
Leveraging evolution to
identify novel organismal
models of human biology

Researching just a handful of organisms limits biological

discovery. We developed an approach pairing organisms with

biological questions to expand research biodiversity.

Purpose

Biomedical research heavily relies on a few "supermodel organisms." Research

using these organisms often fails to translate to human biology, limiting progress

and clinical success. Recognizing these limitations, there's growing interest in

expanding the diversity of research organisms. However, there's, as of yet, no

optimal way to pair organisms with biological problems. Depending on the

research question, each organism possesses distinct features that can be assets

or liabilities. We developed a method to identify organisms best suited to specific

problems and applied it to an “organismal portfolio” representing the breadth of

eukaryotic diversity. We found that many aspects of human biology could be

studied in unexpected species, broadening the potential for new biomedical

insights.
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Zenodo.

For a more conceptual overview of our organismal selection framework,
read our companion pub, “A data-driven approach to match organisms and
research problems [1].”

Check out an example of this approach in action, “Rescuing
Chlamydomonas motility in mutants modeling spermatogenic failure” [2].

We’ve also released Zoogle, a user-friendly web portal for exploring
patterns of molecular conservation among the 63 eukaryotes studied here.

Background and goals

Organismal models play a crucial role in biomedical research, shaping what can be

discovered, developed, and understood. Research on model organisms has

revealed many of the foundational principles of modern biology. Our knowledge of

human biology has largely stemmed from studies of non-human species. Every

drug progressing to clinical trials necessitates in vivo experimentation, which

relies on selecting the appropriate organism for the specific research question.

For most biologists, only a limited number of organisms are typically considered. A

select group of “supermodel organisms” such as mice, flies, nematodes, frogs,

and zebrafish dominate current research, and their use is increasing [3]. Trends in

grant proposals [4], publications [5][6], and clinical trials [7] indicate a narrowing

focus on these specific organisms.

This narrowing of focus might be acceptable if supermodel organisms provided

universal biological insights. Unfortunately, they don't. Research findings from

these organisms often fail to generalize to other contexts [8]. Only 8% of basic

research — primarily involving supermodels — translates successfully into clinical

settings [9]. Additionally, 95% of drug candidates fail during clinical

development [9]. The drug response profiles observed in common model

organisms often don't predict those of humans [10]. In the worst-case scenarios,

years of research and millions of dollars may be spent investigating traits unique

to a supermodel organism that doesn't apply to humans [8][11].
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The limitations of using supermodels in research have long been acknowledged [3]

[8][12][13], leading to a growing interest in broadening the diversity of organisms

used in biomedical studies [11]. Inspired by frameworks like Krogh’s principle —

which suggests that "for a large number of problems, there will be specific animals

that can be studied most conveniently" [14][15] — researchers are increasingly

exploring organisms beyond the traditional supermodels. This shift is facilitated by

the availability of generalizable genetic and molecular tools, prompting more

biologists to engage with diverse research organisms [16][17][18].

Choosing which of the millions of existing species to study isn't a simple task.

While all organisms have their merits for research [19], selecting a species that

aligns with a specific question requires careful consideration of various biological,

technical, and practical factors [20]. Each organism has unique evolutionary traits

— some highly conserved, others distinct — that can either aid or hinder research,

depending on the question being addressed [12]. Research failures often occur

when these features are overlooked in the design of biomedical studies. By better

understanding the evolutionary histories of these research organisms, we can

navigate the potential advantages and challenges they present.

In this study, we developed an evidence-based approach to match research

organisms with specific biological problems. We employed novel methods to

analyze the evolutionary landscape of an organism's protein-coding genome and

identify which genes are most conserved with humans. By applying our method to

a diverse portfolio of 63 eukaryotic organisms, we discovered that the similarity in

proteins often didn't align with what neutral evolutionary expectations would

predict.

Contrary to the “Scala Naturae” model (often called the "great chain of being"),

which suggests that complexity increases linearly with similarity to humans, our

findings revealed a more complex reality. Many human traits can be found in the

eukaryotic tree's unexpected and distantly related branches. This greatly expands

the potential avenues for addressing some of biology's most challenging

problems.
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The approach

Organismal curation
We used publicly available data to curate a portfolio of 63 diverse eukaryotic

species. We performed a literature review and surveyed public databases to

identify eukaryotes with publicly available proteomes. Since our goal was to

identify potential models for human biology, we then determined which species

had available tools for genetic perturbations. Finally, we selected species based

on taxonomic breadth — ensuring representation from major eukaryotic lineages

— and depth, which involved spanning vertebrate and metazoan diversity to

facilitate gene family inference. Taxonomic classifications were assigned to each

species following the conventions in the EukProt database [21].

