Raman spectroscopy enables
rapid and inexpensive
exploration of biology

To test its utility in analyzing biological samples, we built an
open-source Raman spectrometer and collected spectra from
chilis, beer, and algae. We could stratify samples, classify
replicates, and link spectra with quantitative traits of beer (ABV)
and chilis (perceived heat).
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Purpose

Raman spectroscopy is a non-destructive technique that provides a unique
chemical fingerprint based only on the interaction of light with a sample. It's been
used extensively in materials science applications and more recently, in biology.
This technique doesn’t require molecular or chemical labeling (it's “label-free”),
making it a potentially useful tool for studying organisms without genetic tools.

We wondered if we could build a Raman spectrometer using open-source
protocols and use it to rapidly distinguish samples based on chemical properties
in a label-free way, with minimal data processing. We decided to try a hackathon
to test this idea — we selected three types of samples (beer, chilis, and algae) and
found that the spectra were reproducible and had sufficient dynamic range to do
comparative analyses. We were able to use the Raman spectra to differentiate the
three types of samples and to distinguish subgroups of samples within a given
type. Beer sample spectra varied by alcohol content and by type. Chili pepper data
clustered by perceived heat (Scoville units) and color. We could differentiate algae
by genetic background. Finally, we found that specific spectral regions correlate
with quantitative characteristics of beer (alcohol by volume) and chilis (perceived
heat).

Our work highlights the utility and ease of this technique. We hope it will
empower scientists to capture the chemical composition of samples and extract a
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great degree of high-dimensional data from Raman spectra. We imagine this
report could also be useful for science educators who want to use the
OpenRAMAN resource and our code to run a lab class on Raman spectroscopy.
We'd love to know if you try this technique and whether it allows you to
distinguish features in a way that isn’t possible or is more difficult using other
methods.

e All associated code for analyzing the spectral data is available in this
GitHub repository.

e Data from this pub, including the raw spectra of beer samples, chili
peppers (seeds and flesh), and algal samples, are available in the “data”
folder of the GitHub repo.

e The comprehensive parts list that we used to build the OpenRaman is in
the “resources” folder of the GitHub repo.

Background and goals

At Arcadia, we're mapping genetic and phenotypic diversity across the tree of life
to aid in predictive modeling and biological discovery. We've recently shown that
high-dimensional phenotyping can improve the accuracy of phenotypic

models 111 and, likely, genotype-to-phenotype mappings. However, measuring
high-dimensional phenotypes is often laborious, most studies only measure one
phenotype, and phenotyping often requires you to know what you're looking for
by pre-selecting a specific phenotype to quantify. In this pub, we evaluate the
suitability of Raman spectroscopy for high-throughput, high-dimensional agnostic
phenotype acquisition.

Raman spectra capture information about the chemical composition of a sample.
Samples are briefly exposed to a high-intensity, single-wavelength light source.
Most of the light is reflected or scattered elastically and is the same wavelength
as the incident light. A minor fraction of the scattered light shifts wavelength.
These shifts are caused by energy loss through vibrational or rotational absorption
and shifts are characteristic of specific chemical bonds. Thus, the spectral
distribution and intensity of this inelastically scattered light provide a fingerprint
for the chemical bonds in the sample 2.

Raman spectroscopy of cells has recently been shown to contain holistic
proteomic 3] and expression (4] data. In these studies, the authors used cellular

Raman spectra to predict entire proteomes and single-cell expression profiles.
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Furthermore, we've shown that spectra of differing species reflect their
phylogenetic relationships (5.

To better evaluate the utility of Raman spectroscopy for the analysis of biological
information, we conducted a two-day hackathon 61 where we used a Raman
spectrometer (OpenRAMAN) that we built in preparation to collect spectra for
three types of biological samples (beer, chili peppers, and algal species). We then
looked to see if we could 1) use the spectra for clustering/classification and
trait/feature prediction, and 2) identify the importance of specific wavelengths for
these predictive tasks. We selected samples that were likely to have clear and
quantifiable dimensions of variation, such as alcohol content for beer and
perceived heat for chili pepper.

Raman spectra contain enough information to not only differentiate samples but
also to differentiate sample types based on combinations of features. Skip
straight to these results or continue reading to review our methodology.

