G-P Atlas: A neural
network framework for
mapping genotypes to
many phenotypes

G-P Atlas extends genetic analysis with neural networks
that model multiple traits simultaneously. By capturing
complex interactions between genes and phenotypes, our
framework predicts biological outcomes more accurately
and reveals genetic influences that traditional methods

miss.

Published Aug 8, 2025

A, Arcadia Science DOI: 10.57844/arcadia-d316-721f

Purpose

Genotype-phenotype relationships are central to our understanding
of inheritance, disease mechanisms, and evolutionary processes.
Despite this, the most commonly applied methods for genotype-
phenotype mapping have changed little in the last 100 years,
typically examining one phenotype and genotype at a time. We
present G-P Atlas, an innovative neural network framework that
transforms genetic analysis by simultaneously modeling multiple
phenotypes and capturing complex nonlinear relationships between
genes. Our two-tiered denoising autoencoder approach first learns a
low-dimensional representation of phenotypes and then maps
genetic data to these representations, leading to a data-efficient
training process.



We find that G-P Atlas predicts many phenotypes simultaneously
from genetic data and successfully identifies causal genes —
including those acting through non-additive interactions that
conventional approaches may miss. Thus, by modeling organisms
holistically rather than as collections of isolated traits, G-P Atlas
enables accurate phenotype prediction while revealing previously
unappreciated genetic drivers of biological variation.

This framework should interest researchers in quantitative genetics,
evolutionary biology, precision medicine, and computational biology
who rely on accurate genotype-phenotype models. We welcome
feedback on potential applications and extensions of G-P Atlas as we
work toward comprehensive models that capture the true complexity
of living systems and their genetic underpinnings.

e Data and all associated code from this pub are available in
this GitHub repo.

Background and goals

Decoding inheritance, disease, and evolution (as well as engineering
biological systems) relies on decoding the relationships between
genes and phenotypes. However, methods for mapping genotype-
phenotype relationships have barely changed over the last 100 years.
Though biological systems are defined by complex, often nonlinear
interactions between genes, phenotypes, and environments (p1;; for
review, see 21 and [31), most approaches focus on phenotypes in

isolation and assume linear, additive interactions between genes
(see 141 and s1; for review, see 61 and 7). As a result, even in the best
cases, a substantial portion of biological phenomena may be
missed. In the worst cases, models may point us in completely
wrong directions.

The focus on individual genes likely results from computational
complexity — allowing interactions between all genes using current
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modeling methods would often require data from more humans
than exist. And at the population level, gene-gene interactions drive
only a small fraction of phenotypic variation (181 and 9j; for review,
see 10]). However, we're most often concerned with predicting the

phenotypes of an individual (not a population) where gene-gene
interactions may have dramatic impacts.

Like genotypes, most studies consider phenotypes individually. But
many phenotypes share a generative process structured by genetics
(e.g., pleiotropy or a single gene impacting multiple phenotypes),
physics (e.g., cellular surface-area-to-volume ratio), or evolution [2jj11]
1121113]. Such mechanisms drive complex phenotype-phenotype
relationships [21. We've previously shown that these relationships can

be leveraged to better predict phenotypes [2i141151116].

Machine learning models offer promising opportunities for capturing
gene-gene interactions and modeling many phenotypes that are
computationally tractable (171. Recent approaches include the

following:

e Random forest methods demonstrate valuable capabilities for
modeling epistatic effects through their intrinsic architecture
and provide interpretable feature importance metrics 18]

e Specialized approaches like multifactor dimensionality
reduction designed for detecting gene-gene interactions have
opened new avenues for exploring genetic architecture 19

e Kernel methods can model complex genetic effects on
arbitrarily structured phenotypes [20]

e Multi-task learning frameworks have advanced our ability to
model traits jointly, recognizing their biological
interconnectedness 21

e Variational autoencoders offer powerful approaches for
learning compressed genetic representations that can reveal
underlying population structure 22
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Despite these advances, a framework that efficiently captures gene-
gene interactions, simultaneously modeling many phenotypes and
retains interpretability to allow the identification of genes influencing
phenotypes remains elusive.

One ongoing problem with the application of machine learning to
the modeling of biological systems is data scarcity. Collecting
biological data is expensive; almost all biological studies are data-
limited. Furthermore, while many machine-learning approaches
(including artificial neural network-based methods) can learn higher-
order complex relationships between parameters, achieving this
requires comparatively large amounts of data. In several applications
to biological data, machine learning models not designed to be data-
efficient failed to learn higher-order (nonlinear) relationships, though
such relationships were present [23ji2411161. This was true even for
models using modern architectures specifically designed to capture
higher-order relationships (e.g., attention), which have been effective
in other data containing such complex interactions (e.g., written
language) 1251. The application of machine learning to biological

questions will require data-efficient architectures.

We sought to create a modeling framework that achieved four goals:

1. Simultaneously modeling multiple phenotypes and genotypes
(and potentially environments) to achieve a more holistic
model for an organism.

2. Capturing nonlinear relationships among genotypes,
phenotypes, and environments.

3. Sufficient data efficiency to accommodate real-world
biological research constraints.

4. A capacity for inference (e.g., identifying causal genotypes and
predicting phenotypes).

Here, we demonstrate G-P Atlas, a modeling framework that
addresses many of these needs and might serve as a replacement
for many current genetic methods.
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The approach

To see how the G-P Atlas performs, skip straight to “The results.”

