Leveraging evolution to
identify novel organismal
models of human biology

Researching just a handful of organisms limits biological
discovery. We developed an approach pairing organisms with
biological questions to expand research biodiversity.
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Purpose

Biomedical research heavily relies on a few "supermodel organisms." Research
using these organisms often fails to translate to human biology, limiting progress
and clinical success. Recognizing these limitations, there's growing interest in
expanding the diversity of research organisms. However, there's, as of yet, no
optimal way to pair organisms with biological problems. Depending on the
research question, each organism possesses distinct features that can be assets
or liabilities. We developed a method to identify organisms best suited to specific
problems and applied it to an “organismal portfolio” representing the breadth of
eukaryotic diversity. We found that many aspects of human biology could be
studied in unexpected species, broadening the potential for new biomedical
insights.

e This pub is part of the platform effort, “Genetics: Decoding evolutionary
drivers across biology.” Visit the platform narrative for more background
and context.

e All associated code is available in this GitHub repository.

e Data from this pub, including input proteomes, NovelTree outputs,
molecular conservation values, and associated metadata are available on
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Zenodo.

e For a more conceptual overview of our organismal selection framework,
read our companion pub, “A data-driven approach to match organisms and
research problems r1.”

e Check out an example of this approach in action, “Rescuing
Chlamydomonas motility in mutants modeling_spermatogenic failure” ;.

e We've also released Zoogle, a user-friendly web portal for exploring
patterns of molecular conservation among the 63 eukaryotes studied here.

Background and goals

Organismal models play a crucial role in biomedical research, shaping what can be
discovered, developed, and understood. Research on model organisms has
revealed many of the foundational principles of modern biology. Our knowledge of
human biology has largely stemmed from studies of non-human species. Every
drug progressing to clinical trials necessitates in vivo experimentation, which
relies on selecting the appropriate organism for the specific research question.

For most biologists, only a limited number of organisms are typically considered. A
select group of “supermodel organisms” such as mice, flies, nematodes, frogs,
and zebrafish dominate current research, and their use is increasing 31. Trends in

grant proposals [41, publications [sy6]1, and clinical trials (71 indicate a narrowing

focus on these specific organisms.

This narrowing of focus might be acceptable if supermodel organisms provided
universal biological insights. Unfortunately, they don't. Research findings from
these organisms often fail to generalize to other contexts (81. Only 8% of basic
research — primarily involving supermodels — translates successfully into clinical
settings 91. Additionally, 95% of drug candidates fail during clinical
development 91. The drug response profiles observed in common model
organisms often don't predict those of humans [1e1. In the worst-case scenarios,
years of research and millions of dollars may be spent investigating traits unique
to a supermodel organism that doesn't apply to humans (sj11.
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The limitations of using supermodels in research have long been acknowledged (3;
[81112113], leading to a growing interest in broadening the diversity of organisms
used in biomedical studies 111. Inspired by frameworks like Krogh'’s principle —
which suggests that "for a large number of problems, there will be specific animals
that can be studied most conveniently" 141115] — researchers are increasingly
exploring organisms beyond the traditional supermodels. This shift is facilitated by
the availability of generalizable genetic and molecular tools, prompting more
biologists to engage with diverse research organisms riei17i181.

Choosing which of the millions of existing species to study isn't a simple task.
While all organisms have their merits for research 119], selecting a species that
aligns with a specific question requires careful consideration of various biological,
technical, and practical factors 12e1. Each organism has unique evolutionary traits
— some highly conserved, others distinct — that can either aid or hinder research,
depending on the question being addressed [125. Research failures often occur
when these features are overlooked in the design of biomedical studies. By better
understanding the evolutionary histories of these research organisms, we can
navigate the potential advantages and challenges they present.

In this study, we developed an evidence-based approach to match research
organisms with specific biological problems. We employed novel methods to
analyze the evolutionary landscape of an organism's protein-coding genome and
identify which genes are most conserved with humans. By applying our method to
a diverse portfolio of 63 eukaryotic organisms, we discovered that the similarity in
proteins often didn't align with what neutral evolutionary expectations would
predict.

Contrary to the “Scala Naturae” model (often called the "great chain of being"),
which suggests that complexity increases linearly with similarity to humans, our
findings revealed a more complex reality. Many human traits can be found in the
eukaryotic tree's unexpected and distantly related branches. This greatly expands
the potential avenues for addressing some of biology's most challenging
problems.
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The approach

Organismal curation

We used publicly available data to curate a portfolio of 63 diverse eukaryotic
species. We performed a literature review and surveyed public databases to
identify eukaryotes with publicly available proteomes. Since our goal was to
identify potential models for human biology, we then determined which species
had available tools for genetic perturbations. Finally, we selected species based
on taxonomic breadth — ensuring representation from major eukaryotic lineages
— and depth, which involved spanning vertebrate and metazoan diversity to
facilitate gene family inference. Taxonomic classifications were assigned to each
species following the conventions in the EukProt database 21

Phylogenomic inference

Proteomes were pre-processed by filtering out redundant and short sequences
and curating functional annotations (e.g., KEGG annotations) [22). Filtering was

executed by a Snakemake workflow, the details of which are described in a

previous publication [221. The sample sheet used as input to the Snakemake

workflow and the filtered proteomes and intermediate outputs can be found
here [23).