Phylogenomic inference
Proteomes were pre-processed by filtering out redundant and short sequences

and curating functional annotations (e.g., KEGG annotations) [22]. Filtering was

executed by a Snakemake workflow, the details of which are described in a

previous publication [22]. The sample sheet used as input to the Snakemake

workflow and the filtered proteomes and intermediate outputs can be found

here [23].

We used the filtered proteomes as input to NovelTree (v1.0.2) to infer gene

families, multiple sequence alignments, gene family trees, and species trees [24].

We ran NovelTree on NextFlow Tower with run-specific parameters specified in

the configuration file on Zenodo. We assessed a range of inflation parameters

(from 1.25 to 4.5; 0.25 increments) to identify the optimal choice for use with

OrthoFinder (v2.5.4) [25][26] and cogeqc (v1.2.1) [27]. We filtered out gene families

that contained fewer than five proteins, represented fewer than five species,

and/or were shorter than 30 amino acids in length. We then used WITCH

(v0.3.0) [28] to perform multiple sequence alignments and inferred gene family

trees using IQ-TREE 2 (v2.2.0.5) [29]. We then used Asteroid (v1.0) (git sha:

3aae117) [30] and SpeciesRax [31] (as implemented in GeneRax (v2.0.4) (git sha:

56f3ed0)) to infer species trees. Species trees were inferred using gene families

containing at least 75% of species in the portfolio and had a mean per-species

copy number ≤ 10.
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Protein physicochemical property calculations
We calculated ten protein physicochemical properties for each protein in our

dataset using the ProtParam [32] module implemented within Biopython [33]. The

properties were: 1) molecular weight, 2) aromaticity, 3) instability index, 4)

flexibility, 5) GRAVY (grand average of hydrophobicity), 6) isoelectric point, 7)

charge at pH 7, 8) helix fraction, 9) sheet fraction, and 10) molar extinction

coefficient of cysteines. These protein features were calculated using the

genefam_aa_summaries.py script. In addition to the above properties, we also

calculated two other GRAVY metrics, four other charges (at pH 3, 5, 9, & 11), turn

fraction, the molar extinction coefficient of cystines, and amino acid composition,

but given their redundancy with other properties, they weren't used in

downstream analyses.

Accounting for evolutionary non-independence
Species’ traits (e.g., physicochemical properties) are evolutionarily (and, thus,

statistically) non-independent. Closely related species will often have similar traits.

This similarity is most likely due to shared ancestry, which, if not accounted for,

can mask the signal of biological processes of interest. To control this, we used a

phylogenetic transform to identify residual variation not explained by shared

evolutionary history (i.e., phylogeny/gene tree) for each physicochemical property.

Specifically, we applied a phylogenetic generalized least-squares

(PGLS) [34] transformation. PGLS effectively adjusts the observed data to unit

variance after correcting for the covariance in traits induced by evolutionary non-

independence under Brownian motion. The PGLS transformation assumes

elements of the phylogenetic covariance matrix correspond to the amount of time

(i.e., branch lengths) from the root of the tree to the common ancestor of each

pair of taxa. That is, the phylogenetic tree that’s used to conduct the

transformation is expected to be time-calibrated, with branch lengths

corresponding to units of time, rather than substitutions-per-site as is common

for trees inferred using molecular data as is the case in NovelTree [24]. We thus

sought to time-calibrate each gene family tree before the application of the

transform to the protein physicochemical property data.

We employed a two-step approach that used congruification [35]. First, we time-

calibrated our species tree, enabling us to time-calibrate each gene family tree. In
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summary, the congruification method involves mapping divergence times from an

existing time tree onto an uncalibrated phylogeny with partially overlapping taxa,

followed by rate smoothing to calibrate the divergence times in the target

phylogeny. While this method may be less accurate than others, it's highly

efficient, making it well-suited for our high-throughput use case, which required

the time calibration of 14,067 gene family trees covering 629,320 proteins.

Specifically, we obtained a time-calibrated tree that included 59 of the 64

species in our dataset from timetree.org. We then congruified this tree with the

species tree inferred by SpeciesRax using the congruify.phylo  function in the

R-package geiger (v2.0.11) [36]. Using the time-calibrated species tree, we

subsequently congruified each gene family tree and applied the PGLS

transformation to the protein physicochemical property data for each gene family.

The PGLS transformation was implemented in a custom R function,

phylo_gls_transform . This function uses the vcvPhylo  function from

phytools (v2.1-1) [37][38] to obtain the phylogenetic variance-covariance from a

species or gene tree. It then calls a custom Rcpp function (phylo_correction )

to perform the phylogenetic GLS transformation.