Architecture

We adopted a denoising autoencoder framework to capture
phenotype-phenotype relationships and allow for gene-gene and
gene-environment interactions. Autoencoders consist of multiple
neuronal layers comprising an encoder that aims to create a
compressed, efficient data encoding by passing that data through an
information bottleneck and a decoder capable of taking this reduced
(latent) data representation and accurately reproducing the original
input data 261. They can be robust to missing and corrupted data

(denoising, 1271), enable dimensionality reduction (285, and can capture
nonlinear relationships among parameters 291. They've been the

subject of extensive research, and many differing architectures
perform differently well across various tasks [2ej3o131321.

Denoising autoencoders (trained for accuracy despite deliberately
corrupted input data) are particularly attractive for modeling
biological data because they're robust to measurement noise and
missing data and can capture complex relationships among
parameters even with minimal data 271. While conventional

autoencoders can learn simple embeddings (such as the identity
function), they're unlikely to capture the full complexity of
relationships among genotypes and phenotypes. Denoising models
learn more general manifolds that are more likely to capture the
actual constraints (e.g., genetic and evolutionary) that structure
biological systems. For a more expanded discussion of these points,
see the Mathematical framework and theoretical foundations
section.

G-P Atlas has a two-tiered architecture and training procedure. We
first trained a phenotype-phenotype denoising autoencoder
(Figure 1, A). Then, we conducted a second round of training to map
genotype data into the learned latent space of the phenotype
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Phenotype-phenotype

Trained

Figure 1. Schematic representation of the G-P Atlas architecture.

(A) Schematic representation of the phenotype-phenotype autoencoder.
(B) Schematic representation of the genotype-phenotype training phase.

The color indicates layers trained with phenotypic data (blue) or genetic data
(orange).

decoder (Figure 1, B) such that genetic data predict phenotypes.
During this round of training, we held the weights of the phenotype
decoder (Figure 1, B; blue) constant, minimizing the number of
parameters trained during this “mapping” procedure. We
supplemented the phenotype data with Gaussian-distributed noise
and genotype data with missing and erroneous genotypes during
training.

Each encoder and decoder contains three layers. All input and
internal layers had leaky rectified linear (leaky ReLU, negative slope
of 0.01) activation functions 331 and were batch-normalized 341 with a
momentum of 0.8. The output layer for all networks producing
phenotypes had a linear activation function. We instantiated all
networks using PyTorch (v2.2.2, RRID: SCR_018536 3s)).
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Training procedure

We adopted the following training procedure:

1. Train a denoising phenotype-phenotype autoencoder where a
model predicts uncorrupted phenotypic data from corrupted
phenotypic data. The learned latent representation is an
information-rich encoding of those phenotypes with fewer
dimensions than the initial data.

2. To create genotype-to-phenotype mappings, we conducted a
second round of training with paired (for each individual)
genetic and phenotypic data. We made a new network that
maps genotypic data into the latent space from the phenotype
decoder. We fixed the parameter weights of the previously
trained phenotypic decoder. We then trained the model to
predict the uncorrupted phenotypic data based on corrupted
genotypic data.

For each dataset, we tuned the following hyperparameters: the size
of the latent space, the size of the hidden layers, and the amount of
added noise using grid search. To tune each hyperparameter, we
trained the networks using 80% of the data (the training set) and
tested prediction accuracy using the remaining 20% (the test set). We
used a batch size of 16 and 250 epochs for all training. After 250
epochs of training, we evaluated the model. We performed gradient
descent using the Adam optimizer 1361 with momentum decay

parameters of 0.5 (31) and 0.999 ([3,), no weight decay, and a learning
rate of 0.001. For genotype-to-phenotype training, we regularized the
weights mapping genotypes to the phenotype latent space: L’ norm
(weight of 0.8) and L? norm (weight of 0.01). As all phenotypes
modeled here were quantitative, we used the mean squared error
loss function to train any network that outputs phenotype
predictions. All reported statistics are for the 20% test dataset.

Variable importance

To estimate the importance of any particular parameter (a specific
phenotype or genotype at a specific location) for predicting
phenotypes or genotypes, we used permutation-based feature
ablation as implemented in Captum (371. Briefly, the importance of
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each feature is measured as the mean shift in the predicted
phenotype distribution when we omit that feature. This measure is
determined independently for each allelic state. For each allele, the
reported statistic is the mean squared variable importance. To
identify loci (where there may be more than one allelic state)
contributing to phenotypic variation, we used the largest variable
importance from the set of alleles at that locus. The variable
importance was calculated using the 20% test dataset.

Datasets

We evaluated this approach using two datasets: one simulated
dataset that we have used previously 381 and an extensively studied

genotype-phenotype dataset that resulted from an F1 cross between
two budding yeast (Saccharomyces cerevisiae) strains [391. An extensive

description of the simulated dataset is available in [38). Briefly, we

simulated genotypes for 600 individuals at 3,000 loci. For each of the
30 phenotypes, 10 loci contribute additively to phenotypic variation.
We gave each causal locus a 20% probability of influencing each
other phenotype (pleiotropy) and a 20% probability of interacting
with each other contributing locus (epistasis or gene-gene
interactions). All gene-gene interactions were multiplicative. An
extensive description of the yeast dataset is available in 39]. Briefly,
the strains are haploids that result from a cross between two
Saccharomyces cerevisiae strains. The dataset contains marker data
for 1,000 offspring at 11,623 loci and measurements for 46
continuous phenotypes. Each of these phenotypes was growth under
differing conditions.