We used the filtered proteomes as input to NovelTree (v1.0.2) to infer gene
families, multiple sequence alignments, gene family trees, and species trees [24].
We ran NovelTree on NextFlow Tower with run-specific parameters specified in
the configuration file on Zenodo. We assessed a range of inflation parameters
(from 1.25 to 4.5; 0.25 increments) to identify the optimal choice for use with
OrthoFinder (v2.5.4) 12511261 and cogeqc (v1.2.1) 1271. We filtered out gene families
that contained fewer than five proteins, represented fewer than five species,
and/or were shorter than 30 amino acids in length. We then used WITCH
(v0.3.0) (28] to perform multiple sequence alignments and inferred gene family
trees using IQ-TREE 2 (v2.2.0.5) 1291. We then used Asteroid (v1.9) (git sha:
3aae117) 13e1 and SpeciesRax 311 (as implemented in GeneRax (v2.0.4) (git sha:
56f3ed0)) to infer species trees. Species trees were inferred using gene families
containing at least 75% of species in the portfolio and had a mean per-species
copy number < 10.
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Protein physicochemical property calculations

We calculated ten protein physicochemical properties for each protein in our
dataset using the ProtParam 321 module implemented within Biopython [331. The
properties were: 1) molecular weight, 2) aromaticity, 3) instability index, 4)
flexibility, 5) GRAVY (grand average of hydrophobicity), 6) isoelectric point, 7)
charge at pH 7, 8) helix fraction, 9) sheet fraction, and 10) molar extinction
coefficient of cysteines. These protein features were calculated using the
genefam_aa_summaries.py script. In addition to the above properties, we also

calculated two other GRAVY metrics, four other charges (at pH 3, 5, 9, & 11), turn
fraction, the molar extinction coefficient of cystines, and amino acid composition,
but given their redundancy with other properties, they weren't used in

downstream analyses.

Accounting for evolutionary non-independence

Species’ traits (e.g., physicochemical properties) are evolutionarily (and, thus,
statistically) non-independent. Closely related species will often have similar traits.
This similarity is most likely due to shared ancestry, which, if not accounted for,
can mask the signal of biological processes of interest. To control this, we used a
phylogenetic transform to identify residual variation not explained by shared
evolutionary history (i.e., phylogeny/gene tree) for each physicochemical property.

Specifically, we applied a phylogenetic generalized least-squares

(PGLS) 341 transformation. PGLS effectively adjusts the observed data to unit
variance after correcting for the covariance in traits induced by evolutionary non-
independence under Brownian motion. The PGLS transformation assumes
elements of the phylogenetic covariance matrix correspond to the amount of time
(i.e., branch lengths) from the root of the tree to the common ancestor of each
pair of taxa. That is, the phylogenetic tree that’s used to conduct the
transformation is expected to be time-calibrated, with branch lengths
corresponding to units of time, rather than substitutions-per-site as is common
for trees inferred using molecular data as is the case in NovelTree [241. We thus
sought to time-calibrate each gene family tree before the application of the
transform to the protein physicochemical property data.

We employed a two-step approach that used congruification (3s). First, we time-

calibrated our species tree, enabling us to time-calibrate each gene family tree. In
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summary, the congruification method involves mapping divergence times from an
existing time tree onto an uncalibrated phylogeny with partially overlapping taxa,
followed by rate smoothing to calibrate the divergence times in the target
phylogeny. While this method may be less accurate than others, it's highly
efficient, making it well-suited for our high-throughput use case, which required
the time calibration of 14,067 gene family trees covering 629,320 proteins.

Specifically, we obtained a time-calibrated tree that included 59 of the 64
species in our dataset from timetree.org. We then congruified this tree with the
species tree inferred by SpeciesRax using the congruify.phylo function in the
R-package geiger (v2.0.11) (361. Using the time-calibrated species tree, we
subsequently congruified each gene family tree and applied the PGLS
transformation to the protein physicochemical property data for each gene family.

The PGLS transformation was implemented in a custom R function,
phylo_gls_transform. This function uses the vcvPhylo function from

phytools (v2.1-1) [371138] to obtain the phylogenetic variance-covariance from a

species or gene tree. It then calls a custom Rcpp function (phylo_correction)

to perform the phylogenetic GLS transformation.