Quantification of protein (dis)similarity
Using these transformed protein physicochemical property data, we quantified

multivariate Mahalanobis distances between all pairs of proteins within each gene

family containing a human homolog. This distance metric accounts for

covariances between variables to determine the distance between observations,

making it well-suited to complex datasets like ours. However, the calculation of

Mahalanobis distances is computationally intensive — a problem that's

exacerbated by the high dimensionality of our dataset (10 physicochemical

properties) and by the large number of observations among which we needed to

compare (9,260 gene families; > 51 million comparisons in total). Consequently,

we developed our own highly efficient, parallelized implementation of its

calculation in Rcpp: pairwise_mahalanobis .

6

https://timetree.org/
https://doi.org/10.1093/bioinformatics/btu181
https://github.com/Arcadia-Science/2024-organismal-selection/blob/v1.0/src/phylo_multivariate_distance_functions.R
https://doi.org/10.1111/j.2041-210x.2011.00169.x
https://doi.org/10.7717/peerj.16505
https://www.rcpp.org/
https://github.com/Arcadia-Science/2024-organismal-selection/blob/v1.0/src/phylo_correction.cpp
https://github.com/Arcadia-Science/2024-organismal-selection/blob/main/src/phylo_multivariate_distance_functions.R


Phylogenetic visualization and gene family
distribution comparison
The time-calibrated SpeciesRax species tree was used for all downstream

analyses. The phylogenetic visualization in Figure 1 was generated using the

ggtree  function in the R package ggtree [39]. Cophenetic distances of the

species tree were calculated using the function cophenetic.phylo  in the R

package ape [40].

We employed a permutation-based method to simulate the number of gene

families shared between humans and non-human species, as shown in Figure 2.

First, we developed a linear model to predict the number of gene families shared

based on the evolutionary distance from humans for each species (using the R

function lm ). We then extracted the predicted values from this model and

normalized them by dividing them by the total predicted count. This process

provided us with a proportion for each species, allowing us to pose the question:

“Given n random draws from the set of gene families containing human

homologs, how many would we expect to have a homolog belonging to species

x?”

We created a hypothetical “pool” of proteins to sample from, consisting of

100,000 unique proteins, each representing a different species. The frequency

of each protein was determined based on previously calculated expected

proportions. Sample sizes were established based on observed gene family sizes,

which ranged from four to 45,364 proteins.

For each sample size, we randomly sampled proteins 100 times. For example,

when sampling from a gene family size of 10, we randomly selected 10 proteins

from the pool and identified the species represented in each sample. This

process was repeated 100 times. Finally, we analyzed all permutations to

determine the gene family size from which we began sampling proteins across all

63 species.

Describing patterns of molecular (dis)similarity
In a previous section, we explained how we quantified the similarity between

human proteins and their non-human homologs within each gene family based on

proteins' physicochemical properties. Using a more evolutionarily informed
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approach, this analysis enables us to identify species that may serve as better

model organisms than the traditional "supermodel" species. We recognize that

non-human homologs exhibiting a high degree of similarity to their human

counterparts are also likely to be functionally similar.

This functional similarity can result from different evolutionary processes:

conservation and convergence, or other forms of non-parallel evolution [41].

Similarity due to conservation arises from long-term evolutionary stasis, while

convergence refers to the independent evolution of similar traits from unrelated

common ancestors. Since our primary goal is to identify non-human proteins that

likely share functions with their human homologs, we don't attempt to distinguish

between these hypotheses in this discussion.

For clarity, we'll refer to protein similarity as molecular conservation throughout

the rest of the publication, using our multivariate distance measures to indicate

levels of conservation; specifically, smaller distances correspond to more

significant conservation.

In Figure 3, B, we compare the distributions of molecular similarity across all gene

families. To achieve this, we first characterized the distribution of protein

conservation within each gene family by computing a frequency histogram. These

histograms were binned in an equivalent way, allowing for a direct comparison of

gene families based on their frequency distributions. As a heuristic approach, we

applied hierarchical clustering using the R function hcl , to illustrate the

relationships among gene families based on these binned similarity data.

Next, we investigated how the evolutionary distance from human homologs

predicts molecular conservation and how this relationship varies among different

gene families (examples can be seen in Figure 5). We conducted a regression

analysis of the cophenetic distance from human homologs and molecular

conservation for each protein, using the R function lm . This analysis identified

the homolog most similar to humans for each species. The fitted models and their

slopes were then used to illustrate the four examples in the figure.

To better understand and visualize the interaction between evolutionary

relatedness and overall patterns of molecular conservation to humans, we
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constructed a phylomorphospace [42] (Figure 6). We first generated a matrix of

similarity values, where the columns corresponded to the number of human

proteins in the dataset, and the rows represented different species. The matrix

was populated as follows: for each species and a specific column (representing a

human protein), we identified the homolog in the species most similar to the

human protein. If that species lacked a homolog, we used the global maximum

conservation value instead. We then applied principal component analysis to

create a lower-dimensional embedding of this matrix. The correlation between

the principal components and gene family number/phylogenetic distance was

assessed using the R function cor.test . Finally, we used the first two principal

components to create the phylomorphospace with the phylomorphospace

function from the R package phytools (v2.1-1) [38].