Data preparation

We formatted the data as a single Python dictionary with one entry
for phenotypes and another for genotypes. For train/test datasets,
we split the full dataset into two smaller, identically structured
datasets. As previously described, 80% of the data comprised the
training set, and the remaining 20% comprised the test set.
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Statistical analysis

We conducted all formal statistical tests using implementations in
the SciPy (v1.15.2, RRID: SCR_008058) statistics package r4o0).

Variable importance distribution analysis
(VIDA)

Overview

We developed variable importance distribution analysis (VIDA), a
novel unsupervised method for detecting gene-gene interactions
from machine learning variable importance scores. VIDA identifies
interaction candidates by analyzing distribution patterns of extreme
importance values, based on the hypothesis that interacting loci
exhibit coherent activation patterns characterized by specific extreme
value co-occurrence and clumpiness signatures.

Input data

VIDA requires a variable importance matrix  of dimensions x
where represents samples and represents loci. Each element
indicates the importance of locus for sample , as determined by
any machine learning method (e.g., random forests, gradient
boosting, neural networks). Zero values indicate loci with no
measured importance for a given sample.

Algorithm description

Step 1: Z-score standardization

For each locus , we calculated z-scores to standardize importance
values across loci while preserving distributional characteristics:

For each locus j\:
non_zero_values = {V[ij] \: V[ij] # O}
U =mean(non_zero_values)
0 =std(non_zero values)
Zlij1=WMV[j]-p )/ o foralliwhereV[ij#0
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This standardization enables consistent extreme value detection
across loci with different importance scales.

Step 2: Unsupervised partner identification

We identified potential interaction partners for each locus using
pairwise similarity measures. For each pair of loci ( ), we
calculated:

Correlation component

valid_samples = {i \: Z[ijs] # 0 AND Z[i ] # O}
D 1, 2= correlation(Z[valid_samples, j1], Z[valid_samples, j2])

Co-occurrence com ponent

extreme_j, ={i \: | Z[ij:]| > z_threshold}
extreme_j, ={i \: | Z[ij2]| > z_threshold}
co_extreme = |extreme_j; extreme_j;|
expected_co_extreme = | extreme_j;| x |extreme_j,| /n

¢ 1, 2= Co_extreme / expected_co_extreme

Combined similarity

similarity(1j2)=(|p 1 2| +@ 1, 2/2

For each locus we selected the top 10% of loci with the highest
similarity scores as potential interaction partners.

Step 3: Sample-level pattern analysis

For each sample and locus , we computed two complementary
metrics:

Extreme ratio difference



We quantified the tendency for extreme co-occurrence with partners
versus non-partners:

partner_extreme_ratio = [{k partners(j)\: | Z[i k]| > z_threshold}| /

| partners(j)|

non_partner_extreme_ratio= [{k partners(j)\: | Z[i k]| > z_threshold}| /
| non_partners(j)|

extreme_ratio_diff[ij] = partner_extreme_ratio - non_partner_extreme_ratio

Clumpiness difference

We measured the concentration of importance values in the top
percentile:

clumpiness(values, percentile) = 2(top_percentile_values) / Z(all_values)
partner_clumpiness = clumpiness(Z[i, partners(j)], 5%)
non_partner_clumpiness = clumpiness(Z[i, non_partners(j)], 5%)

clumpiness_diff[i,j] = partner_clumpiness - non_partner_clumpiness

Step 4: Locus-level projection

We aggregated sample-level metrics to obtain locus-level interaction
scores:

For each locus j\:

extreme_samples ={i\: | Z[i ]| > z_threshold}

avg_extreme_ratio_diff[j] = mean(extreme_ratio_diff[i,j] for i in
extreme_samples)

avg_clumpiness_diff[j] = mean(clumpiness_diff[i,j] foriin
extreme_samples)

VIDA_scorel[j] = avg_extreme_ratio_diff[j] x avg_clumpiness_diff[j]

Parameter optimization

We systematically optimized key parameters using grid search with
receiver operator characteristic (ROC) analysis:

"



e 7z threshold: Tested values [1.5, 2.0, 2.5, 3.0] for defining
extreme importance values

e clumpiness_percentile: Tested values [5%, 10%, 15%, 20%] for
concentration analysis

e clumpiness_method: Tested concentration, Gini coefficient,
entropy, and adaptive methods

We selected optimal parameters based on area under the ROC curve
(AUC) performance: z_threshold = 2.0, clumpiness_percentile = 5%,
method = concentration.

Mathematical framework and
theoretical foundations

G-P Atlas leverages the denoising autoencoder architecture, which
provides theoretical guarantees for learning robust representations
from noisy, high-dimensional data [2e1271. This approach is
particularly well-suited for biological data, where measurement
noise is common, and sample sizes are limited relative to the
complexity of the underlying system.