Quantification of protein (dis)similarity

Using these transformed protein physicochemical property data, we quantified
multivariate Mahalanobis distances between all pairs of proteins within each gene
family containing a human homolog. This distance metric accounts for
covariances between variables to determine the distance between observations,
making it well-suited to complex datasets like ours. However, the calculation of
Mahalanobis distances is computationally intensive — a problem that's
exacerbated by the high dimensionality of our dataset (18 physicochemical
properties) and by the large number of observations among which we needed to
compare (9,260 gene families; > 51 million comparisons in total). Consequently,
we developed our own highly efficient, parallelized implementation of its

calculation in Rcpp: pairwise_mahalanobis.
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Phylogenetic visualization and gene family
distribution comparison

The time-calibrated SpeciesRax species tree was used for all downstream
analyses. The phylogenetic visualization in Figure 1 was generated using the
ggtree function in the R package ggtree 391. Cophenetic distances of the
species tree were calculated using the function cophenetic.phylo inthe R

package ape [40].

We employed a permutation-based method to simulate the number of gene
families shared between humans and non-human species, as shown in Figure 2.
First, we developed a linear model to predict the number of gene families shared
based on the evolutionary distance from humans for each species (using the R
function 1m). We then extracted the predicted values from this model and
normalized them by dividing them by the total predicted count. This process
provided us with a proportion for each species, allowing us to pose the question:
“Given n random draws from the set of gene families containing human

homologs, how many would we expect to have a homolog belonging to species
X?”

We created a hypothetical “pool” of proteins to sample from, consisting of
100,000 unique proteins, each representing a different species. The frequency
of each protein was determined based on previously calculated expected
proportions. Sample sizes were established based on observed gene family sizes,
which ranged from four to 45,364 proteins.

For each sample size, we randomly sampled proteins 100 times. For example,
when sampling from a gene family size of 10, we randomly selected 10 proteins
from the pool and identified the species represented in each sample. This
process was repeated 100 times. Finally, we analyzed all permutations to
determine the gene family size from which we began sampling proteins across all
63 species.

Describing patterns of molecular (dis)similarity

In a previous section, we explained how we quantified the similarity between
human proteins and their non-human homologs within each gene family based on
proteins' physicochemical properties. Using a more evolutionarily informed
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approach, this analysis enables us to identify species that may serve as better
model organisms than the traditional "supermodel" species. We recognize that
non-human homologs exhibiting a high degree of similarity to their human
counterparts are also likely to be functionally similar.

This functional similarity can result from different evolutionary processes:
conservation and convergence, or other forms of non-parallel evolution a1.
Similarity due to conservation arises from long-term evolutionary stasis, while
convergence refers to the independent evolution of similar traits from unrelated
common ancestors. Since our primary goal is to identify non-human proteins that
likely share functions with their human homologs, we don't attempt to distinguish
between these hypotheses in this discussion.

For clarity, we'll refer to protein similarity as molecular conservation throughout
the rest of the publication, using our multivariate distance measures to indicate
levels of conservation; specifically, smaller distances correspond to more

significant conservation.

In Figure 3, B, we compare the distributions of molecular similarity across all gene
families. To achieve this, we first characterized the distribution of protein
conservation within each gene family by computing a frequency histogram. These
histograms were binned in an equivalent way, allowing for a direct comparison of
gene families based on their frequency distributions. As a heuristic approach, we
applied hierarchical clustering using the R function hcl, to illustrate the

relationships among gene families based on these binned similarity data.

Next, we investigated how the evolutionary distance from human homologs
predicts molecular conservation and how this relationship varies among different
gene families (examples can be seen in Figure 5). We conducted a regression
analysis of the cophenetic distance from human homologs and molecular
conservation for each protein, using the R function 1m. This analysis identified
the homolog most similar to humans for each species. The fitted models and their
slopes were then used to illustrate the four examples in the figure.

To better understand and visualize the interaction between evolutionary

relatedness and overall patterns of molecular conservation to humans, we
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constructed a phylomorphospace 1421 (Figure 6). We first generated a matrix of
similarity values, where the columns corresponded to the number of human
proteins in the dataset, and the rows represented different species. The matrix
was populated as follows: for each species and a specific column (representing a
human protein), we identified the homolog in the species most similar to the
human protein. If that species lacked a homolog, we used the global maximum
conservation value instead. We then applied principal component analysis to
create a lower-dimensional embedding of this matrix. The correlation between
the principal components and gene family number/phylogenetic distance was
assessed using the R function cor. test. Finally, we used the first two principal
components to create the phylomorphospace with the phylomorphospace
function from the R package phytools (v2.1-1) (3s].

Elo ratings

We quantified per-species conservation enrichment using the Elo rating system
[43]. Since Elo ratings are sensitive to match order, we used a permutation-based
approach that used repeated random starts to ensure robustness, following
previous work [43)144]. Matchups were only constructed within gene families to
control for differences in gene family number across species and variation in
molecular conservation across gene families.

