variety

(as

labeled

at

Berkeley

Bowl)

Abbreviation

in GitHub

repo

(arbitrarily

assigned)

Chili

condition

Perceived

heat

range

(Scoville

units)

Median

Scoville

units

Chili

color

Average

length

(inches)

(ChatGPT)

Typical

use

(ChatGPT)

Green

bell

GrBe Fresh 0 0 Green 4.5 Raw,

salads

Red Thai ReTh Fresh 110,000 110,000 Red 1.5 Curries,

soups

Hot

Italian

frying

HoIt Fresh 100–

1,000

550 Green 6 Fried,

sauteed

Poblano Pbl Fresh 1,000–

1,500

1,250 Green 5 Stuffed,

roasted

Ancho

(dried

poblano)

Ancho Dried 1,000–

1,500

1,250 Red 4 Dried,

powdered

Hungarian

wax

HuWa Fresh 1,000–

15,000

8,000 Yellow 4 Pickled,

stuffed

Chilaca Chil Fresh 1,000–

2,500

1,750 Green 8 Dried,

sauces

Serrano Serr Fresh 10,000–

23,000

16,500 Red 2 Salsas, raw

Chili de

arbol

Arbol Dried 15,000–

30,000

22,500 Red 2.5 Dried,

powdered

Orange

habañero

OrHa Fresh 150,000–

350,000

250,000 Orange 1.5 Salsas, hot

sauces
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Icon

Chili

variety

(as

labeled

at

Berkeley

Bowl)

Abbreviation

in GitHub

repo

(arbitrarily

assigned)

Chili

condition

Perceived

heat

range

(Scoville

units)

Median

Scoville

units

Chili

color

Average

length

(inches)

(ChatGPT)

Typical

use

(ChatGPT)

Red

Fresno

Fres Fresh 2,500–

10,000

6,250 Red 3 Salsas,

salads

Jalapeño Jala Fresh 2,500–

8,000

5,250 Green 3 Stuffed,

salsas

Chipotle

(dried

jalapeno)

Chip Dried 2,500–

8,000

5,250 Red 3 Smoke,

sauces

Indian

long

InLo Fresh 25,000–

100,000

62,500 Green 6 Curries,

stir-fries

Crushed

red

CrRe Dried 32,000–

48,000

40,000 Red 0.25 Dried,

seasoning

Shishito Shis Fresh 50–200 125 Green 4 Grilled,

raw

Anaheim Anah Fresh 500–

2,500

1,500 Green 5 Stuffed,

roasted

Yellow

wax

YeWa Fresh 5,000–

15,000

10,000 Yellow 4 Pickled,

sauteed

Green

Thai

GrTh Fresh 50,000–

100,000

75,000 Green 1.5 Curries,

soups
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Icon

Chili

variety

(as

labeled

at

Berkeley

Bowl)

Abbreviation

in GitHub

repo

(arbitrarily

assigned)

Chili

condition

Perceived

heat

range

(Scoville

units)

Median

Scoville

units

Chili

color

Average

length

(inches)

(ChatGPT)

Typical

use

(ChatGPT)

New

Mexico

NeMe Dried 800–

1,400

1,100 Red 6 Stuffed,

sauces

Table 2. Pepper varieties and phenotypes.

We collected spectra for both flesh and seed for each sample, but only present data for the seeds
here. All chili pepper samples are cultivars within the species Capsicum annuum except the orange
habañero (Capsicum chinense).

We collected spectra from several unicellular algae, including freshwater

Chlamydomonas reinhardtii, Chlamydomonas smithii, four hybrid strains from

crossing these species [7], and the marine alga Isochrysis galbana (Table 3). Using

sterile loops, we transferred algae from solid media culture plates to Parafilm for

data collection.
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Icon Species Strain Source

Medium (with

1.5% agar)

Chlamydomonas

reinhardtii

cc-124 CRC Tris-acetate-

phosphate (TAP)

Chlamydomonas

smithii

cc-1373 CRC TAP

Chlamydomonas

hybrids

ACDC

13F3,

13F4,

13F5,

13F6

Arcadia Science from the

Arcadia Chlamydomonas

Diversity Collection

(ACDC)

TAP + yeast extract

(0.4%) +

carbenicillin (500

mg/L)

Isochrysis

galbana

UTEX LB

987

UTEX Erdschreiber’s

Table 3. Algal types sampled.