The approach

We ran an internal hackathon to quickly assess the utility of Raman spectroscopy
in analyzing complex biological samples. Hoping to answer this question in just a
few days, we chose a low-cost, open-source spectrometer to build ahead of time
and test during the hackathon (OpenRAMAN). We designed our experiment to test
three types of samples with varying attributes that we expected could be
differentiated by their Raman spectra. We selected beer with varying levels of
alcohol content (ethanol) and of different varieties representing different brewing
yeasts, hops, malt, and other ingredients. We chose chilis that ranged in capsaicin
level, color, and state (fresh vs. dried). Finally, we used algae species of varied
genetic backgrounds that we were already using in other projects [71.

Building an open-source Raman spectrometer

We built our Raman spectrometer using instructions from OpenRAMAN and
YouTube (Figure 1).
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Figure 1. Configuration of the OpenRAMAN spectrometer.

(A) Photograph of the assembled OpenRAMAN spectrometer.

(B) Corresponding schematic with labeled parts and the path of green, yellow, orange, and red light.
We used a green laser (532 nm), but we've depicted its path in blue to make the image color-blind-
friendly.

We built our spectrometer according to the directions for the “Starter Edition”
with a few minor changes. Namely, we made the 3D-printed components using
inexpensive fused deposition modeling instead of the suggested selective laser
sintering due to tool availability. We also modified the inner diameter of the
camera bracket from 32 mm to 34 mm to accommodate our camera lens. Finally,
the 550 nm dichroic mirror was not available, so we replaced it with a 567 nm
dichroic mirror (Thorlabs DMLP567). For ease of communication with our analysis
computer, our camera (Teledyne Flir BFS-U3-1652M-CS) used a universal serial
bus 3 interface instead of a gigabit ethernet interface.

We've put together a comprehensive parts list that includes all the parts we used,
plus other necessary tools and materials, which you can find here:

OpenRaman starter edition (comprehensive

BOM) - 2020-06_3 - STARTER EDITION Download


https://thestacks-01.s3.amazonaws.com/publications/result-easy-raman-spectroscopy/asset_78330d02.csv

ASSY.csv

Data collection and sample preparation

From the options available at Berkeley Bowl West (Berkeley, CA, USA), we selected
a variety of beers differing in alcohol content (alcohol by volume, ABV) and style.
We collected the characteristics of these beers from both brewery webpages and
the beer information aggregation website Untappd. These data reflect the values
as of March 21st, 2024, given their crowdsourced origin, they'’re likely to change
over time. For sample preparation, we poured beer into weigh boats, where we
agitated the beer to reduce bubbles and carbonation before pipetting 5 ul of
each sample onto Parafilm and placing it in the sample chamber of the
spectrometer.


https://untappd.com/

Icon

Beer

Dark Majik

Sneaky AF

Big Love

Gnomes

Gone Rogue

Otto’s

Jacket

Kimchi Sour

Love

Colour Me

Murphy

Brewery

Lough Gill
(Sligo,

Ireland)

Del Cielo
Brewing Co
(Martinez,
CA)
Almanac
(Alameda,

CA)

Original
Pattern
(Oakland,
CA)
Cellarmaker
(Oakland,
CA)

Dokkaebier
(Oakland,
CA)

Almanac
(Alameda,

CA)

Original
Pattern
Brewing
(Oakland,
CA)

ABV
(%)

1.0

10.0

9.0

7.0

6.6

6.1

6.0

Style IBU

Imperial ®
Irish

oatmeal
coffee

stout

Triple ]
IPA

Hazy Y]
double
IPA

Hazy )
double
IPA

West 58

Coast

IPA

Sour 14

Hazy ]
IPA

Irish red 0

ale

Untappd
rating
(out of
five)

3.91

3.99

3.88

413

3.99

3.56

3.88

3.86

Untappd
tags
Coffee;
Smooth;
Rich; Sweet;

Boozy

Balanced;
Aromatic;
Light Bodied;
Earth; Piney
Hoppy;
Citrus;
Smooth;
Strong; Light
Bodied