We first identified all possible matchups within each gene family. All non-human
proteins were given a score representing the conservation value of their homolog
most similar to any human protein in the gene family. We selected the more
conserved protein if a species shared multiple homologs with a given human
protein. Furthermore, we only considered gene families with at least 10 possible
matchups. When compiled, this resulted in 269,050 possible matchups. Each
matchup pitted proteins from two species against each other. The “winner” was
the species with the protein most similar to human.

We then constructed 50 series of 10,000 randomly selected matchups.
Essentially, each series could be considered a “season” over which 19,000
matchups are played, each containing a different set of matchups. Species that
ended each season with a similar Elo rating could be considered robust to
matchup order. Species began each season with an Elo rating of 1,500. Ratings
were updated after each match using the elo.cal function from the R package
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elo (451. We then averaged across all seasons to get a mean Elo rating for each
species. The relative probabilities of the mean Elo ratings were compared using
the function elo.prob. Species mean Elo ratings were compared to the number
of gene families shared with humans using a linear model implemented by the R
function 1m. Two-way comparisons of mean Elo ratings were done with a Kruskal-

Wallis test using the function kruskal.test in R.

Additional methods

We used Grammarly Premium to suggest wording ideas, reorganize text using a
template, and help clarify and streamline text that we wrote. We also used
ChatGPT to help write code and comment our code.

The results

Mapping over 1 billion years of molecular evolution

Genomes aren't singular units. Genomes are configurations of the tangled paths a
set of genes has taken. These paths involve gain, loss, duplication, change, and/or
re-purposement [24146]. Given this complexity, the relationships inferred between
any two genomes (and species) will depend on which genes are considered. For
example, genes that share a common ancestor will often possess similar
sequences (i.e., they're homologous) 1a61. However, similar sequences sometimes
arise independently in distantly related species (i.e., they're convergent). If only
convergent genes were considered, one might (wrongly) conclude that these two
species are closely related. While this genome complexity presents challenges in
some situations (such as phylogenetic inference), it may be a boon in others.

If genomes were singular units, the answer to “Which organism is best for
modeling disease X, Y, or Z?” would always be the same (and likely always be
“mice”). Yet, like all other genomes, the human genome is a mixture of
evolutionary histories [471481. Some genes have been gained, lost, or

duplicated [491. Others are conserved to varying degrees; some are shared with the
last universal common ancestor, and others with animals, vertebrates, mammals,

or primates [471. Some have evolved convergently.
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What’s more, these patterns aren’t unique to humans. The genomes of popular
organismal models are also complex amalgamations. For example, mice have
evolved unique immune [se3, metabolic, and life history characteristics (s]. This all
means that, from a genetic perspective, there's no single best organismal model
for all aspects of human biology. Instead, an organismal portfolio is needed.

The evolutionary history of genes can guide the design of such a portfolio. Deeply
conserved genes open up the possibility of studying more tractable yet distantly
related species. More recently conserved genes will make closely related species
better choices. However, in some cases, these close relatives may be on divergent
evolutionary paths, leading them to lack traits relevant to an aspect of human
biology. Convergent genes can only be studied in organisms where they've
evolved, offering challenges (those species must be identified) and opportunities
(they're likely to share important aspects of the relevant biology). Genes specific
to humans will require very different modeling approaches since they lack
naturally occurring analogs. Capturing these diverse patterns involves the
reconstruction of each gene’s evolutionary history.

We set out to build a eukaryotic organismal portfolio for human biology. We
selected 63 species as candidate models (see Approach for inclusion criteria).
These species had a last common ancestor over one billion years ago and
represent many eukaryotic lineages (Figure 1). They span the uni- to multicellular
transition, live in most of Earth’s major biomes, and implement various life history
strategies. Some are parasitic; some are photosynthetic. Some are endosymbiotic;
others filter feed in the oceans’ pelagic zones. There are well-established
supermodels (mice, zebrafish, C. elegans, D. melanogaster, S. cerevisiae) and
comparatively understudied protists (e.g., Euglenozoa, Percolozoa, and the hyper-
diverse TSAR clade).
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Figure 1. A eukaryotic organismal portfolio.

Taxonomic group

Acoelomorpha
Arthropoda
Ascomycota
Bangiales
Basidiomycota
Chlorarachnea
Chlorodendrophyceae
Chlorophyceae
Cnidaria
Coccidiomorphea
Euglenids
Craspedida
Ctenophora
Diatomeae
Dictyostelia
Dinophyceae
Diplonemidae
Entamoeba
Eustigmatophyceae
Fornicata
Heterolobosea
Ichthyophonida
Mamiellophyceae
Metakinetoplastina
Nematoda
Oligohymenophorea
Panarthropoda
Perkinsea
Platyhelminthes
Prymnesiophyceae
Trebouxiophyceae
Urochordata
Vertebrata

Time-calibrated species phylogeny created with SpeciesRax. Taxonomic groups correspond to

taxogroup1 described by EukProt.