Data analysis
We clustered spectra using linear dimensionality-reduction methods. First, we

performed unsupervised clustering of the full spectral dataset via principal

component analysis (PCA). We assessed sample relationships by comparing the

first two principal components (Figure 3). We then used linear discriminant

analysis (LDA) to assess the extent to which we could classify individual samples

within each data class (beer, chilis, algae). For each, we used the lda  function in

the R package MASS [8] to find a linear combination of spectral features that best

classified samples (i.e., beer type, chili variety, and algal species). We assessed

each LDA by comparing the first two linear discriminants (Figure 4).

Next, we assessed the extent to which we could identify regions of these spectra

that correlate with quantitative features of different beers or chilis. Specifically,

we examined the alcohol content of each beer (ABV), and, independently, the

perceived heat of each chili (Scoville units). We obtained ABV values from each

beer can (Table 1) and Scoville units from several sites, including Wikipedia,

Bonnie Plants, Chili Pepper Madness, and Scoville Scale (Table 2). In cases where

a chili variety had a range of reported Scoville values, we used the median. The

distribution of Scoville units was highly skewed, so we transformed the data so
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that we could perform analyses that assume a normal distribution. We added one

to all Scoville values to eliminate zeros and transformed these measures using

log . For each sample, we collected between two and four spectra. We used the

median of these spectra for subsequent analyses.

We expect that many of the components of these spectra will not be useful in

predicting any particular quantitative feature of the samples. We, therefore, chose

the least absolute shrinkage and selection operator (LASSO) regression [9] as

implemented using the glmnet R package (version 4.1.8) [10]. Unlike the ordinary

least squares solution to regression problems, this method is regularized using

the L1 norm and expects that few model parameters contribute to a trait.

LASSO has a single tunable parameter, the L1 penalty (or λ), that determines the

degree of regularization. To identify a value of λ that leads to the most usefully

predictive model, we took a permutation-based approach. For 5,000

permutations, we randomly subsampled 75% of our data. We then used this 75%

to tune λ through cross-validation (according to [10]). We tested the predictions for

each permutation on the 25% of data that we didn’t use in the training. Following

all permutations, we then used the λ that resulted in the most accurate predictive

model to train a final model using all of the data. For significance testing, we

calculated confidence intervals for each spectral position (pixel) from these

permutations. We considered each location significant at p < 0.05. We note that

these are local statistical tests that do not account for the multiple tests

conducted in this study. The coefficients resulting from that final model are those

presented in Figure 5 and Figure 6.

Additional methods
We used ChatGPT to help write code and add comments to our code. We also

used it to generate the average length and typical uses of the peppers in Table 2.

The results

Raw spectra are reproducible across technical
replicates
Since spectroscopic measurements can be influenced by various noise sources —

sample heterogeneity, hardware variability, fluorescence — we were interested in

qualitatively assessing how consistently our spectra performed before more

complex analyses (Figure 2). Encouragingly, spectra were similar within sample

type (e.g., within beer or chilis) and reproducible across technical replicates

(Figure 2). Furthermore, the spectra differed across sample types (Figure 2). Some
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of these differences seemed to reflect readily apparent features of the samples.

For example, samples with “greener” color (green/yellow chilis and algae) seemed

to have increased spectral intensity in the 1200–1400 pixel (px) region (consistent

with chlorophyll fluorescence; Figure 2, B–C). Similarly, light beers displayed a

spectral peak between 1,300–1,400 px that other beer types lacked (Figure 2, A).

We concluded that our measurements were sufficiently consistent, and displayed

enough dynamic range across samples, that quantitative analyses would be

interesting to pursue.

Clustering the spectra lets us separate samples by
type
A potential benefit of Raman spectroscopy is that a single rapidly acquired

measurement may provide enough information to classify complex biological

samples. We explored this possibility by performing unsupervised clustering via

principal component analysis (PCA) on raw spectra. We reasoned that the

outcome of the PCA could inform us about the structure and richness of

information contained within the spectra. For example, if we observed extreme

mixing of samples among the principal components (i.e., no clustering), then we

might conclude that the spectra are either too complex or too noisy to easily

identify samples from raw measurements. On the other hand, if we found tight

clusters corresponding to sample type, then spectra may be highly sample-

specific but lack enough quantitative information to usefully stratify similar

samples based on their biochemical differences.