Hazy; Juicy;
Hoppy;
Pineapple;
Malty

Malty,
Smooth,
Caramel,
Sweet Dry
Light Bodied;
Crisp;
Citrusy;
Hoppy;
Grainy
Ginger; Tart;
Light Bodied;

Spicy; Smoky

Clean,
Citrus,
Orange, Dry,

Hoppy



Untappd

rating
ABV (out of Untappd
Icon Beer Brewery (%) Style IBU five) tags
Hunky Jesus  Laughing 5.5 Blood ] 3.71 Dark;
Monk (San orange Smooth;
N Francisco, pale ale Coffee; Thin;
CA) Flat
Kolschtastic ~ Gigantic 5.2 Kolsch 25 3.60 Light Bodied;
Brewing Co Clean; Floral;
(Portland, Sweet;
OR) Hoppy
Temescal Temescal 5.0 Pilsner 3.71 3.71 Light Bodied;
Pils Brewing Clean; Floral;
(Oakland, Sweet;
CA) Hoppy
Helles Wayfinder 4.9 Lager 20 3.90 Light Bodied;
(Long (Portland, Clean; Crisp;
Nights OR) Bright; Floral
Edition)
Even MORE Evil Twin 47 Dry ] 3.64 Dark;
' IRISH Brewing stout Smooth;
Jesus (North Coffee; Thin;
Haven, CT) Flat
Party Wave Headlands 4.2 Light 14 3.83 Light Bodied;
(Lafayette, lager Smooth;
CA) Effervescent;
Straw-like;
Watery

Table 1. Beer varieties sampled.

We selected 20 chili peppers from Berkeley Bowl West (Berkeley, CA, USA),
aiming for a wide distribution of spiciness and color. We dissected fresh and dried
whole chili pepper varieties into two different sample types (flesh and seed) using
razor blades on aluminum foil. Crushed red pepper flakes contain both seeds and
flesh, so we selected a fragment of flesh and a fragment of seed for testing. We
cut the flesh into roughly 8.5 cm? pieces and collected spectra from the interior
face. We found that spectra from whole seeds were qualitatively similar to
dissected seeds, so we're presenting only spectra captured from whole seeds



here, but included the data acquired from the pepper flesh in our GitHub repo.
We used forceps to transfer pepper samples onto Parafilm for data collection.
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variety
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Bowl)
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bell

Red Thai

Hot
Italian

frying

Poblano

Ancho
(dried

poblano)
Hungarian

wax

Chilaca

Serrano

Chili de

arbol

Orange

habanero

Abbreviation
in GitHub
repo
(arbitrarily
assigned)
GrBe

ReTh

Holt

Pbl

Ancho

HuWa

Chil

Serr

Arbol

OrHa

Chili
condition

Fresh

Fresh

Fresh

Fresh

Dried

Fresh

Fresh

Fresh

Dried

Fresh

Perceived
heat
range
(Scoville
units)

0

110,000

100-
1,000

1,000-
1,500

1,000-
1,500

1,000-
15,000

1,000-
2,500

10,000-
23,000

15,000-
30,000

150,000-
350,000

Median
Scoville

units

)

110,000

550

1,250

1,250

8,000

1,750

16,500

22,500

250,000

Chili
color

Green

Red

Green

Green

Red

Yellow

Green

Red

Red

Orange

Average
length
(inches)
(ChatGPT)

4.5

15

25

1.5

Typical
use

(ChatGPT)

Raw,

salads

Curries,

soups

Fried,

sauteed

Stuffed,

roasted

Dried,

powdered

Pickled,
stuffed

Dried,

sauces

Salsas, raw

Dried,

powdered

Salsas, hot

sauces



Icon

Chili
variety
(as
labeled
at
Berkeley

Bowl)

Red

Fresno

Jalapeno

Chipotle
(dried

jalapeno)
Indian

long

Crushed

red

Shishito

Anaheim

Yellow

wax

Green

Thai

Abbreviation
in GitHub
repo
(arbitrarily

assigned)

Fres

Jala

Chip

InLo

CrRe

Shis

Anah

YeWa

GrTh

Chili

condition

Fresh

Fresh

Dried

Fresh

Dried

Fresh

Fresh

Fresh

Fresh

Perceived
heat
range
(Scoville

units)

