
Predicting antimicrobial
resistance phenotypes
across 7,000 E. coli

genomes

We explored the genetic basis of antimicrobial resistance
(AMR) phenotypes among 7,000 globally distributed strains
of E. coli. AMR is associated with various genetic
architectures that span multiple evolutionary scales.

Purpose
At Arcadia, we're interested in mapping genotype-phenotype
relationships at broader evolutionary scales than previously
attempted. To achieve this, we're developing models to capture
genetic relationships — both linear and nonlinear — that may be
inaccessible to conventional approaches. To further our
development, we need a rare commodity: large-scale data from
evolutionarily, genetically, and phenotypically diverse populations.

In this pub, we characterize a candidate dataset for model
development composed of globally distributed samples of E. coli.
Using exploratory population genomic and phylogenomic analyses
of a previously published dataset of 7,000 E. coli genomes [1], we

describe extensive genetic diversity at both the strain level and
among deeply branching phylogroups. We also verify that this
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dataset contains high-quality genotypic information that can be
leveraged for model development. Finally, we show we can uncover
the genetic basis of three antimicrobial resistance (AMR) phenotypes
using conventional genomic prediction methods. These analyses
expand our understanding of the evolution of these AMR phenotypes
and set the baseline for future non-linear model development.

This work will interest anyone studying the evolution of antimicrobial
resistance or the links between genotype and phenotype in
evolutionary biology, breeding/agriculture, or genetics.

Data from this pub is available on Zenodo.

All associated code is available in this GitHub repository.

This pub builds on a dataset pub we previously released,
“Creating a 7,000-strain E. coli genotype dataset with
antimicrobial resistance phenotypes.”

Background and goals
Learning the genotype–phenotype map (i.e., how genotypic diversity
translates to phenotypic diversity) is a fundamental goal in biology
with many direct applications. As the availability of sequencing data
has exploded over the past decade, many believed that genotype–
phenotype maps would be resolved across the tree of life. However,
while progress has been made in some cases — e.g., linking large-
effect loci with specific traits — the genetic architecture underlying
most phenotypic variation remains unresolved.

Why is this so? The methods used provide (at least) part of the
answer. Most genotype–phenotype mapping approaches (e.g.,
genome-wide association studies; GWAS) are built on a strong
assumption: we can explain the breadth of phenotypic variation by
simply adding up the contributions of individual genomic loci [2].

However, it has been known for a long time that additive effects
constitute just a portion of possible genomic interactions. It has also
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been known that by not capturing nonlinear effects like epistasis,
linear models generally can’t generalize across populations [3]. In

these models, nonlinear effects are averaged over and effectively
washed out when estimating a genetic variant’s phenotypic
contribution [2]. Additive models, therefore, can’t capture the breadth

of genetic patterns within populations and are unlikely to generalize
across populations on broader evolutionary scales (where nonlinear
interactions become increasingly prevalent). Given this, decoding
genotype–phenotype maps will remain hard so long as exclusively
linear models are used.

Models that capture linear and nonlinear interactions (e.g.,
autoencoders, transformers, graph neural networks, etc.) are
appealing alternatives. Nonlinear models may have the flexibility to
detect features like epistasis and additive interactions. In previous
work, we found that nonlinear models can predict complex sets of
phenotypes [4] and generalize across quantitative genetic

applications [5]. While promising, these efforts were largely

theoretical and/or relied on simulated data. Empirical datasets
capturing natural genetic, phenotypic, and evolutionary complexity
are needed to explore the full utility of nonlinear genotype–
phenotype models.

We recently published a dataset of 7,000 globally distributed E. coli
strains that, for several reasons, may fit this bill (referred to
henceforth here as “E. coli 7k”) [1]. First, E. coli has independently

evolved antimicrobial resistance (AMR) phenotypes multiple times [6].

Second, E. coli displays substantial genetic variation, including both
regular polymorphisms such as SNPs/short indels, as well as gene
presence–absence variation [7]. Third, the global population of E. coli

shows species, population, strain, and individual-level
diversification [8]. These features suggest that this may be a good

“model dataset” for testing nonlinear models that span multiple
evolutionary scales.
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In this pub, we characterize the extent to which these global features
of E. coli diversity are present in this dataset. We then assess how
well linear models predict variation in AMR phenotypes with diverse
evolutionary histories. These analyses flesh out the utility of this
dataset for model development and set a baseline for genomic
prediction accuracy, highlighting diverse opportunities for future
development.

