Efficient GFP variant design with a simple
neural network ensemble

We designed novel GFPs using a neural network ensemble. We quickly
developed an experimental validation procedure in parallel, confirming that
several candidates were functional. This rapid loop of in silico generation and
lab validation may accelerate protein engineering.
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Purpose

While machine learning has transformed protein engineering, experimental
validation often lags behind. Developing generative models and laboratory
capacity in parallel may help close the gap between model-based representations
and biological reality. Here, we created a lightweight framework combining
computational prediction with laboratory testing to design novel variants of green
fluorescent protein from Aequorea victoria (avGFP).

Using a previously published large-scale deep mutational scanning (DMS) dataset,
we trained an ensemble of convolutional neural networks (CNNs) to predict avGFP
fluorescence across its fitness landscape. Using a random mutagenesis strategy,
we generated 1,000 novel GFPs and predicted their brightness using the CNN
ensemble. From these, we chose ten candidates — five predicted to be highly
fluorescent and five predicted to be weak. Using a dual-reporter system (RFP-GFP
fusion) in Escherichia coli, we experimentally identified brighter variants than the
baseline GFP. Several others retained measurable fluorescence, though
predictions didn't fully align with experimental outcomes.

This work demonstrates that in silico and experimental capacities can be spun up
in parallel and inform each other, potentially allowing more effective navigation of
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local protein fitness landscapes. Notably, the entire pipeline — from conception to
laboratory validation — was completed in under four months, establishing a
framework that can be iterated on in weeks. While discrepancies between
predicted and measured brightness highlight areas for improvement, the study
validates the utility of combining machine learning and experimental biology for
efficient protein design.

e Data from this pub, including sequence embeddings, is available on

Zenodo.

e All associated code, including the CNN ensemble model, is available on
GitHub.

We've put this effort on ice!

#ProjectComplete

This project helped us de-risk several components of iterative
protein design that we're now applying toward other, more
central efforts. Given this, we've decided to ice further work on
novel GFP design.

Learn more about the Icebox and the different reasons we ice projects.

Background and goals

Protein engineering is rapidly changing. Machine learning approaches, particularly
protein language models (pLMs), continually expand the space of computationally
accessible designs. pLMs are highly diverse, varying broadly in sizes, architectures,
tasks, datasets, and modalities (11. pLMs also possess great generative capacities; a
single design campaign might generate tens of thousands to millions of novel
sequences (e.g., 12131). The scale at which novel proteins can be created, and the

number of tools available for doing so, is unprecedented.
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Experimental validation has lagged behind the in silico design boom pj51. Most

publications describing novel pLMs limit experimental testing to just a few
proteins, if any. In many ways, this makes sense. Protein biochemistry is often
slow and expensive [51. Many proteins aren't easily synthesized, purified, or
assayed in the lab. However, the upsides of experimental validation, when
possible, are manifold. Other than basic confirmation of model predictions,
experimental approaches facilitate iterative design 16}, disentangle function from

fitness 161, and help with model fine-tuning, among other applications.

However, even if experimental approaches became easier, another bottleneck
plagues protein design: navigation of fitness landscapes. While methods like deep
mutational scanning (DMS) can be used to estimate fitness distributions over
samples of a protein sequence space, given the combinatorial complexity of
sequence possibilities and the difficulty of comprehensive sampling, doing this
accurately is notoriously difficult. What's more, fitness is rarely distributed
uniformly. Fitness landscapes are defined by peaks and valleys of varying size,
many of which will be invisible to any given DMS dataset. Because of this,
engineering functional proteins, even within regions that are local to wild-type
sequences, remains challenging.

A lightweight approach combining computational design and experimental
validation might help us resolve local aspects of protein fitness through iterative
exploration. Joint exploration of a protein family in the lab and in silico could help
close the gap between a model-based representation and biological reality,
allowing more active and intentional exploration of local design space. We
focused on GFP for our initial development given its extensive characterization 7,

the availability of DMS datasets 81, and its inclusion in other recent pLM-based
design efforts 31. Using an ensemble of convolutional neural networks (CNNs), we

learn local aspects of the GFP fitness landscape, generate novel sequences, and
experimentally validate them.
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Figure 1. Overview of the approach.