G-P Atlas aligns with the manifold hypothesis that high-dimensional
data often lie on or near a lower-dimensional manifold [41. In the
context of biology, this manifold is constrained by genetic,
environmental, physical, and evolutionary factors (e.g., 421 and 13)).
By training models to reconstruct clean inputs from corrupted
versions, we capture the statistical dependencies and constraints
governing these biological manifolds rather than merely memorizing
training examples [271.
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Mathematical formulation

Phenotype autoencoder

Let represent our phenotype (trait, )data matrix for
individuals and  phenotypes. Following the denoising autoencoder
approach (271, we first corrupt the original data:

For phenotypic data, we use additive Gaussian noise:

The phenotype encoder () maps this corrupted data to a lower-
dimensional latent space where

The encoder consists of three neural network layers with leaky RelLU
activations and batch normalization. The phenotype decoder ( )
attempts to reconstruct the original, uncorrupted phenotypes:

The training criterion minimizes the expected reconstruction error
over the empirical distribution:

Where is our loss function (mean squared error):
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Genotype-to-latent encoder

Let represent our binary genotype data matrix for
individuals and loci. Similar to the phenotype data, we corrupt
genotype data during training:

For genetic data, which is binary, we use masking noise that
randomly flips a percentage of the bits:

The genotype encoder () maps this corrupted genetic data directly
to the phenotype latent space:

During the genotype-to-phenotype training phase, we hold the
phenotype decoder parameters fixed and train only the genotype
encoder parameters. We minimize the regularized loss function:

Where represents the phenotypes predicted from
corrupted genotypes, and the additional terms are  and
regularization with weights and , respectively.



Theoretical relevance to biological systems

The denoising autoencoder approach offers several properties that

are particularly relevant for genotype-phenotype mapping:

1.

Manifold learning: By training on corrupted inputs, the
model learns to project data back onto the data manifold,
effectively capturing the constraints that shape phenotypic
relationships [271. For biological systems, these constraints
include physical laws, developmental pathways, and
evolutionary pressures that limit the space of possible
phenotypes.

Extraction of biological processes: The latent
representations learned by denoising autoencoders capture
statistical dependencies in the data rather than merely
compressing it. In the biological context, these
representations may correspond to underlying biological
processes or functional modules that determine phenotypic
outcomes.

Robustness to missing data: The corruption process during
training teaches the model to handle missing or noisy inputs,
making it particularly suitable for biological datasets where
measurement noise and missing values are common.

Data efficiency: By forcing the model to reconstruct clean
data from corrupted inputs, denoising autoencoders learn
more robust features with fewer training examples than
standard autoencoders. This property is crucial for genotype-
phenotype mapping, where biological data collection is
expensive, and datasets are typically limited in size.

Variable importance quantification

G-P Atlas provides a natural way to assess variable importance
through feature ablation. For a given allele atlocus , we interpret

its importance as the expected error in the phenotypic
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reconstruction when that feature is corrupted, but other features are
intact:

Where represents the genotype with allele artificially modified.
Empirically, we approximate this expectation as:

This measure captures both direct effects and nonlinear interactions
with other loci, providing a more comprehensive set of genetic
influences than traditional additive models.

For loci with multiple allelic states, we define the overall importance
of locus as:

Where is the set of all alleles at locus .

This mathematical framework enables G-P Atlas to simultaneously
model multiple phenotypes, capture nonlinear relationships among
genotypes and phenotypes, and efficiently leverage limited biological
data — advancing us toward a more comprehensive understanding
of the complex relationships between genotype and phenotype.



The results

Our development and evaluation of G-P Atlas followed a systematic
approach to validate both its architectural design and practical
applications. We first established proof-of-concept using simulated
data with known ground truth relationships, allowing us to rigorously
assess the framework's ability to capture phenotype-phenotype
relationships, predict phenotypes from genotypes, and identify
causal genetic variants. We then applied G-P Atlas to experimental
yeast data, comparing its performance against traditional genetic
analysis methods to demonstrate its enhanced capabilities in real
biological contexts. We focus on three critical aspects of
performance: prediction accuracy for multiple traits simultaneously,
explanatory power for phenotypic variance, and capacity to identify
both linear and nonlinear genetic influences.

Architecture validation: Simulated data

We first applied G-P Atlas to simulated data where the causal
relationships are known. These data provide a controlled validation
environment to measure our model's ability to recover known
genetic architecture and quantify its prediction accuracy against a
ground truth. We simulated data as described previously 3s]. In

contrast to empirical data, these simulated data are simple, with no
population structure or linkage among loci. This simplification allows
us to isolate the direct effects of genetic variants on phenotypes
without the complexities that linkage disequilibrium or population
structure would introduce. We then calculated phenotypes as the
sum of all genetic influences and added 1% noise. These data served
as our initial validation set.
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Figure 2. Phenotype-phenotype and genotype-phenotype predictions are
accurate.

(A) Comparison of predicted and real phenotypes generated by the phenotype-
phenotype autoencoder. Data points are individual/phenotype pairs. The color
indicates phenotype. Plotted are predictions for 30 phenotypes.

(B) Densities for errors from phenotype-phenotype prediction aggregated across
phenotypes (blue) and individuals (orange).

(C) Comparison of predicted and real phenotypes generated by genotype-phenotype
mapping. Data points are individual/phenotype pairs. The color indicates phenotype.
Plotted are predictions for 30 phenotypes.

(D) Densities for errors from genotype-phenotype prediction aggregated across
phenotypes (blue) and individuals (orange).

An organism’s phenotypes are interconnected to varying degrees
through shared genetic architecture, developmental pathways, and
physical constraints. Holistic models of biological systems must be
able to account for the complexity of phenotype-phenotype
relationships. We assessed the predictive capability of G-P Atlas by
examining the accuracy of phenotype-phenotype prediction on the
unperturbed test data. This autoencoder provided an accurate
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prediction of our test data (Figure 2, A), producing low prediction
errors (mean absolute percentage error, MAPE) for phenotypes and
individuals (Figure 2, B; median MAPE per phenotype = 3.78, blue
line; median MAPE per individual = 3.54, orange line). Thus, this
autoencoder learns a generalizable encoding of phenotypes robust
to noise. The complete model can predict phenotypes of new
samples, and we'll leverage this lower-dimensional encoding space

for genotype-phenotype mapping.