Elo ratings
We quantified per-species conservation enrichment using the Elo rating system

[43]. Since Elo ratings are sensitive to match order, we used a permutation-based

approach that used repeated random starts to ensure robustness, following

previous work [43][44]. Matchups were only constructed within gene families to

control for differences in gene family number across species and variation in

molecular conservation across gene families.

We first identified all possible matchups within each gene family. All non-human

proteins were given a score representing the conservation value of their homolog

most similar to any human protein in the gene family. We selected the more

conserved protein if a species shared multiple homologs with a given human

protein. Furthermore, we only considered gene families with at least 10 possible

matchups. When compiled, this resulted in 269,050 possible matchups. Each

matchup pitted proteins from two species against each other. The “winner” was

the species with the protein most similar to human.

We then constructed 50 series of 10,000 randomly selected matchups.

Essentially, each series could be considered a “season” over which 10,000

matchups are played, each containing a different set of matchups. Species that

ended each season with a similar Elo rating could be considered robust to

matchup order. Species began each season with an Elo rating of 1,500. Ratings

were updated after each match using the elo.cal  function from the R package
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elo [45]. We then averaged across all seasons to get a mean Elo rating for each

species. The relative probabilities of the mean Elo ratings were compared using

the function elo.prob . Species mean Elo ratings were compared to the number

of gene families shared with humans using a linear model implemented by the R

function lm . Two-way comparisons of mean Elo ratings were done with a Kruskal–

Wallis test using the function kruskal.test  in R.

Additional methods
We used Grammarly Premium to suggest wording ideas, reorganize text using a

template, and help clarify and streamline text that we wrote. We also used

ChatGPT to help write code and comment our code.

The results

Mapping over 1 billion years of molecular evolution
Genomes aren't singular units. Genomes are configurations of the tangled paths a

set of genes has taken. These paths involve gain, loss, duplication, change, and/or

re-purposement [24][46]. Given this complexity, the relationships inferred between

any two genomes (and species) will depend on which genes are considered. For

example, genes that share a common ancestor will often possess similar

sequences (i.e., they're homologous) [46]. However, similar sequences sometimes

arise independently in distantly related species (i.e., they're convergent). If only

convergent genes were considered, one might (wrongly) conclude that these two

species are closely related. While this genome complexity presents challenges in

some situations (such as phylogenetic inference), it may be a boon in others.

If genomes were singular units, the answer to “Which organism is best for

modeling disease X, Y, or Z?” would always be the same (and likely always be

“mice”). Yet, like all other genomes, the human genome is a mixture of

evolutionary histories [47][48]. Some genes have been gained, lost, or

duplicated [49]. Others are conserved to varying degrees; some are shared with the

last universal common ancestor, and others with animals, vertebrates, mammals,

or primates [47]. Some have evolved convergently.
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What’s more, these patterns aren’t unique to humans. The genomes of popular

organismal models are also complex amalgamations. For example, mice have

evolved unique immune [50], metabolic, and life history characteristics [8]. This all

means that, from a genetic perspective, there's no single best organismal model

for all aspects of human biology. Instead, an organismal portfolio is needed.

The evolutionary history of genes can guide the design of such a portfolio. Deeply

conserved genes open up the possibility of studying more tractable yet distantly

related species. More recently conserved genes will make closely related species

better choices. However, in some cases, these close relatives may be on divergent

evolutionary paths, leading them to lack traits relevant to an aspect of human

biology. Convergent genes can only be studied in organisms where they've

evolved, offering challenges (those species must be identified) and opportunities

(they're likely to share important aspects of the relevant biology). Genes specific

to humans will require very different modeling approaches since they lack

naturally occurring analogs. Capturing these diverse patterns involves the

reconstruction of each gene’s evolutionary history.

We set out to build a eukaryotic organismal portfolio for human biology. We

selected 63 species as candidate models (see Approach for inclusion criteria).

These species had a last common ancestor over one billion years ago and

represent many eukaryotic lineages (Figure 1). They span the uni- to multicellular

transition, live in most of Earth’s major biomes, and implement various life history

strategies. Some are parasitic; some are photosynthetic. Some are endosymbiotic;

others filter feed in the oceans’ pelagic zones. There are well-established

supermodels (mice, zebrafish, C. elegans, D. melanogaster, S. cerevisiae) and

comparatively understudied protists (e.g., Euglenozoa, Percolozoa, and the hyper-

diverse TSAR clade).
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Figure 1. A eukaryotic organismal portfolio.