We used variants of avGFP generated by deep mutational scanning as the starting point for our
design efforts. Variants occupied various regions of the avGFP sequence space and possessed a range
of fluorescence brightness values (1). We implemented an ensemble of CNNs to learn the
heterogeneity of observed brightness values (2). Arandom mutagenesis procedure then generated
novel variants and their brightness values were predicted using the ensemble CNN (3). Finally, a

panel of 10 candidate proteins was experimentally tested (4).

Access our data, including sequence embeddings, on Zenodo
(DOI: 10.5281/zen0do0.17088257).

The approach

Data and model architecture

Data are from Sarkisyan et al.'s deep mutational scanning study of green
fluorescent protein variants 9], specifically the

"amino_acid_genotypes_to_brightness.tsv" file available on figshare. We converted
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the original indexing system by applying a +2 offset to align with wild-type amino
acid positions and modified the substitution notation to follow the format . All
sequences containing stop codons ("*") were filtered from the dataset, removing
2,310 variants from the original 54,026 sequences to yield a final dataset of 51,716
GFP variants with experimentally measured fluorescence activities, where
brightness scores above 2.5 correspond to visibly fluorescent proteins.

Our approach leverages ESM-2, a state-of-the-art protein language model with 15
billion parameters trained on millions of protein sequences r101. Each GFP variant

was encoded as a 5,120-dimensional vector by taking the mean representation
from ESM-2's 47th layer, a choice that captures both local amino acid context and
global sequence patterns. The dataset consisted of GFP variants with
experimentally measured fluorescence activities from deep mutational scanning
experiments (g, providing the ground truth for model training.

We developed a CNN ensemble architecture specifically designed to predict GFP
variant activity from ESM-2 embeddings. The ensemble approach was motivated
by recent work 113, which demonstrated that individual neural networks trained

with different random initializations can exhibit significant variation when
extrapolating beyond their training data, but that ensemble methods can improve
robustness for protein design tasks. This study showed that simple ensembles of
convolutional neural networks enable more reliable design of high-performing
variants in local fitness landscapes, making them well-suited for our goal of
designing GFP variants close to the baseline sequence.

Our ensemble combines multiple convolutional components, each with different
architectural characteristics to maximize pattern recognition capability. The
individual CNN modules use 32 channels and are designed to process the 5,120-
dimensional ESM-2 vectors, treating them as structured data where spatial
relationships within the embedding may correspond to functional relationships in
the protein.

Training followed a consistent protocol: Adam optimizer with learning rate 1e-3,
batch size 64, 100 epochs, L2 regularization (weight decay 0.01), and gradient
clipping at 1.0 to ensure stable training dynamics. This configuration was chosen
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to balance learning efficiency with regularization, preventing overfitting to the
training data.

A critical consideration in protein design is the relationship between evolutionary
distance from wild type and model prediction accuracy. Our analysis of model
performance across different Hamming distances revealed significant degradation
in predictive power as the number of mutations increased, with models often
achieving negative R? values when extrapolating to variants with substantially
different mutation counts than their training data. This phenomenon motivated
our focus on four-mutation variants, which represents a balance between
exploring meaningful sequence space and maintaining reliable prediction
accuracy.

To evaluate our models in a realistic protein design scenario, we implemented a
computational pipeline to generate and screen novel GFP variants. Starting from
the baseline avGFP sequence (which has an F64L substitution) 9], we

systematically generated 1,000 unique variants, each containing exactly four
mutations, a constraint that keeps variants in the "local neighborhood" while
allowing for meaningful functional changes.

Our generation strategy was deliberately simple: random selection of four
positions followed by random amino acid substitutions at those sites. While more
sophisticated approaches exist (directed evolution algorithms, gradient-based
optimization), this sampling method was quick and easy, allowing us to focus on
building out an end-to-end feedback loop.