Having established G-P Atlas's ability to model phenotype-
phenotype relationships, we next evaluated its ability to predict
phenotypes from genotypic data, a fundamental challenge in
genetics. We trained a model that predicted phenotypes from
genotypes. We connected the input of the pre-trained phenotype
decoder (Figure 1, B; blue) to the output of an untrained genotype
encoder (Figure 1, B; orange). We then conducted a second round of
training, holding decoder weights constant. The training goal was to
predict phenotypes from genotypes. We corrupted the genotypic
inputs by randomly changing 80% of allelic states. While less
accurate than the phenotype-phenotype model, this genotype-
phenotype mapping provided accurate predictions for our test data
(Figure 2, C), both for phenotypes (Figure 2, D; median MAPE per
phenotype = 9.11, blue line) and individuals (Figure 2, D; median
MAPE per individual = 9.02, orange line). The model, therefore, learns
an accurate, robust, and generalizable mapping between genotypes
and phenotypes. This enables the prediction of many phenotypes
directly from genetic data and suggests the potential to capture both
linear and nonlinear relationships in more complex biological
datasets.
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Figure 3. Ablation variable importance can be used to identify genes
influencing phenotypes.

(A) The mean squared variable importance for each locus known to influence any
one phenotype is plotted against the known additive genetic influence of that same
locus. The orange line indicates the 1% false positive threshold.

(B) The Receiver Operator Characteristic curve demonstrates that variable
importance is an effective classifier for loci influencing a phenotype through the
relationship between false positive rates and false negative rates for differing mean
squared variable importance thresholds. AUC indicates the area under the curve.

A central goal of genetic models (including G-P Atlas) is the
identification of genotypes that influence phenotypes. We
determined the phenotypic influence (variable importance) of a locus
by measuring the change in the predicted phenotype distribution
when a locus was omitted. If this measure only captures additive
genetic influences of a locus, we might expect variable importance to
be correlated with the known additive contribution of a locus.
However, we found no clear correlation (Figure 3, A). This lack of
correlation could be related to the non-additive effects of these loci.
Nevertheless, using this statistic, we can identify most loci that
influence phenotypes (Figure 3). A threshold of 1% false positive
identified 96.8% (179/185) of influential loci (Figure 3, A), and a
receiver-operator analysis had an area under the curve of 0.93
(Figure 3, B), consistent with the accurate classification of alleles
influencing phenotypes.

While the G-P Atlas architecture could capture gene-gene
interactions, we wanted to investigate if it uses interactions for its
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phenotype predictions. We therefore asked two questions. First,
knowing which loci are involved in interactions, can we determine
whether these loci influence the predicted phenotypes differently
than loci that act only directly? Second, can we develop a statistic
that would allow us to enrich for loci involved in gene-gene
interactions so that we can prioritize loci for further network
analysis? To address both questions, we focused on the variable
importance metric described above because it directly quantifies
how strongly a given locus influences phenotypic predictions.

When examining the variable importance estimate for each
individual at each locus, we found that the distribution of measures
is significantly more kurtotic (heavy-tailed) than the distribution for
loci that aren't involved in interactions as indicated by significant
deviation from the unity line in the upper and lower quantiles in a Q-
Q plot (Figure 4, A, Q-Q plot; B, bootstrap kurtosis test, p < 0.001).
This shows that, for some individuals, loci that can act through
interactions cause larger changes in the phenotype distribution than
loci that can't act through interactions. This is consistent with the
expected impact of gene-gene interactions in our simulated dataset,
where the interaction effects are multiplicative and likely to drive
extreme phenotypes.

Alleles involved in interactions can have extreme variable importance
measures in some individuals. Given this, we developed a per-allelic
state statistic, variable importance distribution analysis (VIDA), to
indicate whether an allelic state at a specific locus is involved in an
interaction. VIDA captures two intuitions. First, interacting alleles
should share patterns of extreme variable importance across
individuals. Second, interacting alleles should have similarly extreme
variable importance values. The average VIDA score for interacting
alleles was significantly higher than that of non-interacting alleles
(median 0.00205 interacting vs. median —0.000503 non-interacting, p
< 0.001, Mann-Whitney U). This is consistent with the idea that the
statistic measures interaction involvement. However, VIDA proved to
be only modestly useful for the classification of alleles as interacting
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or non-interacting (Figure 5, A; ROC AUC 0.64, sensitivity of 0.528,
specificity of 0.718). Nevertheless, VIDA can provide significant
enrichment of interacting loci in the upper percentiles of the score
(Figure 5, B; hyper-geometric test, enrichment by percentile of VIDA
score: 1.4x £ 0.93-1.70 in top 10%, 1.35% + 1.13-1.54 in top 20%, p <
0.001 for both, + = 95% confidence interval) indicating that it could be
helpful in prioritizing loci with higher chances of involvement in
interactions for subsequent experimentation. Overall, the ability to
enrich alleles involved in interactions based on these variable
importance scores suggests that, to some degree, G-P Atlas is
leveraging gene-gene interactions for phenotypic prediction.
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Figure 4. Variable importance values are more extreme for interacting loci
than for non-interacting loci.