We used the NovelTree workflow [241 to infer gene families and evolutionary

relationships (i.e., phylogenies) among proteins within each gene family and

among species, incorporating information across gene families. After filtering, we
identified 9,260 human-containing gene families, encompassing 17,644 human
proteins (see Approach for filtering details). The taxonomic distribution of these
gene families approximated evolutionary relationships; the more related a species
was to humans, the more gene families were shared between them (Figure 2, A).
For example, vertebrates possessed twice the number of gene families than non-
vertebrates on average (vertebrates = 7,996, non-vertebrates = 3,075; p = 6.73 x
1078, Kruskal-Wallis test). Chimpanzees were associated with the most gene
families (Pan troglodytes; 9,158 gene families), while the Ichtheosporean
Abeoforma whisleri was associated with the least (1,217 gene families).
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Intriguingly, they also suggest that even the least represented species within the
portfolio had a roughly 1:9 (1,217/9,260 gene families) chance of being a potential
model candidate. The portfolio, therefore, empowers us to identify organismal
models across the phylogenetic breadth of eukaryotes.

We were next interested in assessing our sensitivity for discriminating between
candidate models. Variation in the presence/absence of gene families would
strongly decay with phylogenetic distance, meaning that related species might
differ little in the genes they share with humans. This would be a scenario in
which organismal selection might be straightforward (albeit a bit boring): species
more closely related to humans will always be favored as model organisms. On the
other hand, we might observe substantial variation in species’ molecular
conservation with humans. In this “high-sensitivity” scenario, the species favored
as model organisms will be more variable, necessitating a more involved and
nuanced species selection process. Because each gene family would show a
different conservation pattern, other aspects of natural history and evolutionary
biology could be leveraged to pinpoint an organismal model.

As predicted by such a scenario, we found that gene family presence varied
substantially within and across phylogenetic scales (Figure 2, A). For example, the
anemone Exaiptasia diaphana shared more gene families with humans (5,663)
than the early-branching vertebrate Petromyzon marinus (sea lamprey; 4,618)
despite the latter being more closely related to humans. Furthermore, the even
more distant ctenophore Mnemiopsis leidyi was about evenly matched with the
lamprey (4,583 gene families). This variation was also present at greater
phylogenetic distances. The unicellular algae Chlamydomonas reinhardtii shared
more gene families with humans than similarly distant species (such as the
parasite Giardia intestinalis) (Figure 2, A). These patterns indicate substantial
variation in gene family presence/absence across evolutionary scales within the
portfolio, even among the most distant species.

These individual examples were also reflected at global taxonomic scales. The
counts of unique species within gene family swiftly increased with total gene
count (Figure 2, B) and significantly faster than expected in a simulated low-
sensitivity scenario (i.e., where the number of gene families shared with humans
linearly decays with evolutionary distance) (Figure 2, B; permutation-based



sampling, see Approach). The smallest gene family representing all 63 species
contained 70 genes. The equivalent measure in the simulated data was almost
four times greater (264 genes). The relationship between the count of unique
species within a gene family and that gene family’s age (i.e., time to the most
recent common ancestor of all gene copies) revealed diverse species
combinations across all sizes (Figure 2, C). The age of gene families increased
linearly to ~20 species, after which the relationship plateaued (Figure 2, C).

Interestingly, gene families with as few as five species spanned the full
evolutionary range of the portfolio, meaning these small gene families contained
everything from the most closely related species to those most distantly related in
our dataset (Figure 2, C). For example, gene family OGO013524 (human protein
A6NEQO) contained proteins from primates (humans, macaques, chimpanzees,
marmosets) and the unicellular Euglenozoan Bodo saltans. These observations
make clear that our portfolio is thus both broad — encompassing much of
eukaryotic diversity — and sensitive, allowing for targeted and flexible selection of

research organisms.
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Figure 2. Evolutionary distribution of human gene families.

(A) Number of gene families shared with humans as a function of cophenetic distance from
humans. Labeled organisms are (from left to right): Xenopus tropicalis, Danio rerio, Petromyzon
marinus, Exaiptasia diaphana, Mnemiopsis leidyi, Giardia intestinalis, and Chlamydomonas
reinhardtii.

(B) Density scatter plot comparing protein (x-axis) and species number (y-axis) across gene
families. As estimated by simulations, the expected relationship between these values is denoted
by the black line.

(C) Density scatter plot of species number (x-axis) and all gene families' evolutionary scale (y-axis).