The approach
Our goal was to assess the suitability of the previously published E.
coli 7k dataset for genotype-to-phenotype mapping applications. To
do this, we first performed some exploratory population genomic
and phylogenetic analyses as both a sanity check on the genotyping
calls and to assess the phylogenetic scope of the dataset. We then
applied standard genomic prediction methods to three AMR
phenotypes and analyzed the results in the context of previously
published functional genetic data.

Data preparation and filtering
One caveat of the previously released E. coli 7k dataset is that
pangenome reference genotypes were encoded as missing during
genotype calling, meaning we can't differentiate between missing
data and reference allele calls. The vast majority of the time, missing
data should correspond to reference genotypes, so as an
approximation, we assigned all samples with missing genotype calls
as reference genotypes. This approach should be appropriate for
most sites but will likely lead to reference-biased genotyping error in
our analyses.

Our dataset is quite large, containing ~2.4 million genetic variants
across our 7,000 strains. Although highly information-rich, the size of
this dataset can be prohibitive for exploratory analyses. Furthermore,
not all genotypic variants are independent of one another, whether

4



due to physical proximity/linkage or due to evolutionary non-
independence through patterns of shared ancestry. Thus, to pare
down our genotypic data to a subset of sites suitable for
downstream exploratory analyses, we applied several filtering
criteria, constructing two analysis-specific datasets from this subset.

Dataset 1: Population genomic and phylogenetic
analyses
Bacterial genomes can be divided broadly into a “core” genome,
shared by all individuals, and an “accessory” genome that captures
presence–absence variation [9].

Polymorphism found within the core genome of bacterial species is
likely to be of high significance, as these sites are transmitted
vertically from generation to generation and thus reflect phylogenetic
and population genomic signals considerably more than accessory
gene content, which can be transmitted horizontally both between
and within bacterial species [9]. Consequently, we first sought to

identify which contigs in our reference pangenome correspond to
the core E. coli genome. Looking across the 72 ECOR strains [1]

[10] used to construct our reference pangenome, we considered

contigs that were present in all samples (i.e., weren't missing in any
ECOR strain) to belong to the core E. coli genome.

We further filtered to retain only bi-allelic sites annotated as
synonymous, missense, or loss of function (LOF) and visualized their
respective site frequency spectra (SFS). These spectra revealed an
excess of quadrupleton synonymous sites, suggesting the
persistence of bioinformatic artifacts in our data. More careful
investigation revealed this pattern was driven by 14 samples that
possessed an over-enrichment of such quadrupletons (> 500); we
thus removed these samples from our data, resulting in a more
reasonable-looking SFS (Figure 1, A). For all downstream analyses, we
focused exclusively on synonymous sites that had passed all filtering
criteria thus far. To improve the computational efficiency of
downstream analyses, we randomly retained 10% of genotypes with
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a minimum derived minor allele count (hereafter MAC) of 10, leaving
us with a total of 13,352 synonymous sites for population genomic
and phylogenetic analyses.

Population genomics
To explore broad patterns of genetic similarity in our dataset, we
conducted a principal component analysis (PCA) using our filtered
genotypic data as implemented in the R package SNPRelate
(v1.36) [11]. We explored how various sample metadata features such

as country of isolation, year of isolation, and multilocus sequence
type (MLST) mapped onto the first five PC axes using multinomial
logistic regression using the R package nnet (v7.3-19) [12].

Phylogenetic inference
We inferred a strain-level phylogeny using IQ-TREE 2 (v2.3.5) [13],

using a general time reversible substitution model with unequal
rates and base frequencies (GTR). We also applied an ascertainment
bias correction (+ASC [14]) to adjust branch length estimates from SNP

data. Motivated by the findings of our genomic prediction analyses
(see below), we applied the same procedure for constructing a gyrA
gene tree in downstream analyses. For this analysis, we simply
restricted the inference to all polymorphic sites found on the contig
mapping to this gene.

Dataset 2: Genomic prediction
Next, we sought to construct a genotypic dataset suited to the task of
genomic prediction, starting from the complete genome. We
removed excessively rare variants for these analyses as most models
will have very little statistical power to estimate the effects for such
polymorphism. We thus first filtered to retain sites with non-
reference alleles that occurred at appreciable frequency (derived
MAC ≥ 250), leading to the retention of 326,625 markers for genomic
prediction in 7,043 samples (we again excluded the 14 individuals
identified as outliers earlier). We chose not to prune our sites for
linkage disequilibrium (LD, the statistical association between alleles
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in a population). Instead, we used models that induce sparsity in
marker effect estimates through regularization using a Bayesian prior
for marker effect sizes, thus allowing genotype-to-phenotype
associations to drive marker selection rather than random sampling.