2,500-
10,000

2,500-
8,000

2,500-
8,000

25,000-
100,000

32,000-
48,000

50-200

500-
2,500

5,000-
15,000

50,000-
100,000

Median
Scoville

units

6,250

5,250

5,250

62,500

40,000

125

1,500

19,000

75,000

Chili

color

Red

Green

Red

Green

Red

Green

Green

Yellow

Green

Average
length
(inches)

(ChatGPT)

0.25

1.5

Typical
use

(ChatGPT)

Salsas,

salads

Stuffed,

salsas

Smoke,

sauces

Curries,

stir-fries

Dried,

seasoning

Grilled,

raw

Stuffed,

roasted

Pickled,

sauteed

Curries,

soups



Chili
variety
(as
labeled
at
Berkeley

Icon Bowl)

New

D Mexico

Abbreviation
in GitHub
repo
(arbitrarily
assigned)

NeMe

Chili
condition

Dried

Table 2. Pepper varieties and phenotypes.

Perceived
heat
range Median

(Scoville Scoville

units) units
800- 1,100
1,400

Chili
color

Red

Average
length
(inches)
(ChatGPT)
6

We collected spectra for both flesh and seed for each sample, but only present data for the seeds
here. All chili pepper samples are cultivars within the species Capsicum annuum except the orange
habafero (Capsicum chinense).

We collected spectra from several unicellular algae, including freshwater

Chlamydomonas reinhardtii, Chlamydomonas smithii, four hybrid strains from

crossing these species (73, and the marine alga Isochrysis galbana (Table 3). Using

sterile loops, we transferred algae from solid media culture plates to Parafilm for

data collection.

Typical
use

(ChatGPT)

Stuffed,

sauces
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Medium (with

Icon Species Strain Source 1.5% agar)
Chlamydomonas cc-124 CRC Tris-acetate-
\/f reinhardtii phosphate (TAP)
Chlamydomonas cc-1373 CRC TAP
@? smithii
Chlamydomonas ACDC Arcadia Science from the TAP + yeast extract
\ 7 hybrids 13F3, Arcadia Chlamydomonas (0.4%) +
v ) 13F4, Diversity Collection carbenicillin (500
13F5, (ACDC) mg/L)
13F6
Isochrysis UTEX LB UTEX Erdschreiber’s
galbana 987

Table 3. Algal types sampled.

Data analysis

We clustered spectra using linear dimensionality-reduction methods. First, we
performed unsupervised clustering of the full spectral dataset via principal
component analysis (PCA). We assessed sample relationships by comparing the
first two principal components (Figure 3). We then used linear discriminant
analysis (LDA) to assess the extent to which we could classify individual samples
within each data class (beer, chilis, algae). For each, we used the 1da function in
the R package MASS (8] to find a linear combination of spectral features that best
classified samples (i.e., beer type, chili variety, and algal species). We assessed
each LDA by comparing the first two linear discriminants (Figure 4).

Next, we assessed the extent to which we could identify regions of these spectra
that correlate with quantitative features of different beers or chilis. Specifically,
we examined the alcohol content of each beer (ABV), and, independently, the
perceived heat of each chili (Scoville units). We obtained ABV values from each
beer can (Table 1) and Scoville units from several sites, including Wikipedia,
Bonnie Plants, Chili Pepper Madness, and Scoville Scale (Table 2). In cases where

a chili variety had a range of reported Scoville values, we used the median. The
distribution of Scoville units was highly skewed, so we transformed the data so
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that we could perform analyses that assume a normal distribution. We added one
to all Scoville values to eliminate zeros and transformed these measures using
log1g. For each sample, we collected between two and four spectra. We used the
median of these spectra for subsequent analyses.

We expect that many of the components of these spectra will not be useful in
predicting any particular quantitative feature of the samples. We, therefore, chose
the least absolute shrinkage and selection operator (LASSO) regression 9] as
implemented using the glmnet R package (version 4.1.8) (1e1. Unlike the ordinary
least squares solution to regression problems, this method is regularized using
the L1 norm and expects that few model parameters contribute to a trait.