Time-calibrated species phylogeny created with SpeciesRax. Taxonomic groups correspond to
taxogroup1 described by EukProt.

We used the NovelTree workflow [24] to infer gene families and evolutionary

relationships (i.e., phylogenies) among proteins within each gene family and

among species, incorporating information across gene families. After filtering, we

identified 9,260 human-containing gene families, encompassing 17,644 human

proteins (see Approach for filtering details). The taxonomic distribution of these

gene families approximated evolutionary relationships; the more related a species

was to humans, the more gene families were shared between them (Figure 2, A).

For example, vertebrates possessed twice the number of gene families than non-

vertebrates on average (vertebrates = 7,996, non-vertebrates = 3,075; p = 6.73 ×

10 , Kruskal–Wallis test). Chimpanzees were associated with the most gene

families (Pan troglodytes; 9,158 gene families), while the Ichtheosporean

Abeoforma whisleri was associated with the least (1,217 gene families).

−8
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Intriguingly, they also suggest that even the least represented species within the

portfolio had a roughly 1:9 (1,217/9,260 gene families) chance of being a potential

model candidate. The portfolio, therefore, empowers us to identify organismal

models across the phylogenetic breadth of eukaryotes.

We were next interested in assessing our sensitivity for discriminating between

candidate models. Variation in the presence/absence of gene families would

strongly decay with phylogenetic distance, meaning that related species might

differ little in the genes they share with humans. This would be a scenario in

which organismal selection might be straightforward (albeit a bit boring): species

more closely related to humans will always be favored as model organisms. On the

other hand, we might observe substantial variation in species’ molecular

conservation with humans. In this “high-sensitivity” scenario, the species favored

as model organisms will be more variable, necessitating a more involved and

nuanced species selection process. Because each gene family would show a

different conservation pattern, other aspects of natural history and evolutionary

biology could be leveraged to pinpoint an organismal model.

As predicted by such a scenario, we found that gene family presence varied

substantially within and across phylogenetic scales (Figure 2, A). For example, the

anemone Exaiptasia diaphana shared more gene families with humans (5,663)

than the early-branching vertebrate Petromyzon marinus (sea lamprey; 4,618)

despite the latter being more closely related to humans. Furthermore, the even

more distant ctenophore Mnemiopsis leidyi was about evenly matched with the

lamprey (4,583 gene families). This variation was also present at greater

phylogenetic distances. The unicellular algae Chlamydomonas reinhardtii shared

more gene families with humans than similarly distant species (such as the

parasite Giardia intestinalis) (Figure 2, A). These patterns indicate substantial

variation in gene family presence/absence across evolutionary scales within the

portfolio, even among the most distant species.

These individual examples were also reflected at global taxonomic scales. The

counts of unique species within gene family swiftly increased with total gene

count (Figure 2, B) and significantly faster than expected in a simulated low-

sensitivity scenario (i.e., where the number of gene families shared with humans

linearly decays with evolutionary distance) (Figure 2, B; permutation-based
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sampling, see Approach). The smallest gene family representing all 63 species

contained 70 genes. The equivalent measure in the simulated data was almost

four times greater (264 genes). The relationship between the count of unique

species within a gene family and that gene family’s age (i.e., time to the most

recent common ancestor of all gene copies) revealed diverse species

combinations across all sizes (Figure 2, C). The age of gene families increased

linearly to ~20 species, after which the relationship plateaued (Figure 2, C).

Interestingly, gene families with as few as five species spanned the full

evolutionary range of the portfolio, meaning these small gene families contained

everything from the most closely related species to those most distantly related in

our dataset (Figure 2, C). For example, gene family OG0013524 (human protein

A6NEQ0) contained proteins from primates (humans, macaques, chimpanzees,

marmosets) and the unicellular Euglenozoan Bodo saltans. These observations

make clear that our portfolio is thus both broad — encompassing much of

eukaryotic diversity — and sensitive, allowing for targeted and flexible selection of

research organisms.
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Figure 2. Evolutionary distribution of human gene families.

(A) Number of gene families shared with humans as a function of cophenetic distance from
humans. Labeled organisms are (from left to right): Xenopus tropicalis, Danio rerio, Petromyzon
marinus, Exaiptasia diaphana, Mnemiopsis leidyi, Giardia intestinalis, and Chlamydomonas
reinhardtii.

(B) Density scatter plot comparing protein (x-axis) and species number (y-axis) across gene
families. As estimated by simulations, the expected relationship between these values is denoted
by the black line.

(C) Density scatter plot of species number (x-axis) and all gene families' evolutionary scale (y-axis).

A novel measure of molecular similarity
Next, we turned our attention to measuring the similarity of molecular properties

of the proteins encoded by each gene with their corresponding human homologs.