We also chose not to focus our analyses solely on bi-allelic markers
as this can lead to the exclusion of important multi-allelic
polymorphisms in the genome, especially in large datasets such as
ours [15]. Furthermore, previous work has shown that

presence/absence variation in the accessory genome can also play
important roles in AMR evolution through genetic mechanisms such
as plasmid exchange or transposon-mediated resistance [16].

Consequently, we also included a set of markers tracking
presence/absence status for all 32,441 pangenome contigs and all
7,043 individuals in our analysis.

To genotype individuals for contig presence/absence status, we used
SAMtools (v1.20) idxtstats  [17] to calculate the number of reads

mapping to each contig in each sample. We then normalized these
counts by the contig length and total number of reads mapped to the
pangenome in each sample. We then chose 12 random ECOR strains
and visualized their distributions of normalized coverage. Based on
these plots, we chose a normalized coverage cutoff of 1e  that
separated the two distinct distributions of coverage (one for present
contigs and one for absent contigs) that were apparent. We
combined SNP/indel marker data and presence/absence pseudo-
marker data using PLINK (v1.90b6.21) [18], creating a merged output

file we used in downstream genomic prediction analyses.

Genomic prediction
We used Bayesian sparse linear mixed models (BSLMM) [19] to

perform genomic prediction as implemented in GEMMA (v0.98) [20].

We selected the BSLMM model as it allows markers to draw effect
sizes from two distributions: a distribution for minor effects (such as
those often associated with quantitative traits) and a distribution of
much rarer major effect markers. We assumed a priori that this

-10
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combination of distributions should be appropriate for the AMR
phenotypes we're modeling, given that individual substitutions or
alleles are often major determinants of resistance [16].

To fit the model, we first calculated a centered relatedness matrix
based on our set of markers. Then, independently, we ran a probit
version of the BSLMM model for each AMR phenotype. Strictly
speaking, our phenotypes are encoded in three levels (susceptible,
intermediate, and resistant). Susceptible was the most common state
for almost all phenotypes, with a subset of individuals being
resistant and a very small fraction labeled intermediate. Given the
rarity of susceptible samples and that resistant/intermediate
phenotypes likely share genetic features that lead to any level of
resistance, we coerced our phenotypes to a binary state as required
for a probit model, encoding all intermediate individuals as resistant
(coding 0=susceptible, 1=intermediate/resistant). As in previous
analyses, we assumed that all missing genotypes were, in fact,
masked reference alleles. We left all other parameters as their
defaults. Fitted BSLMMs return posterior mean estimates for marker
effect size parameters, including alpha (corresponding to a minor
effect estimate), beta (a major effect estimate), and gamma (a
parameter estimating the probability that beta is non-null). We
estimated overall marker effects as α + β*γ, as suggested in the
GEMMA manual, sorting markers based on the absolute value of this
estimate of total effect.

Additional analyses
To look for evidence of physical linkage between candidate
resistance markers, we calculated a measure of covariance in allelic
state, LD. To do this, we used PLINK (v1.90b6.21) [18] and calculated

all vs. all LD between our top ten largest-effect markers for all
phenotypes (separately for each phenotype), using options --r2 --allow-

extra-chr --ld-window-r2 0  to calculate all vs. all inter-chromosome r2.

Our genomic prediction analyses revealed that ciprofloxacin
resistance was chiefly driven by three tightly linked resistance
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mutations, which likely evolved independently several times across
our phylogeny. We, therefore, also used corHMM (v2.8) [21] to try and

tease apart the most likely/frequent order in which these three
mutations arose during ciprofloxacin resistance evolution in our
dataset. Using hidden Markov models to infer transition rates
between discrete states (here, genotypic state at three resistance
sites) along branches of a phylogeny, corHMM constructs models
wherein unsampled (“hidden”) states are codistributed alongside the
sampled state. These hidden states allow the model to capture more
biologically realistic rate variation across the phylogeny.

We first time-calibrated the phylogeny we inferred from genome-
wide SNP data using the least squares dating method for tip-
dating [22] implemented in IQ-TREE using year of isolation metadata

associated with our samples as time reference points. To estimate
hidden state transition rates, we modeled the reference and
alternate alleles as a binary phenotype for all three mutational
positions (gyrA248, gyrA259, and parC239). We fit a model using
default corHMM options with asymmetrical transition rates and a
single hidden rate category (i.e., each transition is modeled using a
single rate). We limit our interpretations of resistance evolution to
forward single-step mutations estimated by corHMM as this is the
most biologically plausible path of resistance evolution, barring rare
double mutation events for which our dataset likely lacks the
necessary resolution to capture.