A novel measure of molecular similarity

Next, we turned our attention to measuring the similarity of molecular properties
of the proteins encoded by each gene with their corresponding human homologs.
Conservation is commonly inferred by sequence similarity; the more shared a
sequence is, the more similar two genes or proteins are presumed to be [171. We
wanted to address the limitations of this approach. For one, sequence similarity
doesn't always mean functional similarity. It's possible to have two proteins with
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low overall sequence similarity but share critical portions determining structure
and function. In other words, not all portions of a sequence are the same.
Sequences are also tied up with species’ relatedness. More closely related
species will, on average, necessarily have more similar and shared sequences than
more distantly related species. This can make it hard to detect cases wherein very
distantly related species share sequences that perform the same function through
conservation, convergence, or other evolutionary means. Given our portfolio's
massive range of evolutionary diversity, we concluded that relying on sequence
similarity alone wouldn't cut it.

To address the insufficiency of sequence similarity for our purposes, we
developed a novel molecular conservation measure incorporating phylogenetic
and protein physicochemical properties (see Approach for details; Figure 3). First,
various physicochemical measures and secondary structural properties are
calculated from the amino acid sequences of all proteins in a gene family (Figure
3, step 1). As previously described, however, proteins are evolutionarily (and thus
statistically) non-independent of one another. To account for this non-
independence, we adjusted each measure for evolutionary relatedness using a
phylogenetic generalized least squares transformation (PGLS transform; Figure 3,
step 2) rendering each protein statistically independent. Using these adjusted
protein features, we quantified all pairwise (dis)similarities among proteins within
each gene family using Mahalonobis distances (Figure 3, steps 3-4). Last, the
distance from the closest human protein was identified for each protein, resulting
in our final conservation measure (Figure 3, step 5).
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Figure 3. Calculating molecular conservation.

(1) Heatmap of one protein physicochemical property. Here, molecular weight (“Weight”) is an
example. The colored points represent individual species. Colors correspond to the EukProt
taxogroup1 (the purple infant cartoon indicates human). Each species’ molecular weight is
represented by color intensity.

(2) We use a phylogenetic generalized least squares (PGLS) transformation to correct for
evolutionary relatedness, rendering proteins statistically independent. The heatmap in this panel
reflects molecular weight after this correction.

(3) Cartoon of the combined matrix of 10 evolutionarily corrected physicochemical properties
(naming key: “Weight” = molecular weight, “Aroma” = aromaticity, “Instability” = instability index,
“Flex” = flexibility, “GRAVY” = GRAVY index, “Iso” = isoelectric point, “PH” = charge at PH 7, “Helix”
= helix fraction, “Sheet” = sheet fraction, “Cysteine” = molar extinction coefficient of cysteines).

(4) Cartoon 2-dimensional space representing the Mahalonobis distances measured between
species’ proteins.

(5) Ranked distribution of distances from the human versions for all proteins considered.

Conservation with human homologs wasn't uniformly distributed across species
(Figure 4). Gene families differed extensively in their distributions' shape,
dynamic range, and magnitude (Figure 4), with many containing genes spanning
the full range of conservation (Figure 4). Some were similar to humans, with little
evolutionary variation (Figure 4), while others were uniformly distant (Figure 4).
These observations reinforce that genomes aren't evolutionarily singular units.
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Figure 4. Landscape of molecular conservation between eukaryotes and humans.

Hierarchical clustering of gene families according to conservation patterns with humans across
species in our portfolio. Each point corresponds to an individual protein. Conservation is measured
using the multivariate distance metric described in Figure 3.

The distribution of conservation to individual human proteins further supports this
observation, as shown in Figure 5. For example, PTN4 (UniProt: P29074) is a
neurally associated phosphatase that matches evolutionary expectations under a
molecular clock hypothesis; molecular conservation to this protein decreases
linearly with evolutionary distance (Figure 5, A). The transcription factor FOXA1
(UniProt: P55317) also shows this pattern but, unlike PTN4, is generally not highly
conserved (Figure 5, B). In contrast, conservation to proteins such as ARF3
(UniProt: P61204) — an ADP-ribosylation factor — is uniformly high across the
portfolio (mean conservation = 0.88, slope = 2.78¢~%°, » = 0.89) (Figure 5, C).
Finally, and intriguingly, molecular and evolutionary distance can display a
negative relationship (i.e., more distantly related proteins are increasingly similar),
as is the case for mitochondrial protein 3HIDH (UniProt: P31937; Figure 5, D). The
observed variation of conservation profiles can refine our evolutionary hypotheses

and help identify and take advantage of even counterintuitive patterns. It also
underlines the importance of questioning Scala Naturae thinking in organismal
selection for biomedical research.


https://www.uniprot.org/uniprotkb/P29074/entry
https://www.uniprot.org/uniprotkb/P55317/entry
https://www.uniprot.org/uniprotkb/P61204/entry
https://www.uniprot.org/uniprotkb/P31937/entry
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Figure 5. The diversity of conservation profiles.