Conservation is commonly inferred by sequence similarity; the more shared a

sequence is, the more similar two genes or proteins are presumed to be [17]. We

wanted to address the limitations of this approach. For one, sequence similarity

doesn't always mean functional similarity. It's possible to have two proteins with
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low overall sequence similarity but share critical portions determining structure

and function. In other words, not all portions of a sequence are the same.

Sequences are also tied up with species’ relatedness. More closely related

species will, on average, necessarily have more similar and shared sequences than

more distantly related species. This can make it hard to detect cases wherein very

distantly related species share sequences that perform the same function through

conservation, convergence, or other evolutionary means. Given our portfolio's

massive range of evolutionary diversity, we concluded that relying on sequence

similarity alone wouldn't cut it.

To address the insufficiency of sequence similarity for our purposes, we

developed a novel molecular conservation measure incorporating phylogenetic

and protein physicochemical properties (see Approach for details; Figure 3). First,

various physicochemical measures and secondary structural properties are

calculated from the amino acid sequences of all proteins in a gene family (Figure

3, step 1). As previously described, however, proteins are evolutionarily (and thus

statistically) non-independent of one another. To account for this non-

independence, we adjusted each measure for evolutionary relatedness using a

phylogenetic generalized least squares transformation (PGLS transform; Figure 3,

step 2) rendering each protein statistically independent. Using these adjusted

protein features, we quantified all pairwise (dis)similarities among proteins within

each gene family using Mahalonobis distances (Figure 3, steps 3–4). Last, the

distance from the closest human protein was identified for each protein, resulting

in our final conservation measure (Figure 3, step 5).
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Figure 3. Calculating molecular conservation.

(1) Heatmap of one protein physicochemical property. Here, molecular weight (“Weight”) is an
example. The colored points represent individual species. Colors correspond to the EukProt
taxogroup1 (the purple infant cartoon indicates human). Each species’ molecular weight is
represented by color intensity.

(2) We use a phylogenetic generalized least squares (PGLS) transformation to correct for
evolutionary relatedness, rendering proteins statistically independent. The heatmap in this panel
reflects molecular weight after this correction.

(3) Cartoon of the combined matrix of 10 evolutionarily corrected physicochemical properties
(naming key: “Weight” = molecular weight, “Aroma” = aromaticity, “Instability” = instability index,
“Flex” = flexibility, “GRAVY” = GRAVY index, “Iso” = isoelectric point, “PH” = charge at PH 7, “Helix”
= helix fraction, “Sheet” = sheet fraction, “Cysteine” = molar extinction coefficient of cysteines).

(4) Cartoon 2-dimensional space representing the Mahalonobis distances measured between
species’ proteins.

(5) Ranked distribution of distances from the human versions for all proteins considered.

Conservation with human homologs wasn't uniformly distributed across species

(Figure 4). Gene families differed extensively in their distributions' shape,

dynamic range, and magnitude (Figure 4), with many containing genes spanning

the full range of conservation (Figure 4). Some were similar to humans, with little

evolutionary variation (Figure 4), while others were uniformly distant (Figure 4).

These observations reinforce that genomes aren't evolutionarily singular units.
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Figure 4. Landscape of molecular conservation between eukaryotes and humans.

Hierarchical clustering of gene families according to conservation patterns with humans across
species in our portfolio. Each point corresponds to an individual protein. Conservation is measured
using the multivariate distance metric described in Figure 3.

The distribution of conservation to individual human proteins further supports this

observation, as shown in Figure 5. For example, PTN4 (UniProt: P29074) is a

neurally associated phosphatase that matches evolutionary expectations under a

molecular clock hypothesis; molecular conservation to this protein decreases

linearly with evolutionary distance (Figure 5, A). The transcription factor FOXA1

(UniProt: P55317) also shows this pattern but, unlike PTN4, is generally not highly

conserved (Figure 5, B). In contrast, conservation to proteins such as ARF3

(UniProt: P61204) — an ADP-ribosylation factor — is uniformly high across the

portfolio (mean conservation = 0.88, slope = 2.78e , r  = 0.09) (Figure 5, C).

Finally, and intriguingly, molecular and evolutionary distance can display a

negative relationship (i.e., more distantly related proteins are increasingly similar),

as is the case for mitochondrial protein 3HIDH (UniProt: P31937; Figure 5, D). The

observed variation of conservation profiles can refine our evolutionary hypotheses

and help identify and take advantage of even counterintuitive patterns. It also

underlines the importance of questioning Scala Naturae thinking in organismal

selection for biomedical research.

−05 2
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Figure 5. The diversity of conservation profiles.

Human proteins are characterized by the relationship between conservation (“Distance from
human protein”) and phylogenetic distance from humans (“Cophenetic distance”). Examples
include proteins where similarity linearly decreases (A; PTN4, B; FOXA1; C; ARF3), is uniformly highly
divergent (B) or deeply conserved (C), or even increases with phylogenetic distance (D; 3HIDH). r  =
linear regression fit.