Additional methods
We used Grammarly Business to reorganize text using a template,
reformat text according to a style guide, and help clarify and
streamline the text that we wrote.
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The results
Population genomic patterns
The E. coli 7k dataset is genomically and phenotypically diverse. To
facilitate downstream model development, we were interested in
characterizing any technical (e.g., sequencing noise or bioinformatic
errors) or biological (e.g., sampling imbalances or genetic
complexity) factors that might limit its utility. To this end, we
performed a series of population genomic and phylogenetic analyses
to determine which patterns in the data reflected expected biological
processes and which were the product of technical and/or biological
artifacts.

First, we looked for evidence of genome-wide purifying selection, an
expected population genetic phenomenon in real-world populations.
Purifying selection removes deleterious mutations from a
population, meaning that more deleterious mutations should, on
average, segregate at lower allele frequencies than less deleterious
ones. This results in a left-shifted and rapidly decaying site frequency
spectrum (SFS). Deviations from this pattern can indicate
technical/bioinformatic error. Population genomic datasets lacking
signals of purifying selection may be corrupted by technical artifacts
(e.g., sequencing or bioinformatic issues).

We compared the (unfolded) SFS of three types of mutations: 1)
synonymous (low to no effect), 2) missense (moderate effect), and 3)
loss-of-function (LOF; large effect). As expected, rare allele frequency
increased with mutational effect, indicating that purifying selection
has acted to remove more common deleterious mutations in E. coli
(Figure 1, A). Moreover, the SFS of all types of mutations decays
roughly monotonically with allele frequency, another expected
biological signal. Most mutations in a population aren't expected to
reach high frequencies due to random sampling. These results,
therefore, rule out allele frequency imbalances due to technical
errors.
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Figure 1. Patterns of SNP and presence–absence diversity in E. coli.

(A) Site frequency spectra of loss-of-function (LOF; purple), missense (yellow), and
synonymous (green) mutations. Allele count represents the number of non-reference
alleles present in the dataset for each mutation type.
(B) Distribution of contig presence–absence variation. The x-axis captures how many
of 7,043 samples had a contig labeled as ‘present’ based on a normalized coverage
cutoff threshold.

Next, we turned our attention to patterns of sequencing coverage in
our dataset, which can also be informative about technical artifacts.
E. coli strains possess a ‘core genome’ (a set of genes broadly shared
by all taxa) and an “accessory genome” (genes that vary across taxa,
strain/phylogroup/etc.), the structure of which can vary broadly. By
analyzing the relative coverage of DNA segments (contigs) across the
7,000 genomes, we can reconstruct the presence of the core and
accessory genomes in the dataset and compare these patterns to
previously published work on the structure of the E. coli genome. Of
32,441 contigs, we found 2,847 were shared by all 7,043 samples, 687
were shared by all but one, and 287 were shared by all but two
samples, thus reflecting a broadly shared core genome. On the other
hand, many contigs were shared by a small subset of samples in the
dataset (Figure 1, B), highlighting the accessory genome. These
patterns align with previous estimates of the E. coli core genome size
and presence–absence frequency. These observations further
indicate that the E. coli 7k data and reference pan-genome are of high
quality [7][23].
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Finally, we examined genome-wide patterns in the dataset to see if
we identified expected E. coli population-level differences. A genomic
PCA showed that genomes were broadly differentiated along axes
defined by the 72 ECOR reference strains used to assemble the
pangenome (Figure 2, A, Supplemental Table 1). Notably, there was
little association between genomic diversity (represented by PC axes
1–5) and year of collection (pseudo r  = 0.05; multinomial regression;
Figure 2, B). There was a similarly weak relationship between these
genomic principal components and country of isolation (pseudo r  =
0.25; Figure 2, C). This tracks with previous work that has found
phylogenetically distinct strains of E. coli co-localizing globally [24][25],

a pattern which likely obscures more subtle within lineage isolation
by distance patterns.

However, multilocus sequencing type (MLST) — a commonly used
taxonomic identifier of E. coli lineages — and broader phylogroup
labels were strongly associated with genomic diversity (pseudo r  =
0.86; Figure 2, C). Furthermore, combining MLST/phylogroup with
genomic diversity (PCs 1–5) strongly predicted the country of
isolation (linear regression; pseudo r  = 0.89). This indicates that
broad-scale population differences (i.e., MLST/phylogroup) co-occur
with more recent, finer-scale geographic variation (i.e., country of
origin). These results indicate that the E. coli 7k dataset represents
various evolutionary scales and patterns.

2

2

2

2
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Figure 2. PCA of 7,000 E. coli genotypes with visualization of various metadata
features.