(A) Quantile-quantile plot of variable importance measure compared between loci
that act through gene-gene interactions and those that don't. The orange line
indicates equivalency between distributions. Grey indicates 95% confidence interval.

(B) Kurtosis for bootstrapped samples from variable importance measures of
interacting (blue) and non-interacting (red) loci. Dashed lines indicate mean values.
Solid lines are kernel density estimates.
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Figure 5. G-P Atlas can be used to enrich for alleles involved in gene-gene
interactions.

(A) Receiver operator curve for VIDA statistic and whether alleles are involved in
interactions or not. The orange line indicates random. Red circle indicates optimal
(Youden’s index) ROC value with sensitivity of 0.528, and specificity of 0.718.

(B) Enrichment of interacting loci as a function of percentile threshold in VIDA scores.
The dashed line indicates no enrichment.

Our simulated data analysis confirms that G-P Atlas can successfully
learn meaningful phenotype representations, predict multiple traits
simultaneously from genetic and phenotypic data, and identify
causal genetic variants with high sensitivity and specificity.
Furthermore, it uses gene-gene interactions to make these
predictions. This proof-of-concept validation establishes a
foundation for applying G-P Atlas to experimental biological data,
where we can assess whether its unique capabilities translate to
significant improvements over conventional genetic analysis
methods in capturing the full spectrum of genetic influences on
complex traits.

Architecture application: Yeast cross data

Next, we applied G-P Atlas to real biological data. We analyzed an
extensively studied population from a cross between two yeast
strains (Saccharomyces cerevisiae) 1391. While we don't know the true
relationships between genes and phenotypes in this population,
other researchers have conducted many genetic analyses mapping
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genes to phenotypes, providing a benchmark to evaluate the
performance of G-P Atlas relative to conventional approaches.
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Figure 6. Phenoty%e—é)henotype and genotype-phenotype predictions are
accurate for a hybrid yeast population.

(A) Comparison of predicted and real phenotypes generated by the phenotype-
phenotype autoencoder. Data points are individual/phenotype pairs. The color
indicates phenotype. Plotted are predictions for 46 phenotypes.

(B) Densities for errors from phenotype-phenotype prediction aggregated across
phenotypes (blue) and individuals (orange).

(C) Comparison of predicted and real phenotypes generated by genotype-phenotype
mapping. Data points are individual/phenotype pairs. The color indicates phenotype.
Plotted are predictions for 46 phenotypes.

(D) Densities for errors from genotype-phenotype prediction aggregated across
phenotypes (blue) and individuals (orange).

Empirical data presents additional complexity compared to
simulations. It's complicated by measurement noise, environmental
variation, and unobserved factors that can obscure phenotype-
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phenotype relationships. Despite these challenges, G-P Atlas
accurately predicts phenotypes from phenotypes in biological data
(Figure 6, A-B), yielding low prediction errors (mean squared error,
MSE) when aggregated across phenotypes or individuals (Figure 6, B;
median MSE per phenotype of 2.87, blue line; median MSE per
individual of 1.60, orange line). This robust performance in predicting
phenotypes from other phenotypes demonstrates that G-P Atlas
effectively captures the underlying constraints linking multiple traits,
reflecting phenomena such as pleiotropy, physical constraints, and
shared developmental pathways that create relationships between
seemingly distinct traits.

Next, we evaluated the primary function of G-P Atlas: predicting
phenotypes directly from genotypic data. As with simulated data, the
model accurately predicts phenotypes from genotypes in this
biological scenario (Figure 6, C-D), yielding low prediction errors
when aggregated across phenotypes or individuals (Figure 6, D;
median MSE per phenotype of 6.89, blue line; per individual of 4.31,
orange line). G-P Atlas produces robust and somewhat accurate
genotype-phenotype mapping, translating genetic information into
comprehensive phenotypic predictions for multiple traits.

G-P Atlas does not account for as much phenotypic
variation as traditional linear models

To evaluate the performance of G-P Atlas relative to the traditional
explanatory models mentioned above, we compared the total
fraction of phenotypic variation (coefficient of determination)
captured by G-P Atlas to the fraction of phenotypic variation
captured using a linear modeling approach. In particular, we
compared it to a set of linear models, one for each phenotype, based
on the additive contribution of significantly linked loci [391. Similar

models are frequently used in agriculture (genomic prediction, [431)

and medicine (disease risk prediction through polygenic risk
scores, [44]).
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As with G-P Atlas, this linear method relies on molecular-genetic
information. It's also two-tiered: for each phenotype, the model
identifies loci linked to that phenotype through a quantitative trait
linkage analysis and subsequently uses variation at the linked loci to
infer phenotypes under that fitted model 391. We found that, for all

phenotypes, G-P Atlas explained significantly less phenotypic
variation than the linear model (p <0.001, Wilcoxon rank sum test).
This suggests that, despite the fact that this model can be used to
identify individual genes influencing phenotypes and can provide
reasonably accurate phenotypic predictions, itisn't as data-efficient
as a linear model with a dataset of this size.