De novo identification of supermodel organisms
Our approach was founded on the idea that genome-wide conservation with

humans can link potential organismal models with various aspects of human

biology. By leveraging this idea, we posited that we could develop an organismal

portfolio for each biological question by characterizing these connections. Just

how specific might these portfolios be? As we saw above, individual gene family’s

2
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evolutionary histories vary broadly. Whether or not these patterns translate to

organismal-level differences is presently unclear. Are certain organisms

disproportionately suited to modeling diverse aspects of human biology? If yes,

then “general purpose” organismal models may be developed, potentially

simplifying the model selection process. We sought to test this hypothesis.

To begin doing so, we first explored the extent to which evolutionary relationships

predict genome-wide conservation patterns. Each species was characterized by a

numerical vector containing binary (i.e., presence/absence) and continuous (i.e.,

molecular conservation) representations of conservation with all human proteins

in the dataset. We assessed the relationships between these genome-wide

conservation patterns using principal component analysis (PCA) (Figure 6, A). PC1

was significantly correlated with homolog presence/absence (r = −0.98; p = 5.70

× 10 ; Pearson correlation) and phylogenetic distance (r = 0.92; p = 1.75 ×

10 ; Pearson correlation) and explained 45.89% of the observed variance.

Projecting the species phylogeny onto PC space further highlighted these

relationships (Figure 6, A). We found a clear phylogenetic path through the first

two PC axes (Figure 6, A). Notably, of all the PCs (N = 63), only PC1 displayed

significant correlations with ortholog presence/absence and phylogenetic

distance (not shown). This means that most genome-wide conservation variation

isn’t captured by ortholog presence/absence and can’t be directly predicted from

phylogenetic relationships. Instead, the (more complex) patterns of protein

conservation across each species’ proteome must be considered.

Given these observations, we next sought to characterize the conservation

profiles of each species’ orthologs. We wanted to know if a given species’

proteins were consistently more conserved with their human counterparts than

expected. We needed a method robust to the uneven representation of species

within our dataset; this led to identifying the Elo rating system as a candidate

framework [43]. Developed initially to rate chess players, Elo ratings assess

players' relative skills across a series of “matches” in a zero-sum framework. The

Elo system is increasingly used to evaluate machine learning model

performance [44], and ratings have been used to identify species-level biases on

protein language model likelihoods [43]. Influenced by this work, we developed a

permutation-based approach for assessing relative enrichment for conservation to

human proteins for each species using Elo ratings (see Approach).

−46
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Elo ratings exhibited a range of variability across trials within and across species

after summarizing across trials (Figure 6, B–C). In our implementation, scores

greater than 1500 represented doing “better” than random. Similarly, scores less

than 1500 are “worse” than random. Chimpanzees had the highest rating (mean

Elo rating = 1618) whereas (as with gene family number) Abeoforma whisleri

ranked last (mean Elo rating = 1414), meaning that chimpanzee proteins were

more similar to human homologs 76.4% of the time (Figure 2). Vertebrate

species, except for lamprey (Petromyzon marinus), had scores above 1500 and a

median rating of 1571. Non-vertebrates had a median rating of 1478. Overall,

ratings generally decreased with phylogenetic distance from humans (Figure 6, C).

These expected evolutionary signals provided confidence in using Elo ratings for

this task.
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Figure 6. Using Elo ratings to rank research organisms.

(A) Phylomorphospace obtained using conservation to humans and gene family presence/absence
for each species as measured across all 9,260 human gene families in our dataset. Percent values
correspond to variation explained by each PC. Each point is a species, colored by taxonomic
grouping.

(B) Example of Elo rating changes over a series of matchups (each line corresponds to a species).
All species start with a rating of 1500, marked by the dotted line.

(C) Distribution of mean Elo ratings as a function of phylogenetic distance from human.

Elo ratings weren't linearly predicted by phylogenetic distances, exhibiting

substantial variation at different taxonomic depths. Several outlying species could

be readily identified (Figure 6, C). For instance, Zebrafish (Danio rerio) beat out

primates and mammals to obtain the second-highest rating (Elo rating = 1615),

just behind chimpanzees (Elo rating = 1618). Proteins from the unicellular algae

Chlorella vulgaris (Elo rating = 1564) were 67.5% more likely to be conserved

22



with humans than the closely related species Chlamydomonas reinhardtii (Elo

rating = 1437). Although vertebrates possessed significantly larger Elo ratings than

other taxa (p = 7.72 × 10 ; Kruskal–Wallis test), non-vertebrate multicellular

species were indistinguishable from unicellular species (p = 0.74; Kruskal–Wallis

test). Furthermore, the four most phylogenetically distant species from humans

(Bodo saltans, Diplonema papillatum, Euglena gracilis, Nageleria gruberi)

possessed Elo ratings comparable to invertebrates that arose hundreds of millions

of years later (p = 0.57; Kruskal–Wallis test).