(A) Labeling of samples included in the construction of the pan-genome reference.
(B) Labeling of samples by year of isolation.
(C) Labeling of samples by either broader phylogroup or multilocus sequence type
(MLST). MLST labels are nested under the broader phylogroup to which they belong.

Phylogenetic analysis
To further interrogate these patterns, we inferred a core-genome
phylogeny and analyzed the distribution of major phylogroups and
MLSTs (Figure 3, A). As expected, MLSTs formed clades nested within
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deeply branching phylogroups (Figure 3, A). For example, MLST 131 is
a sub-lineage of phylogroup B2 and correctly appears as such in our
phylogeny [26]. We did note that some samples labeled as phylogroup

F appeared within phylogroup D (Figure 3, A). These samples lack
signals of phylogenetic (e.g., excessively long branch lengths) or
bioinformatic error (unexpected SFS patterns), suggesting that they're
incorrectly labeled phylogroup F in the metadata. Overall, the
phylogenetic patterns match previous work and recover expected
relationships both within strains and among major phylogroups [8].

We next used the phylogeny to infer how the three AMR phenotypes
(ampicillin, trimethoprim/sulfamethoxazole, ciprofloxacin) have
diversified over time (Figure 3, B). We wanted to know if these
phenotypes have followed the same pattern or if they represent
different diversification modes. The answer would help us gauge
how much power the E. coli 7k dataset contains for modeling
genotype–phenotype relationships over different evolutionary scales.

Ampicillin and trimethoprim/sulfamethoxazole resistance were fairly
evenly distributed across the tree (Figure 3, B). On the other hand,
ciprofloxacin was restricted to specific clades, potentially
representing multiple independent transitions between antibiotic
susceptibility and resistance (Figure 3, B). Of the 433 unique clade
labels (MLST or broader phylogroups) in our dataset, only 70 (16%)
contained at least one resistant ciprofloxacin observation. Ampicillin
and trimethoprim/sulfamethoxazole were more broadly distributed:
165/112 (38%/26%) clades contained at least one observation,
respectively. These observations suggest two types of phenotypic
distribution in the dataset: broad (ampicillin,
trimethoprim/sulfamethoxazole) and clade-restricted (ciprofloxacin).

The two diversification types may be associated with different
genetic architectures. For example, closely related strains exhibit
different AMR phenotypes in the broad distribution, suggesting that
just a few mutations may be needed to evolve resistance.
Encouragingly, this type of recurrent diversification helps control for
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Figure 3. Species tree constructed from sub-sampled synonymous sites
(minor-allele count: MAC > 10) in the core genome.

(A) Species tree constructed from sub-sampled synonymous sites (minor-allele
count: MAC > 10) with Phylogroup/MLST labels, only groups with at least 100
samples shown.
(B) Species tree constructed from sub-sampled synonymous sites (MAC > 10) with
three focal AMR phenotypes and their state distributions.

population differences, allowing causal loci to be decoupled from
the genomic background. On the other hand, the putatively
independent, repeated evolutionary origins of ciprofloxacin
resistance may point to a common mutational pathway through
which this trait has evolved among distinct E. coli strains. We thus
sought to identify which loci contribute to AMR's evolution and the
extent to which these contributions persist across evolutionary
scales.
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Genomic prediction overview
In the previous sections, we found that the E. coli 7k dataset has
several desirable features for downstream model development. The
dataset lacks clear evidence of technical and biological noise,
encompasses a substantial portion of E. coli’s global diversity, and
contains genomic and phenotypic diversity spanning multiple
evolutionary scales. Given these positive signs, we were next
interested in probing the genetic architectures of three AMR
phenotypes.

Using linear genomic prediction methods, we inferred the size,
structure, magnitude, and heritability of AMR-associated genetic
markers (Figure 4). As previously discussed, these methods often fail
to capture nonlinear processes like epistasis. However, by estimating
how much phenotypic variation can be explained solely by additive
interactions, linear models can be useful for establishing a predictive
baseline. For example, all three phenotypes had very high estimates
of narrow sense heritability (proportion of variance explained: 0.99,
0.95, 0.94 for ciprofloxacin, ampicillin, and
trimethoprim/sulfamethoxazole resistance, respectively), indicating
that these traits have relatively simple genetic architectures that
might allow genomic prediction models to capture a majority of their
phenotypic variance.

This section provides an in-depth exploration of these genomic
prediction results. Please jump to the Key takeaways and Next steps
for a quicker overview.

16



Figure 4. Effect size distribution for the ten largest-effect markers from a
genomic prediction analysis on three AMR phenotypes.

Effect size is measured as the sum of minor and major effects estimated by GEMMA’s
BSLMM model. Markers are labeled as either SNP or presence–absence variation.