Quality control was essential. We filtered out any sequences already present in
our training data to ensure our predictions were truly novel. The remaining 1,000
unique sequences were then processed through the ESM-2 embedding pipeline,
generating the 5,120-dimensional vectors needed for activity prediction.

Experimental analysis

To test the effectiveness of our model at predicting variant activity, we selected ten
proteins to generate, express, and test in the lab.
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Construct design

Following Sarkisyan et al. 191, our constructs contain an N-terminal RFP followed by
our avGFP variants. Between the two is a rigid, alpha-helix-rich linker (sequence:
GSLAEAAAKEAAAKEAAAKAAAAS) designed to minimize Forster resonance energy
transfer (FRET) 112, 1o1. The non-mutated RFP allows us to normalize for varying
expression levels, and its presence at the N-terminus before the GFP increases the

likelihood that RFP will fold normally regardless of the effect of mutations on the
fold of the GFP 9.

We synthesized ten variant GFPs and five control sequences and cloned them into
a pET28a(+) expression vector between the Ncol and Xhol insertion sites (Twist
Biosciences). Each sequence was codon-optimized for E. coli expression. The RFP
we used was mKate 131. For our baseline GFP, we used the avGFP F64L used by

Sarkisyan et al. 191 for enhanced E. coli expression. Our selected variants are all four

substitutions away from this baseline (Table 1). In addition to these variants, we
also included our baseline sequence, an empty vector, and three sequences from
Sarkisyan et al. 191: the “best” or brightest variants, the protein that represents the

lower edge of the “fit” distribution, and the “worst” or least-bright variant.
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Name Control/variant Substitutions from baseline

Baseline Coniial None (apart from the F64L mutation that all of the proteins
GFP have)

Best Control T37S, K40R, N104S (T36S, K39R, N103S in their data)

Mid Control tLQ:i?a;(ga?SC, 1135V, H138R (L13Q, Y104C, 1134V, H137Rin
Worst Control F26l1, Q182R, K213R (F251, Q181R, K212R in their data)
GFP1_1 Variant K2L, G50E, Q175F, L194A

GFP1_2 Variant T58Q, K100I, G159, V192K

GFP1_3 Variant S271, P55D, K139W, L206l

GFP1_4 Variant MOK, G3M, E141P, H230P

GFP1_5 Variant T48M, K100S, E131H, K157M

GFP1_6 Variant E31S, H180K, T2021, N211I

GFP1_7 Variant K2Q, K100N, E114Y, G227N

GFP1_8 Variant LeC, V10Y, E1311, H230L

GFP1_9 Variant P57Q, 1N127A, T224A, L235M

GFP1_10 Variant N104Q, P191G, N197M, M232W

Table 1. Table of GFP variants tested.

Proteins labelled “control” are from Sarkisyan et al. 2016 while those labelled “variant” are generated
here. Positions and identities of non-baseline substitutions are provided.

Transformation and expression

We expressed all proteins in NEB T7 Express cells using the manufacturer’s
protocol (NEB-C2566H). Our only deviation was splitting each 50 pL aliquot into
two 25 pL aliquots. After an hour-long recovery, we plated 50 pL on LB plates with
50 pg/mL kanamycin. Like Sarkisyan et al. (91, we allowed the cells to grow

overnight at 37 °C, then wrapped the plates in Parafilm and incubated them at 4 °C
for 24 hours. We then picked single colonies into 15 mL of TB with 50 pg/mL
kanamycin and allowed them to grow overnight. The next morning, we diluted the
cultures 1:100 in 10 mL of fresh TB with kanamycin. After 3 h of growth at 25 °C,
we added IPTG (isopropyl B-D-1-thiogalactopyranoside) to a final concentration of
1 mM to induce expression and then continued growth at 25 °C for the remainder
of the experiments.
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Plate reader assay

We used our SpectraMax iD3 plate reader to track fluorescence over time. Defining
time point zero as three hours after IPTG induction, we measured brightness of
both green (excitation 485 nm, emission 525 nm) and red (excitation 560 nm,
emission 670 nm) fluorescence every 24 hours for seven days following induction.
To limit bleeding from adjacent wells, we used black Costar plates with clear
bottoms and aliquoted 200 pL from each culture each day. We added a short
orbital shake before reading to disturb and resuspend any cells that may have
settled.