Comparing the first two principal components, we qualitatively found that samples

largely clustered by type and that we could separate them linearly (Figure 3). For

example, PC1 appeared to mostly separate algae from the other samples, while

PC2 delineated beer from chilis (Figure 3). Sample types also displayed

qualitatively differing amounts of variation. Algae samples were the most variable,

followed by beer and then chilis (Figure 3). These findings suggest that our

spectra fall in between the two extremes outlined above: they contain enough

information to cluster sample types, but there’s also measurable variation within

the different sample types (i.e., beer, chilis, and algae). This encouraged us to

explore the nuances of spectral data within sample types.

We were interested to see how a classifier might perform when applied to our

spectra. Specifically, we created linear classifiers predicting each sample type

from spectra via linear discriminant analysis (LDA). We found that, in each case,

the first two linear discriminants grouped technical replicates together. Individual

beer samples did cluster approximately according to their alcohol content — the

three highest-ABV beers clustered together, including Dark Majik at 11%, Sneaky

AF at 10%, and Big Love at 9% (Figure 4, A). Interestingly, though two of these
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Figure 2. Raman spectra of beer samples, chili pepper seeds, and algae.

(A) We’ve ordered beers and their spectra by alcohol content, with the highest ABV at the top.

(B) We’ve ordered chili pepper seeds and their spectra by perceived heat/spiciness (Scoville
units), with the hottest at the top.

(C) For algae spectra, we’ve listed the two parent species (Chlamydomonas reinhardtii and C.
smithii) first, then the hybrids from the genetic cross, and then a more distantly related alga,
Isochrysis galbana.

The mean spectrum for each sample (bold line) is the average of two to four measurements
(lighter lines) and is shown as intensity (y-axis) across pixels (x-axis). The y-axis for each
spectrum is automatically scaled in each plot to show the full range of intensity values.

Figure 3. Spectral clustering of samples via principal component analysis (PCA).

Clustering of the full dataset using the first two principal components.

three

are

IPAs,

similar-

style

beers

like a

second

Hazy

Double

IPA did

not join

this

cluster.

We also

found

that

three of the lighter-style beers with lower alcohol content clustered together,

including the Kolsch Kolchstastic at 5.2%, the lager Helles (Long Nights Edition)

at 4.9%, and the light lager Party Wave at 4.2% (Figure 4, A). The key exception

was the pilsner, Temescal Pils (5.0%), which did not cluster with the other lighter-

style, low-alcohol beers. Instead, the pilsner joined the third cluster, which

includes beers with an intermediate ABV (Figure 4, A). The chili seed samples

tended to be sorted by color of the chili on LD1, with the red chilis and the various

dried chilis to the left and the green chilis to the right (Figure 4, B). Across

samples, one of the dominant signals was pigment fluorescence, including

chlorophyll and carotenoids. This held true even for chili seeds. Finally, we found

that each algal sample clustered independently, demonstrating that the cross

between Chlamydomonas reinhardtii and Chlamydomonas smithii resulted in

unique progeny that are differentiable from either parent (Figure 4, C). This

suggests that the genetic and resultant physiological and chemical differences

between these unique hybrid strains are captured in Raman spectra. These
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Figure 4. Spectral clustering of samples via linear discriminant analysis (LDA).

2D clustering within LDA space for (A) beers, (B) chilis, and (C) algae.

spectra

can be

used as

high-

dimensional phenotypes to differentiate both species and strains and potentially

improve genotype-to-phenotype mappings [1].
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Specific regions of the spectra correlate with
quantitative features of the samples
Our clustering results show that these Raman spectra contain sufficient

information to identify individual biological samples, suggesting they might also

contain information about quantitative features that varied across those same

samples. To test this possibility, we identified spectral regions that significantly

capture information about beer alcohol content (ABV) and the perceived heat of a

chili (Scoville units). We didn’t analyze quantitative traits for algae because we

tested fewer individual samples (i.e., strains) than we did for chilis and beer. For

both ABV (Figure 5) and Scoville units (Figure 6), we conducted a LASSO, a

regularized form of regression, where intensities at individual spectral positions

were independent variables and the quantitative trait was the dependent variable.

We chose LASSO because it’s effective in cases where only very few of the model

parameters (intensity at individual pixels in the spectra) influence the response

variable, something we expect to be true for these data. We optimized our model

for the prediction of “test” data not used during training. Therefore, significant

spectral features are predictive of the particular quantitative trait. We determined

the significance of each spectral position by permutation test (see “Data analysis”

for details).
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Figure 5. Local importance and contribution of Raman spectra in predicting alcohol
content (ABV) of beers, as inferred using LASSO regression.

(A) Each line shows the mean spectrum for a specific beer. The color of the line corresponds to the
ABV for each beer.