Ciprofloxacin resistance
The three markers with the largest effect sizes strongly predicted
ciprofloxacin resistance. These markers were two missense SNPs in
the gyrA gene (gyrA248, gyrA259 leading to substitutions Ser83Leu,
Asp87Asn/His/Tyr respectively), and one missense SNP in the
topoisomerase IV subunit A (ParC239, substitution Ser80Ile) (Figure 4,
Supplemental Table 2). All three substitutions have been previously
identified as resistance mutations in lab studies [27] and likely

underlie the vast majority of ciprofloxacin resistance in our dataset.
We constructed a gene tree based on gyrA and mapped the
occurrence of all three resistance markers onto it to check if these
substitutions have evolved independently more than once. The
distribution of the resistance phenotype on this gene tree suggests a
dynamic evolutionary history, with resistance to ciprofloxacin being
repeatedly gained and/or lost through mutation in the core genome
(Figure 5, A).

As we're ultimately interested in nonlinear genotype–phenotype
modeling, we looked further into possible interactions between the
three key ciprofloxacin resistance substitutions, given their multiple
independent origins and abundance in our dataset. To test for first-
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order interactions between the three substitutions, we fit a logistic
regression predicting resistance phenotype using individual marker-
state and all pairwise (N = 9) marker interaction terms possible
(Supplemental Table 3). For the singular marker terms, the logistic
regression recapitulated the effect size ranking of our initial analysis
[gyrA248 (effect size = 3.24) > gyrA259 (2.64) > parC239 (2.11)]. None
of the interaction terms significantly differed from 0 in the fitted
model, likely due to the low number of observations of intermediate
genotypes. However, the model did predict a positive (albeit
insignificant) interaction between gyrA248 and gyrA259(p = 0.12,
effect size = 2.29), a finding that's supported by observations of
ciprofloxacin resistance in the lab [27], and by plotting resistance

phenotype distributions by genotype (Figure 5, B).

While the tight associations between the resistance markers for
ciprofloxacin hamper model fitting, they are in themselves
informative since an overabundance of certain combinations (i.e.,
LD) implies they're more fit than others. Consequently, we expect
that mutational trajectories from non-resistant wild-type genotypes
to antibiotic-resistant genotypes should disproportionately pass
through these favorable genotypic combinations, avoiding unfit
genotypes. To test these predictions, we fit models of discrete trait
evolution to infer transition rates between different genotypes, thus
obtaining estimates of the relative probabilities of different
mutational trajectories between ciprofloxacin susceptible/resistant
strains. We accomplished this using corHMM(v2.8) [21] to estimate all

possible single-step transition rates between the presumed ancestral
state (the reference allele at all three positions) to the final full
mutation stack resistance phenotype.

This analysis suggested high reverse mutation rates, particularly in
mutational states involving one or two resistance mutations. This
likely occurs because such genotypes are generally rare in our
dataset (and difficult to sample in any dataset of this size) and
distributed within clades with very short internal branch lengths,
where the true fine-scale phylogenetic relationships are hard to
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Figure 5. Evolutionary history of three major ciprofloxacin resistance
mutations.

(A) Gene tree of gyrA locus with mutational state at three resistance SNPs (inner 3
rings: gyrA248, gyrA259, parC239), as well as ciprofloxacin resistance phenotype
state (outer ring). Mutational state of 0 denotes ancestral allele, and mutational
state of 1,2,3 denote various derived resistance alleles.
(B) Distribution of ciprofloxacin resistance phenotypes as a function of various
combinations of ancestral/derived mutations at three resistance sites. For
simplicity, all derived alleles are considered equivalent. Resistance values were
encoded as 0 = susceptible, 0.5 = intermediate, and 1 = resistant.
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(C) Graph of transition rate estimates between genotypes going from ancestral
state of no resistance mutations, to full resistance across three resistance sites.
Rates were estimated using corHMM; only single-step forward transition rates are
illustrated for interpretability. Width of edges corresponds to transition rate from
the source (left) to target (right) genotype.

estimate. As a result, we limit our focus on biologically plausible
forward, single-step mutational rates estimated in corHMM.

These rates suggest that the most likely single-step mutational
pathway toward resistance first requires a mutation at gyrA248,
followed by rapid mutation at either of the two following sites (Figure
5, C, Supplemental Table 4). This lines up well with the phenotypic
data, as gyrA248 is the only mutation that appears to show some
level of resistance when found alone (Figure 5, B) and is the only
mutation that’s found at appreciable frequency by itself, further
suggesting that it's the most likely initial mutational step. Once this
mutation arises, it seems to potentiate ciprofloxacin resistance
evolution as further accumulation of the next two mutations
achieves full resistance (Figure 5, B and C).