LASSO has a single tunable parameter, the L1 penalty (or A), that determines the
degree of regularization. To identify a value of A that leads to the most usefully
predictive model, we took a permutation-based approach. For 5,000
permutations, we randomly subsampled 75% of our data. We then used this 75%
to tune A through cross-validation (according to r1e1). We tested the predictions for
each permutation on the 25% of data that we didn’t use in the training. Following
all permutations, we then used the A that resulted in the most accurate predictive
model to train a final model using all of the data. For significance testing, we
calculated confidence intervals for each spectral position (pixel) from these
permutations. We considered each location significant at p < 8.05. We note that
these are local statistical tests that do not account for the multiple tests
conducted in this study. The coefficients resulting from that final model are those
presented in Figure 5 and Figure 6.

Additional methods

We used ChatGPT to help write code and add comments to our code. We also
used it to generate the average length and typical uses of the peppers in Table 2.

The results

Raw spectra are reproducible across technical
replicates

Since spectroscopic measurements can be influenced by various noise sources —
sample heterogeneity, hardware variability, fluorescence — we were interested in
qualitatively assessing how consistently our spectra performed before more
complex analyses (Figure 2). Encouragingly, spectra were similar within sample
type (e.g., within beer or chilis) and reproducible across technical replicates
(Figure 2). Furthermore, the spectra differed across sample types (Figure 2). Some
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of these differences seemed to reflect readily apparent features of the samples.
For example, samples with “greener” color (green/yellow chilis and algae) seemed
to have increased spectral intensity in the 1200-1400 pixel (px) region (consistent
with chlorophyll fluorescence; Figure 2, B-C). Similarly, light beers displayed a
spectral peak between 1,300-1,400 px that other beer types lacked (Figure 2, A).
We concluded that our measurements were sufficiently consistent, and displayed
enough dynamic range across samples, that quantitative analyses would be
interesting to pursue.

Clustering the spectra lets us separate samples by
type

A potential benefit of Raman spectroscopy is that a single rapidly acquired
measurement may provide enough information to classify complex biological
samples. We explored this possibility by performing unsupervised clustering via
principal component analysis (PCA) on raw spectra. We reasoned that the
outcome of the PCA could inform us about the structure and richness of
information contained within the spectra. For example, if we observed extreme
mixing of samples among the principal components (i.e., no clustering), then we
might conclude that the spectra are either too complex or too noisy to easily
identify samples from raw measurements. On the other hand, if we found tight
clusters corresponding to sample type, then spectra may be highly sample-
specific but lack enough quantitative information to usefully stratify similar
samples based on their biochemical differences.

Comparing the first two principal components, we qualitatively found that samples
largely clustered by type and that we could separate them linearly (Figure 3). For
example, PC1 appeared to mostly separate algae from the other samples, while
PC2 delineated beer from chilis (Figure 3). Sample types also displayed
qualitatively differing amounts of variation. Algae samples were the most variable,
followed by beer and then chilis (Figure 3). These findings suggest that our

spectra fall in between the two extremes outlined above: they contain enough
information to cluster sample types, but there’s also measurable variation within
the different sample types (i.e., beer, chilis, and algae). This encouraged us to
explore the nuances of spectral data within sample types.

We were interested to see how a classifier might perform when applied to our
spectra. Specifically, we created linear classifiers predicting each sample type
from spectra via linear discriminant analysis (LDA). We found that, in each case,
the first two linear discriminants grouped technical replicates together. Individual
beer samples did cluster approximately according to their alcohol content — the
three highest-ABV beers clustered together, including Dark Majik at 11%, Sneaky
AF at 18%, and Big Love at 9% (Figure 4, A). Interestingly, though two of these
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Figure 2. Raman spectra of beer samples, chili pepper seeds, and algae.

(A) We've ordered beers and their spectra by alcohol content, with the highest ABV at the top.

(B) We've ordered chili pepper seeds and their spectra by perceived heat/spiciness (Scoville
units), with the hottest at the top.

(C) For algae spectra, we've listed the two parent species (Chlamydomonas reinhardtii and C.
smithii) first, then the hybrids from the genetic cross, and then a more distantly related alga,
Isochrysis galbana.