How unexpected are these patterns? To explore this, we performed a regression

predicting Elo rating with variation in the count of human gene families in which

each species was present. The model had a reasonably good fit (multiple R  =

0.66; p = 4.49 × 10 ), as might be expected given the presence of phylogenetic

signal in both the Elo ratings and the counts of human gene families. However, we

were interested in what wasn’t described by the model, reasoning that species

with exceptional molecular conservation would be associated with positive

residual variance (i.e., Elo ratings higher than predicted by this null model).

Exceptional molecular conservation was observed across a wide range of

eukaryotic diversity. Notable examples included Chlorella vulgaris (3.56;

Studentized residual), Paramecium tetraurelia (2.42), zebrafish (2.35),

chimpanzees (1.53), the frog Xenopus tropicalis (1.41), the ciliate Tetrahymena

thermophila (1.05), the amoeba Naegleria gruberi (1.03), the malaria-causing

parasite Plasmodium falciparum (1.03), the unicellular algae Euglena gracilis

(0.96), and the ctenophore Mnemiopsis leidyi (0.95) (Figure 5, C). Interestingly,

some well-studied model organisms exhibited less molecular conservation than

anticipated. Nematodes (Caenorhabditis elegans) displayed a negative residual of

−0.56, fruit flies (Drosophila melanogaster) had −0.49, and brewer's yeast

(Saccharomyces cerevisiae) showed −0.12 (Figure 5, C).

At higher taxonomic levels, consistent patterns emerged. Heterotrophic and

parasitic protists were notably enriched, including Ciliophora (1.73), Heterolobosea

(1.03), and Apicomplexa (10.3). Fungi aligned with expectations, showing a result

of 0.005, while taxa representing the transition from unicellular to multicellular

organisms, such as Choanoflagellata (−1.16) and Ictheosporea (−1.09), were

underrepresented (Figure 5, C).
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These observations lead us to conclude that the landscape of genomic

conservation is complex and can't be easily predicted by evolutionary

relationships alone. Additionally, Elo rating distributions may provide insights into

the breadth of human biology that can be modeled using specific research

organisms.

Key takeaways

Every species represents a combination of various evolutionary paths, making it

difficult to predict which organisms will serve as effective models for

understanding human biology. However, by examining the evolutionary context of

a species' genome, we can make informed assumptions about the biological

insights we might gain from studying that species.

We developed an approach to map the similarities between human genes and

those of 63 eukaryotic research organisms. We identified a range of potential

model organisms for each gene by analyzing conservation profiles across the

human genome. Many of these profiles highlighted species that aren't typically

supermodel organisms. Additionally, through global conservation analyses, we

pinpointed species that share remarkable molecular similarities with humans

based on their phylogenetic positions. Our findings revealed organisms

throughout the eukaryotic tree that could serve as valuable model systems,

expanding the range of possible organismal models in biomedical research. This

approach allows researchers to test their assumptions regarding potential models

and provides an evidence base that can free biologists from reliance on

conventional wisdom.

Next steps

Experimental validation of our predictions is of great interest. We have begun

using the conservation profiles of human genes to identify novel organismal

models for genetic diseases. An example of our work can be found in a
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companion publication [2], where we identified Chlamydomonas reinhardtii as a

potential model for studying human spermatogenic failure. Through a small-scale

drug screen, we demonstrated that the phenotypic effects of two human risk

genes — SPEF2 and DNALI1 — are conserved, supporting our evolutionary

hypotheses. In the future, we'll focus on validating additional predictions and

leveraging our approach to discover new research organisms for genetic and

therapeutic explorations.

There are several potential computational extensions we could pursue. The

findings in this publication primarily addressed the evolutionary patterns of single

genes. A logical next step is to explore gene sets (e.g., molecular pathways,

pairwise interactors, and polygenic disease targets) to enhance our ability to

predict complex phenotypic conservation in research organisms. This could

facilitate the development of innovative phylogenetic methods for comparing the

evolution of genetic pathways. Additionally, it could help us generalize our

approaches to other biological applications beyond human disease modeling.

Increasing the number of species analyzed would improve our coverage of

eukaryotic diversity and enhance the precision of our predictions. An intriguing

extension could involve creating a comprehensive organismal portfolio. By

predicting more complex biological features across a broader range of species,

we could outline a roadmap for biomedical research that effectively pairs specific

problems with suitable organismal models and research designs. Even if achieving

this goal proves challenging, working towards it should enhance our chances of

identifying fundamental biological principles and determining where they can be

most effectively applied.
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