Human proteins are characterized by the relationship between conservation (“Distance from

human protein”) and phylogenetic distance from humans (“Cophenetic distance”). Examples
include proteins where similarity linearly decreases (A; PTN4, B; FOXAT; C; ARF3), is uniformly highly
divergent (B) or deeply conserved (C), or even increases with phylogenetic distance (D; 3HIDH). * =
linear regression fit.

De novo identification of supermodel organisms

Our approach was founded on the idea that genome-wide conservation with
humans can link potential organismal models with various aspects of human
biology. By leveraging this idea, we posited that we could develop an organismal
portfolio for each biological question by characterizing these connections. Just
how specific might these portfolios be? As we saw above, individual gene family’s
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evolutionary histories vary broadly. Whether or not these patterns translate to
organismal-level differences is presently unclear. Are certain organisms
disproportionately suited to modeling diverse aspects of human biology? If yes,
then “general purpose” organismal models may be developed, potentially
simplifying the model selection process. We sought to test this hypothesis.

To begin doing so, we first explored the extent to which evolutionary relationships
predict genome-wide conservation patterns. Each species was characterized by a
numerical vector containing binary (i.e., presence/absence) and continuous (i.e.,
molecular conservation) representations of conservation with all human proteins
in the dataset. We assessed the relationships between these genome-wide
conservation patterns using principal component analysis (PCA) (Figure 6, A). PC1
was significantly correlated with homolog presence/absence (r = -0.98; p = 5.70
x 10~46: Pearson correlation) and phylogenetic distance (r = 0.92; p = 1.75 x
1072%: Pearson correlation) and explained 45.89% of the observed variance.
Projecting the species phylogeny onto PC space further highlighted these
relationships (Figure 6, A). We found a clear phylogenetic path through the first
two PC axes (Figure 6, A). Notably, of all the PCs (N = 63), only PC1 displayed
significant correlations with ortholog presence/absence and phylogenetic
distance (not shown). This means that most genome-wide conservation variation
isn’t captured by ortholog presence/absence and can’t be directly predicted from
phylogenetic relationships. Instead, the (more complex) patterns of protein

conservation across each species’ proteome must be considered.

Given these observations, we next sought to characterize the conservation
profiles of each species’ orthologs. We wanted to know if a given species’
proteins were consistently more conserved with their human counterparts than
expected. We needed a method robust to the uneven representation of species
within our dataset; this led to identifying the Elo rating system as a candidate
framework [43]. Developed initially to rate chess players, Elo ratings assess
players' relative skills across a series of “matches” in a zero-sum framework. The
Elo system is increasingly used to evaluate machine learning model
performance (443, and ratings have been used to identify species-level biases on
protein language model likelihoods [43;. Influenced by this work, we developed a
permutation-based approach for assessing relative enrichment for conservation to
human proteins for each species using Elo ratings (see Approach).
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Elo ratings exhibited a range of variability across trials within and across species
after summarizing across trials (Figure 6, B-C). In our implementation, scores
greater than 1500 represented doing “better” than random. Similarly, scores less
than 1500 are “worse” than random. Chimpanzees had the highest rating (mean
Elo rating = 1618) whereas (as with gene family number) Abeoforma whisleri
ranked last (mean Elo rating = 1414), meaning that chimpanzee proteins were
more similar to human homologs 76.4% of the time (Figure 2). Vertebrate
species, except for lamprey (Petromyzon marinus), had scores above 1500 and a
median rating of 1571. Non-vertebrates had a median rating of 1478. Overall,
ratings generally decreased with phylogenetic distance from humans (Figure 6, C).
These expected evolutionary signals provided confidence in using Elo ratings for
this task.
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Figure 6. Using Elo ratings to rank research organisms.

(A) Phylomorphospace obtained using conservation to humans and gene family presence/absence
for each species as measured across all 9,260 human gene families in our dataset. Percent values
correspond to variation explained by each PC. Each point is a species, colored by taxonomic

grouping.
(B) Example of Elo rating changes over a series of matchups (each line corresponds to a species).
All species start with a rating of 1500, marked by the dotted line.

(C) Distribution of mean Elo ratings as a function of phylogenetic distance from human.

Elo ratings weren't linearly predicted by phylogenetic distances, exhibiting
substantial variation at different taxonomic depths. Several outlying species could
be readily identified (Figure 6, C). For instance, Zebrafish (Danio rerio) beat out
primates and mammals to obtain the second-highest rating (Elo rating = 1615),
just behind chimpanzees (Elo rating = 1618). Proteins from the unicellular algae
Chlorella vulgaris (Elo rating = 1564) were 67.5% more likely to be conserved
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with humans than the closely related species Chlamydomonas reinhardtii (Elo
rating = 1437). Although vertebrates possessed significantly larger Elo ratings than
othertaxa (p =7.72 x 1®‘7; Kruskal-Wallis test), non-vertebrate multicellular
species were indistinguishable from unicellular species (p = 0.74; Kruskal-Wallis
test). Furthermore, the four most phylogenetically distant species from humans
(Bodo saltans, Diplonema papillatum, Euglena gracilis, Nageleria gruberi)
possessed Elo ratings comparable to invertebrates that arose hundreds of millions
of years later (p = 0.57; Kruskal-Wallis test).