The mean spectrum for each sample (bold line) is the average of two to four measurements
(lighter lines) and is shown as intensity (y-axis) across pixels (x-axis). The y-axis for each
spectrum is automatically scaled in each plot to show the full range of intensity values.
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Figure 3. Spectral clustering of samples via principal component analysis (PCA). cluster.
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three of the lighter-style beers with lower alcohol content clustered together,
including the Kolsch Kolchstastic at 5.2%, the lager Helles (Long Nights Edition)
at 4.9%, and the light lager Party Wave at 4.2% (Figure 4, A). The key exception
was the pilsner, Temescal Pils (5.8%), which did not cluster with the other lighter-
style, low-alcohol beers. Instead, the pilsner joined the third cluster, which
includes beers with an intermediate ABV (Figure 4, A). The chili seed samples
tended to be sorted by color of the chili on LD1, with the red chilis and the various
dried chilis to the left and the green chilis to the right (Figure 4, B). Across
samples, one of the dominant signals was pigment fluorescence, including
chlorophyll and carotenoids. This held true even for chili seeds. Finally, we found
that each algal sample clustered independently, demonstrating that the cross
between Chlamydomonas reinhardtii and Chlamydomonas smithii resulted in
unique progeny that are differentiable from either parent (Figure 4, C). This
suggests that the genetic and resultant physiological and chemical differences
between these unique hybrid strains are captured in Raman spectra. These
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Figure 4. Spectral clustering of samples via linear discriminant analysis (LDA).
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¥ Colour Me ... (6.8%)

¥ Hunky Jesus (5.5%)
Kolschtastic (5.2%)
Temescal Pils (5.6%)
Helles (4.9%)

¥ ... Irish Jesus (4.7%)
Party Wave (4.2%)

Chilis

(ordered by Scoville units)

¥ Orange hab. (250,860)

./ Red Thai (110,600)
Green Thai (75,006)

# Indian long (62,500)
Crushed red (40,000)
Chili de arbol (22,500)

./ Serrano (16,500)
Yellow wax (16,800)
Hungarian wax (8,088)
Red Fresno (6,256)
Jalepeno (5,2580)
Chipotle (5,256)

A Chilaca (1,756)
New Mexico (1,500)

# Anaheim (1,568)

# Ancho (1,258)
Poblano (1,256)
Hot Italian frying (5560)
Shishito (125)

4 Green bell ()

Algae
. C. reinhardtii
(cc124) Parent
C. smithii species
(ccl1373)
13f6
13f5
o Hybrids
i) 1314
1313
I. galbana Distant
(UTEX987) | relative

2D clustering within LDA space for (A) beers, (B) chilis, and (C) algae.

dimensional phenotypes to differentiate both species and strains and potentially

improve genotype-to-phenotype mappings 1.
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Specific regions of the spectra correlate with
quantitative features of the samples

Our clustering results show that these Raman spectra contain sufficient
information to identify individual biological samples, suggesting they might also
contain information about quantitative features that varied across those same
samples. To test this possibility, we identified spectral regions that significantly
capture information about beer alcohol content (ABV) and the perceived heat of a
chili (Scoville units). We didn’t analyze quantitative traits for algae because we
tested fewer individual samples (i.e., strains) than we did for chilis and beer. For
both ABV (Figure 5) and Scoville units (Figure 6), we conducted a LASSO, a
regularized form of regression, where intensities at individual spectral positions
were independent variables and the quantitative trait was the dependent variable.
We chose LASSO because it's effective in cases where only very few of the model
parameters (intensity at individual pixels in the spectra) influence the response
variable, something we expect to be true for these data. We optimized our model
for the prediction of “test” data not used during training. Therefore, significant
spectral features are predictive of the particular quantitative trait. We determined
the significance of each spectral position by permutation test (see “Data analysis”
for details).
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Figure 5. Local importance and contribution of Raman spectra in predicting alcohol
content (ABV) of beers, as inferred using LASSO regression.

(A) Each line shows the mean spectrum for a specific beer. The color of the line corresponds to the
ABV for each beer.