Overall, our results for genomic prediction in ciprofloxacin point to a
fairly simple genetic architecture dominated by a series of three
ordered mutations but reveal more subtle signatures of epistasis
that are easily missed in our initial linear genomic prediction
analysis. This provides a nice baseline for future nonlinear modeling
work on this phenotype. Simultaneously, however, these results
point to the disadvantage of using natural datasets. Epistasis
naturally quickly creates LD between mutations, thereby purging
unfavorable genotypes from a population [28]. However, this hampers

model fitting, as unfavorable genotypes (i.e., “true negatives”) are
needed to train models aiming to connect phenotype to genotypes.
This highlights the advantage of studies with controlled crosses
where both fit and unfit genotypes can be observed and phenotyped.
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Figure 6. Pairwise linkage disequilibrium (r ) among the ten largest-effect
ampicillin resistance markers.

Ampicillin resistance
Unlike ciprofloxacin, ampicillin resistance was characterized by a
gentler decay of marker effect size (Figure 4). These resistance
markers mapped to an assortment of presence–absence loci
corresponding to putative plasmid and transposon fragments in the
pan-genome (Supplemental Table 2). The marker with the largest
effect size in our results is a class A beta-lactamase (TEM-1) fragment
based on BLASTx hits (e.g., 74% query cover and 93.3% sequence
identity with an Enterobacter hormaechei class A beta-lactamase), a
reasonable resistance locus for ampicillin resistance [29]. The

remaining markers were enriched for Tn3 transposon family
components (Supplemental Table 2). Such transposons often harbor
beta-lactam genes associated with resistance evolution [16].

Most markers associated with ampicillin resistance in our dataset
appear to map to genomic components that are likely physically
linked to causal resistance loci (such as beta-lactams) rather than
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resistance loci themselves, a consequence of the fragmented pan-
genome we're using. To overcome this limitation, we looked at
patterns of LD between our ten largest-effect markers to see if we
could find evidence of linkage among them. We found clear signals
of enriched LD among the six markers with the largest effect size,
especially the largest-effect marker, a beta-lactam gene, and the
marker with the third-largest effect size, a Tn3 transposon fragment
(Figure 6). The observation of moderate/high but not near perfect (>
0.9 r ) LD among these markers likely reflects complex patterns of
physical linkage between them whereby they’re likely linked in some
parts of the phylogeny but not in others.

Our results point to a distinct genetic architecture for ampicillin
resistance that involves the acquisition of any of a variety of
accessory genome components rather than specific core genome
mutations, as in the case of ciprofloxacin resistance. While our
analysis only captures one previously validated causal resistance
locus, we can still conclude that ampicillin resistance generally arises
via plasmid​​ and transposon resistance locus acquisition in our
dataset, a finding corroborated by previous research on the
occurrence of resistant beta-lactam genes [30].

Trimethoprim/sulfamethoxazole resistance
Markers of varying effect sizes characterized
trimethoprim/sulfamethoxazole resistance (Figure 4). Similar to the
case of ciprofloxacin, one marker had a particularly large effect size
(the largest in any of our genomic-prediction analyses). The top ten
largest-effect markers were a mixture of SNPs and presence–absence
markers (six and four markers, respectively, a pattern that is
intermediate to the results for ciprofloxacin and ampicillin
(Supplemental Table 2).

Our list of the top ten largest-effect markers seemed to be enriched
for AadA (aminoglycoside adenylyltransferase) and GNAT (GCN5-
related N-acetyltransferases) family proteins. The marker with the
largest effect size is a SNP located on a short contig (160 bp), which
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has multiple significant BLASTx hits to AadA family proteins (e.g.,
99% query cover and 100% sequence identity to an AadA in
Pseudomonas gessardii) in addition to hits to partial
nucleotidyltransferase domain-containing proteins. This wasn't the
only association with AadA proteins that we found. The marker with
the second-largest effect size (a SNP) also had significant BLASTx hits
to AadA1/ANT(3”) (99% query cover and 100% sequence identity to
AadA1 in E. coli). Finally, the marker with the fourth-largest effect size
(a presence–absence marker) had significant BLASTx hits to a GNAT
family protein (80% query cover and 86% sequence identity to a
Klebsiella pneumoniae putative aminoglycoside N(6')-acetyltransferase
(AAC(6”)).