How unexpected are these patterns? To explore this, we performed a regression
predicting Elo rating with variation in the count of human gene families in which
each species was present. The model had a reasonably good fit (multiple R? =
0.66; p = 4.49 x 107'9), as might be expected given the presence of phylogenetic
signal in both the Elo ratings and the counts of human gene families. However, we
were interested in what wasn’t described by the model, reasoning that species
with exceptional molecular conservation would be associated with positive
residual variance (i.e., Elo ratings higher than predicted by this null model).

Exceptional molecular conservation was observed across a wide range of
eukaryotic diversity. Notable examples included Chlorella vulgaris (3.56;
Studentized residual), Paramecium tetraurelia (2.42), zebrafish (2.35),
chimpanzees (1.53), the frog Xenopus tropicalis (1.41), the ciliate Tetrahymena
thermophila (1.05), the amoeba Naegleria gruberi (1.83), the malaria-causing
parasite Plasmodium falciparum (1.83), the unicellular algae Euglena gracilis
(0.96), and the ctenophore Mnemiopsis leidyi (0.95) (Figure 5, C). Interestingly,
some well-studied model organisms exhibited less molecular conservation than
anticipated. Nematodes (Caenorhabditis elegans) displayed a negative residual of
—-0.56, fruit flies (Drosophila melanogaster) had —0.49, and brewer's yeast
(Saccharomyces cerevisiae) showed -0.12 (Figure 5, C).

At higher taxonomic levels, consistent patterns emerged. Heterotrophic and
parasitic protists were notably enriched, including Ciliophora (1.73), Heterolobosea
(1.83), and Apicomplexa (10.3). Fungi aligned with expectations, showing a result
of 0.005, while taxa representing the transition from unicellular to multicellular
organisms, such as Choanoflagellata (-1.16) and Ictheosporea (-1.09), were
underrepresented (Figure 5, C).
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These observations lead us to conclude that the landscape of genomic
conservation is complex and can't be easily predicted by evolutionary
relationships alone. Additionally, Elo rating distributions may provide insights into
the breadth of human biology that can be modeled using specific research
organisms.

Key takeaways

Every species represents a combination of various evolutionary paths, making it
difficult to predict which organisms will serve as effective models for
understanding human biology. However, by examining the evolutionary context of
a species' genome, we can make informed assumptions about the biological
insights we might gain from studying that species.

We developed an approach to map the similarities between human genes and
those of 63 eukaryotic research organisms. We identified a range of potential
model organisms for each gene by analyzing conservation profiles across the
human genome. Many of these profiles highlighted species that aren't typically
supermodel organisms. Additionally, through global conservation analyses, we
pinpointed species that share remarkable molecular similarities with humans
based on their phylogenetic positions. Our findings revealed organisms
throughout the eukaryotic tree that could serve as valuable model systems,
expanding the range of possible organismal models in biomedical research. This
approach allows researchers to test their assumptions regarding potential models
and provides an evidence base that can free biologists from reliance on
conventional wisdom.

Next steps

Experimental validation of our predictions is of great interest. We have begun
using the conservation profiles of human genes to identify novel organismal
models for genetic diseases. An example of our work can be found in a
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companion publication 23, where we identified Chlamydomonas reinhardtii as a
potential model for studying human spermatogenic failure. Through a small-scale
drug screen, we demonstrated that the phenotypic effects of two human risk
genes — SPEF2 and DNALIT — are conserved, supporting our evolutionary
hypotheses. In the future, we'll focus on validating additional predictions and
leveraging our approach to discover new research organisms for genetic and
therapeutic explorations.

There are several potential computational extensions we could pursue. The
findings in this publication primarily addressed the evolutionary patterns of single
genes. A logical next step is to explore gene sets (e.g., molecular pathways,
pairwise interactors, and polygenic disease targets) to enhance our ability to
predict complex phenotypic conservation in research organisms. This could
facilitate the development of innovative phylogenetic methods for comparing the
evolution of genetic pathways. Additionally, it could help us generalize our
approaches to other biological applications beyond human disease modeling.

Increasing the number of species analyzed would improve our coverage of
eukaryotic diversity and enhance the precision of our predictions. An intriguing
extension could involve creating a comprehensive organismal portfolio. By
predicting more complex biological features across a broader range of species,
we could outline a roadmap for biomedical research that effectively pairs specific
problems with suitable organismal models and research designs. Even if achieving
this goal proves challenging, working towards it should enhance our chances of
identifying fundamental biological principles and determining where they can be
most effectively applied.
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