(B) Each point corresponds to a single pixel along the spectrum, and its position along the y-axis
corresponds to how strongly spectral intensity at that position predicts ABV. Positive coefficients
indicate spectral positions that positively predict ABV, whereas those with negative coefficients
negatively predict ABV. The size of points corresponds to the percentage of bootstrap replicates (n
= 5,000) in which that spectral position was retained by L1 regularization (LASSO) regression;
vertical lines associated with each circle indicate the 95% confidence intervals for each inferred
coefficient. Points in orange are those for which the bootstrapped 95% confidence intervals are
non-overlapping with zero.

Our analysis of beer samples identified several regions of Raman spectra that
significantly predict ABV (Figure 5, bootstrapped confidence intervals, p < 8.05).
Although the LASSO regression treats each spectral position as independent of
the others, the spectral positions with significant coefficients appear
(qualitatively) to cluster in spectral space, though we did not formally test this. For
instance, the major peaks in spectral intensity for lower-ABV beers are often
flanked by spectral positions with significant coefficients (Figure 5, B). There are
apparent clusters of significant coefficients at these positions, where the
intensity of Raman signal begins to shift. Thus, we can use these spectra to
identify features that significantly predict the ABV of a sample.

Across the chili seed samples, chlorophyll fluorescence drove much of the
variation (Figure 6, A, pixels 1,200-1,440). Despite this, we identified spectral
regions that predict perceived heat (Figure 6, B; bootstrapped confidence
intervals, p < 0.85). The regression coefficients for spectral regions with variation
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driven by chlorophyll or carotenoid fluorescence (Figure 6, B; pixels 1,200-1,440)
are much smaller than coefficients for other sections of the spectra. This pattern
could indicate that chemicals causing Raman shifts in this spectral range
contribute less to a pepper’s perceived heat than chemicals causing Raman shifts
in other spectral ranges. Alternatively, it could be that the strong chlorophyll or
carotenoid fluorescence reduces our ability to estimate the contribution of truly
meaningful features. A less exploratory study would benefit from more rigorous
control of this confounder. One could explore this further by comparing the
spectral data from seeds to flesh and isolating the spectral contribution of the
pigment (chlorophyll and carotenoids). Though not presented here, our data from
the analysis of chili flesh samples are also available in our GitHub repository.
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Figure 6. Local importance and contribution of Raman spectra in predicting perceived heat
of peppers (logie-transformed Scoville units), as inferred using LASSO regression.

(A) Each line shows the mean spectrum for a specific chili seed sample. The color of the line
corresponds to the log-transformed Scoville units for each chili pepper.

(B) Each point corresponds to a single pixel along the spectra, and its position along the y-axis
corresponds to how strongly spectral intensity at that position predicts perceived heat. Positive
coefficients indicate spectral positions that positively predict perceived heat, whereas those with
negative coefficients negatively predict perceived heat. Size of points corresponds to the
percentage of bootstrap replicates (n = 5,000) in which that spectral position was retained by L2
regularization (LASSO regression); vertical lines associated with each circle indicate the 95%
confidence intervals for each inferred coefficient. Points in orange are those for which the
bootstrapped 95% confidence intervals are non-overlapping with zero.

The analyses of both beer and chilis show that these spectra contain information
about quantitative features of these biological samples and we can identify the
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components of the spectra that contribute to these features.

Key takeaways

1. Raman spectroscopy yields meaningful data about the chemical
composition of biological samples, and there’s a cheap, quick, easy, and
open-source way to build your own Raman spectrometer (OpenRAMAN).

2. Testing the OpenRAMAN spectrometer on chilis, beer, and algae showed
that this approach is sufficient to classify samples by their spectra and
associate them with quantitative traits.

3. High-dimensional phenotyping through Raman spectroscopy is useful and
accessible.

Next steps

In this pub, we rapidly tested the feasibility of using a tool for our downstream
work by running a hackathon. This hackathon structure was quite useful for
constraining a small project in time and scope and we'll likely try it again in the
future. Because of the ease of data collection and application of machine learning
algorithms, we’ll continue to leverage Raman spectroscopy, including using the
inexpensive OpenRAMAN spectrometer, as a powerful approach for probing
biology. We'd like to help make Raman spectra from biological samples easier to
interpret, so we'd love to hear if there are any Raman-focused FAIR databases
that would be appropriate for these spectra. We've shared our data in the GitHub
repo associated with this pub, but it would be great to make them more
discoverable and contribute to a shared, centralized resource.
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