G-P Atlas likely captures relationships among genes
that influence phenotypes

To evaluate whether G-P Atlas captures nonlinear relationships
among genes, we compared the performance of the full model to a
version of the model that has a reduced ability to capture such
relationships. The hidden layers in autoencoder allow the models to
capture relationships among input parameters [291. Without hidden

layers, an autoencoder will result in a mostly linear transformation of
the data s11461. Therefore, we used the same yeast dataset to train a

different version of G-P Atlas without a hidden layer in the genotype
encoder limiting the capture of gene-gene interactions. We then
compared the explanatory power of this simplified model to that of
the full G-P Atlas. We found that the full model explained
significantly more variation than the reduced models (p < 0.002,
Wilcoxon rank sum test), suggesting the full model captures
meaningful interactions between genotypes and these interactions
increase the prediction capacity.
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G-P Atlas identifies individual genes driving
phenotypic variation
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Figure 7. G-P Atlas identifies genes influencing phenotypes in a hybrid yeast
population.

(A) Plotting of scaled squared variable importance per locus as a function of genomic
position in nucleotides. Variable importance is calculated per allelic state. Each locus
has two allelic states. The larger of the two variable importance values is shown. The
colors and numbers at the bottom indicate chromosomes. The dotted line indicates
the 95th percentile of variable importance values. Blue vertical bars indicate portions
of the genome previously linked to phenotypic variation.

(B) A plot of the fraction of loci previously identified to be linked to a phenotype as a
function of variable importance threshold.

(C) A plot of the additive phenotypic variance explained by each locus on the specific
linked phenotype and the variable importance of that locus for the whole phenotype
set.
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Our analyses of this yeast data have thus far focused on the ability of
G-P Atlas to predict or explain genetically driven variation in
phenotypes holistically without focusing on any individual gene or
phenotype. However, many genetic analyses aim to identify the
particular genes that cause phenotypic variation. Thus, we next
evaluated our ability to identify such genes using G-P Atlas and the
ablation variable importance measure described above to find genes
influencing phenotypes in these yeast data (Figure 7). This could
allow us to identify genes acting solely through gene-gene
interactions, which isn’t possible with current approaches.

Depicted in Figure 7, A is the importance of each locus in
determining the distribution of all phenotypes plotted against the
genomic position of that locus. This plot captures several promising
anecdotal observations about the behavior of this statistic. First, the
variable importance measure captures genetic linkage. That is, the
variable importance of proximal markers is similar. This is consistent
with a young population that hasn't gone through many generations
and genetic recombination events, so proximal markers are still
genetically linked. Second, most variable importance peaks fall
within regions of the genome that have previously been linked to one
of the measured phenotypes (depicted as blue vertical bars),
suggesting variable importance may be helpful in identifying genes
influencing these phenotypes. Third, we find variable importance
peaks in genomic regions not previously linked to these phenotypes,
suggesting our approach potentially identifies new loci influencing
phenotypes, possibly through gene-gene interactions. Overall, these
findings suggest that variable importance is a measure that's
consistent with known biology and can identify new biology.

To more directly test the use of variable importance in identifying
genes influencing phenotypes, we determined the cumulative
fraction of loci previously identified to influence phenotypes above
each percentile in the empirical distribution of importance values
(Figure 7, B). We took this approach because, unlike the simulated
data, we don't know which loci influence phenotypes (true positives)
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and which loci don't influence phenotypes (true negatives). We only
know which loci were previously linked to these phenotypes. The
outcomes of these previous studies will have false negatives and
positives compared to ground truth. We found that 93% (551/591) of
all previously identified loci have measures in the top 90th percentile
of variable importance, demonstrating that variable importance
recapitulates previous genetic linkage analysis and is helpful in
identifying genes influencing phenotypes.

Given that we can use variable importance to identify loci-influencing
phenotypes, we were interested to see how this measure compares
to the predicted additive influence of these loci on phenotypes
(Figure 7, C). One possibility is that a given locus's variable
importance and additive and independent contribution to a single
phenotype are highly correlated. Such a result would be consistent
with the idea that these loci influence individual phenotypes
primarily through additive effects. Alternatively, these loci could act
through nonlinear influences mediated by other loci and could
contribute to more than one phenotype. G-P Atlas could capture
such influences, but they wouldn't be present in the predicted
additive genetic influence on one phenotype. While we find a
significant correlation between variable importance and additive
influence (Pearson's correlation of 0.47, p < 0.002), there are many
loci with high variable importance and low additive influence and
others with high additive influence and low variable importance,
suggesting that these loci may have both additive and non-additive
or non-independent effects, potentially on multiple phenotypes. The
loci with high variable importance and low additive influence may be
particularly interesting as they're potentially loci that are important
for biology but weren't previously identified using conventional
methods. Together, these results suggest that G-P Atlas and this
approach to quantifying variable importance are exceptionally
capable of identifying genes contributing to a set of phenotypes
while agnostic to the mechanism by which they contribute.
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Figure 8. For both simulated and real phenotypes, the learned latent
representations are reasonably continuous.

(A) Latent embeddings for simulated phenotypes.
(B) Latent embeddings for phenotypes from a yeast hybrid population.

Data points are individuals. 32-dimensional latent representations are projected into
two-dimensional space using t-distributed stochastic neighboring embedding.