Functionally, this enrichment for AadA and GNAT family proteins is
perplexing. While these protein families do indeed play crucial roles
in antibiotic resistance, their mechanism of action is the enzymatic
modification of aminoglycoside family antibiotics, which doesn't
include either trimethoprim or sulfamethoxazole [31]. The association

between trimethoprim/sulfamethoxazole resistance and the largest-
effect marker was particularly strong and statistically robust. We
considered the possibility that the phenotypic data was mislabelled,
checking both the source of the data (BV-BRC) and the underlying
studies [32], but we found no evidence of phenotype data errors. We

also didn’t find a strong phenotypic correlation between
trimethoprim/sulfamethoxazole and aminoglycoside antibiotics like
gentamycin (r  = 0.20) in our dataset.

While our genomic prediction analyses did a good job predicting
trimethoprim/sulfamethoxazole resistance, we couldn't link the
largest-effect markers to putative resistance loci. We suspect this is
chiefly driven by the fragmented nature of the pan-genome we use
for this dataset. As resistance is often acquired through
plasmids/transposons [16][33], and such contigs are poorly assembled

in our pangenome, we might struggle to find candidate resistance
loci among these fragments. It could well be that an unassembled
causal resistant dfrA locus [34] is linked to the largest effect aadA gene
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we observe as predictive of trimethoprim/sulfamethoxazole
resistance, leading to our confusing results. This isn't an unlikely
hypothesis given the fact that resistance genes for multiple different
types of antibiotics are known to be stacked within single
plasmids/transposon [33]. This result implies that while we likely can

predict most AMR phenotypes very well with both linear and
nonlinear models in this dataset, the interpretability of findings may
be challenging in some instances.

Key takeaways
We performed exploratory analyses in the recently published
E. coli 7k dataset

The E. coli 7k dataset captures the global genomic diversity of
E. coli and captures both fine- and broad-scale diversity across
evolutionary scales

Genomic prediction analyses identified expected causal AMR
loci for ciprofloxacin and ampicillin but no interpretable
genomic resistance targets for trimethoprim/sulfamethoxazole

Follow-up analyses demonstrate that while the overall genetic
architecture of resistance is often simple, it nonetheless can
be dependent on more subtle epistatic interactions

Next steps
Dataset availability currently limits the creation of realistic genetic
models that can account for linear and nonlinear phenomena. In this
pub, we stress-tested the E. coli 7k dataset for such modeling
applications.

The E. coli 7k dataset lacks common biological and technical error
signals. For example, we detected purifying selection, a stable core
genome, and isolation by distance in genetic similarity among
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samples. Phylogenetic analyses indicated the presence of diverse
evolutionary scales: deeply branching phylogroups and rapidly
diversifying strains. Antibiotic resistance has evolved in multiple
ways across this tree, displaying both broad and clade-restricted
distributions. Together, these results provide confidence in the
quality of the E. coli 7k dataset and confirm its suitability for model
development.

Linear genomic prediction methods were able to confidently predict
AMR phenotypes. However, the interpretability of these results
varied. For example, we identified three epistatic mutations
underlying ciprofloxacin resistance in follow-up analyses. Ampicillin
resistance was also associated with interpretable loci, particularly
plasmid and transposon components likely linked to resistance
genes. On the other hand, we found no obvious link between loci
and potential resistance mechanisms for
trimethoprim/sulfamethoxazole. These results provide a suitable
baseline for comparison as more complex models are developed.

We note some outstanding issues. First, the E. coli 7k dataset is
centered on a fragmented pan-genome, which makes it challenging
to link genetic markers with AMR phenotypes functionally. Second,
it’s possible that the genomic prediction methods were
underpowered because this is a natural population; selection will
have eroded unfit but informationally rich genotypes that could be
uncovered in other contexts.

Overall, our findings set the stage for us to exploit this dataset to
guide the use of more complex nonlinear genomic prediction
models. However, it's useful to consider when and where we expect
nonlinear models to provide an edge over linear genomic prediction
models. We hypothesize likely candidates for nonlinear models are
populations in which epistasis or gene-by-environment interactions
are prevalent. For example, the simplest form of epistasis — two-
locus interactions — will be most powerful in populations with
intermediate (~0.5) allele frequencies [2]. This requirement is most
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likely to be met in highly structured populations — especially
products of artificial crosses or selection — or where mutations are
fixed between evolutionarily diverged lineages [35][36]. Gene-by-

environment interactions are more complicated to predict and are
likely implicated in complex, highly polygenic traits sensitive to
environmental conditions (e.g., agronomic yield [37]). Datasets in

which phenotypes were measured in the field are likely candidates
for approaching gene-by-environment signals. It'll be useful to
continue developing intuitions for which model architectures will
best capture these various processes of diversification, pushing our
ability to extract inference in contexts where our knowledge of the
genotype–phenotype map is much less understood.
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