(B) Each point corresponds to a single pixel along the spectrum, and its position along the y-axis
corresponds to how strongly spectral intensity at that position predicts ABV. Positive coefficients
indicate spectral positions that positively predict ABV, whereas those with negative coefficients
negatively predict ABV. The size of points corresponds to the percentage of bootstrap replicates (n
= 5,000) in which that spectral position was retained by L1 regularization (LASSO) regression;
vertical lines associated with each circle indicate the 95% confidence intervals for each inferred
coefficient. Points in orange are those for which the bootstrapped 95% confidence intervals are
non-overlapping with zero.

Our analysis of beer samples identified several regions of Raman spectra that

significantly predict ABV (Figure 5, bootstrapped confidence intervals, p < 0.05).

Although the LASSO regression treats each spectral position as independent of

the others, the spectral positions with significant coefficients appear

(qualitatively) to cluster in spectral space, though we did not formally test this. For

instance, the major peaks in spectral intensity for lower-ABV beers are often

flanked by spectral positions with significant coefficients (Figure 5, B). There are

apparent clusters of significant coefficients at these positions, where the

intensity of Raman signal begins to shift. Thus, we can use these spectra to

identify features that significantly predict the ABV of a sample.

Across the chili seed samples, chlorophyll fluorescence drove much of the

variation (Figure 6, A, pixels 1,200–1,440). Despite this, we identified spectral

regions that predict perceived heat (Figure 6, B; bootstrapped confidence

intervals, p < 0.05). The regression coefficients for spectral regions with variation
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driven by chlorophyll or carotenoid fluorescence (Figure 6, B; pixels 1,200–1,440)

are much smaller than coefficients for other sections of the spectra. This pattern

could indicate that chemicals causing Raman shifts in this spectral range

contribute less to a pepper’s perceived heat than chemicals causing Raman shifts

in other spectral ranges. Alternatively, it could be that the strong chlorophyll or

carotenoid fluorescence reduces our ability to estimate the contribution of truly

meaningful features. A less exploratory study would benefit from more rigorous

control of this confounder. One could explore this further by comparing the

spectral data from seeds to flesh and isolating the spectral contribution of the

pigment (chlorophyll and carotenoids). Though not presented here, our data from

the analysis of chili flesh samples are also available in our GitHub repository.

Figure 6. Local importance and contribution of Raman spectra in predicting perceived heat
of peppers (log -transformed Scoville units), as inferred using LASSO regression.

(A) Each line shows the mean spectrum for a specific chili seed sample. The color of the line
corresponds to the log-transformed Scoville units for each chili pepper.

(B) Each point corresponds to a single pixel along the spectra, and its position along the y-axis
corresponds to how strongly spectral intensity at that position predicts perceived heat. Positive
coefficients indicate spectral positions that positively predict perceived heat, whereas those with
negative coefficients negatively predict perceived heat. Size of points corresponds to the
percentage of bootstrap replicates (n = 5,000) in which that spectral position was retained by L2
regularization (LASSO regression); vertical lines associated with each circle indicate the 95%
confidence intervals for each inferred coefficient. Points in orange are those for which the
bootstrapped 95% confidence intervals are non-overlapping with zero.

The analyses of both beer and chilis show that these spectra contain information

about quantitative features of these biological samples and we can identify the

10
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components of the spectra that contribute to these features.

Key takeaways
1. Raman spectroscopy yields meaningful data about the chemical

composition of biological samples, and there’s a cheap, quick, easy, and
open-source way to build your own Raman spectrometer (OpenRAMAN).

2. Testing the OpenRAMAN spectrometer on chilis, beer, and algae showed
that this approach is sufficient to classify samples by their spectra and
associate them with quantitative traits.

3. High-dimensional phenotyping through Raman spectroscopy is useful and
accessible.

Next steps

In this pub, we rapidly tested the feasibility of using a tool for our downstream

work by running a hackathon. This hackathon structure was quite useful for

constraining a small project in time and scope and we’ll likely try it again in the

future. Because of the ease of data collection and application of machine learning

algorithms, we’ll continue to leverage Raman spectroscopy, including using the

inexpensive OpenRAMAN spectrometer, as a powerful approach for probing

biology. We’d like to help make Raman spectra from biological samples easier to

interpret, so we’d love to hear if there are any Raman-focused FAIR databases

that would be appropriate for these spectra. We’ve shared our data in the GitHub

repo associated with this pub, but it would be great to make them more

discoverable and contribute to a shared, centralized resource.
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