The continuity of latent representations learned by G-P Atlas has
profound implications for both modeling and biological
understanding. While standard autoencoders often produce
discontinuous representations with significant gaps 47, our

denoising approach naturally yields continuous latent spaces
without requiring explicit constraints like those in variational
autoencoders 126). This emergent continuity reflects fundamental
biological principles: phenotypic traits exist along continua shaped
by genetic, developmental, and evolutionary constraints rasja9). Such
continuous representations enable not only more accurate
interpolation between observed biological states but also potential
generative applications, allowing simulation of novel phenotypes
that respect biological constraints [s0. The continuity we observe in
both simulated (Figure 8, A) and experimental yeast data (Figure 8, B)
suggests that G-P Atlas captures the underlying manifold structure of
biological variation, a property that could prove invaluable for
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predicting phenotypic outcomes of genetic interventions or
evolutionary trajectories [s1.

Key takeaways

For nearly a century, genetic mapping has relied on analyzing
individual traits and assuming simple additive relationships between
genes and phenotypes. G-P Atlas fundamentally reimagines this
approach by modeling an organism's genetic architecture more
holistically. Our neural network framework captures what biologists
have long understood — that genes interact with each other in
complex ways and phenotypes are interconnected through shared
biological processes.

The advantages of G-P Atlas are substantial and practical. G-P Atlas
identifies genes influencing phenotypes that conventional methods
may not find, particularly those acting through gene-gene
interactions. In different contexts, these newly identified genetic
influences represent potential therapeutic targets, breeding markers,
or handles for mechanistically studying new biology.

G-P Atlas offers a path toward more realistic modeling of entire
living systems by modeling many phenotypes simultaneously. It
brings us closer to a comprehensive, predictive understanding of
how genotypes give rise to phenotypes.

The transition from reductionist to holistic modeling of genetic
architecture represents a shift in how we capture biological
complexity. As we release our framework and code openly to the
scientific community, we encourage researchers to apply and build
upon G-P Atlas in their own studies of complex traits. We hope you'll
develop even more comprehensive frameworks that further bridge
the gap between genotype and phenotype.
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Additional methods

We used Claude to suggest wording ideas and then choose which
small phrases or sentence structure ideas to use, to help clarify and
streamline text that we wrote, to produce draft text that we later
edited, to help write code, and to clean up code. We used ChatGPT
and GitHub Copilot to clean up code.

Next steps

Biological framework improvements

While this modeling framework captures known biological
phenomena not typically leveraged by other approaches, several
obvious extensions would capture even more biology.

For example, in this framework, we treat all alleles independently,
even though we know that alleles in the same nucleotide position are
mutually exclusive and thus contain significant information about
each other. We could incorporate this information with an initial
layer that convolves alleles at the same nucleotide position.
Additionally, we don't incorporate information like genetic linkage
among loci, which is often known. Within a population, there will be
linkage among loci that are physically proximal to one another. As a
result, linked loci contain information about each other. It would be
possible to more efficiently encode genetic information by
convolving an individual locus with data from genetically proximal
loci. We could incorporate linkage by instantiating an initial graph
convolutional layer representing genetic markers wherein edge
weights are proportional to the genetic distance between markers,
allowing convolution among loci based on their genetic distance.

Furthermore, we've not yet attempted to capture or control for
genetic population structure. So far, we've tested this framework on
simulated data with no historical population structure and a yeast
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population that's the first generation of a single cross (haploid; first
filial, F1; population). However, many populations (e.g., humans)
have long breeding histories that cause non-independent allele
frequencies due to factors such as country of origin. It's common to
account for these relationships in linkage studies or to leverage them
to identify populations. In our framework, we could use a second
autoencoder that compresses the genetic data into a lower-
dimensional space, as we did here for phenotypes. Indeed, other
researchers have already used a similar approach to identify
population classes for individuals [22].

Machine learning improvements

The artificial neural network architecture we use here is relatively
simple compared to many recent advancements in the field,
including diffusion and modern attention mechanisms. Employing
some of these new approaches will likely improve the accuracy or
data efficiency of G-P Atlas. In particular, to provide data efficiency,
we limit the bandwidth of the mapping between genetic data and the
phenotypic latent space. An alternative approach that's become
increasingly common is to use a sparse autoencoder [321. These are

structured similarly to conventional autoencoders, but a reduced
bandwidth limit in the latent representation and the information
bottleneck is imposed through a penalty on complexity during
training. Such an approach could help capture even more
relationships among genetic loci.

Expanded application

Beyond these improvements, we hope to apply this general
approach to many more datasets and adapt the framework
appropriately. For example, all the data presented here are
continuous phenotypes, but many phenotypes of interest (e.g.,
diagnosed disease state) are categorical. We aim to extend the
framework to enable continuous and categorical phenotype analysis
simultaneously. Furthermore, we'd like to add the ability to input
environmental measurements (both continuous and categorical) at
the genotype-to-phenotype mapping step. Such expansions would
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allow ready application to large datasets of human genetic
information.

Identifying interactions

While we've demonstrated that G-P Atlas can capture non-additive
genetic influences on phenotypes and we can use variable
importance to identify which loci impact phenotypes, we didn't
explore our ability to identify gene-gene, gene-environment, or
allele-allele interactions. We'll investigate this possibility in
forthcoming work.

Generative modeling of whole organisms

At the limit, a model that captures the mapping between all drivers
of organismal variation (i.e., genotype and environment) to all
phenotypes that vary in a population should produce a generative
model capable of creating novel organisms consistent with those
from the modeled group. This approach is common in modern deep
neural networks for generating language or images based on a
prompt 2s)i521. Furthermore, as with models for images and language,

interrogation of the structure of that generative model may provide
insight into the shared biological processes that create an
organism [s3js4]. G-P Atlas represents a first step toward a

comprehensive generative model for an organism.
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