We used measures from day two for our analyses, as there was reasonably high
fluorescence for both the green and red fluorescence at this time point, and cells
were healthy. To compare between samples, we normalized the GFP fluorescence
by dividing the green fluorescence by the red fluorescence for each sample and
averaging across replicates. Additionally, we normalized to the baseline GFP
values.

This analysis can be found in this notebook on GitHub.

Microscopy

For imaging, we sealed 2 pL of cells between a coverslip and a slide. We imaged
samples using a 40x 0.95 NA air objective (Nikon) mounted on an inverted Nikon
Ti2-E confocal microscope fitted with an ORCA-Fusion BT digital sSCMOS camera
(Hamamatsu) and a LIDA Light Engine (Lumencor) for illumination controlled with
NIS-Elements software (v5.42.03). We employed an NIS-Elements JOBS workflow
where we imaged a 4 x 2 grid for each sample. We took images with 561 nm and
488 nm excitation. The displayed intensity range is set per channel based on a
random sample of 20 images from that channel.

Code, including the CNN ensemble model, is available in our
GitHub repo (DOI: 10.5281/zen0do.17088632).
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Pub preparation

We used ChatGPT to help clarify and streamline text that we wrote and suggest
wording ideas. We also used it to help write code and provide suggestions on our
code that we selectively incorporated. We used Grammarly Business to suggest
wording ideas and then chose which small phrases or sentence structure ideas to
use. We also used Claude to help write code, suggest wording ideas, expand on
summary text that we provided, and help copy-edit draft text to match Arcadia’s

style.

The results

Generating novel GFP sequences

Like other proteins, GFP's fitness landscape is complex. Peaks are unevenly
distributed and can be steep: small numbers of random mutations can lead to
total loss of fluorescence 141 (Figure 1, A). Given this heterogeneity, it's likely that

no single model will predict GFP activity over both local and global portions of the
fitness landscape. Recent work has found that ensemble approaches might be
more robust to the unevenness of fitness landscapes 1111.

Motivated by this, we built an ensemble architecture of convolutional neural
networks (CNNs) trained on an avGFP DMS dataset 9. Our ensemble approach

leverages the complementary strengths of the five constituent CNN models
trained on ESM-2 embeddings (15 billion parameters) of 51,716 avGFP variants that
spanned a range of Hamming distances from the baseline sequence (n mutations
= 1-15) and brightness distributions (Figure 2, A). Each model was trained on a
different convolutional kernel size (sizes =5, 5, 8, 10, and 16) to allow sequence
patterns across multiple scales to be captured (Figure 1, B). The ensemble CNN
predicted GFP activity well up to a Hamming distance of 8 (Figure 2, B). Given the
sparsity of functional proteins sampled at these greater Hamming distances and
the observed distribution of avGFP brightness (Figure 2, A), we decided to focus
our design efforts on four-mutation variants. At this distance, 6.74% of variants in
our dataset score above baseline performance, while 54.37% remain functional
(fluorescence score > 2.5). This constraint ensured we were operating within a
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regime where our CNN ensemble could make reliable predictions while still
accessing variants with potential for improvement.
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Figure 2. Generating novel GFP variants.

(A) Distribution of average avGFP brightness as a function of Hamming distance. A Hamming distance
of four is highlighted by the dotted line.

(B) Distribution of ensemble CNN model fits (R?) as a function of Hamming distance.

(Q) Distribution of the predicted brightness values as scored by the ensemble CNN. The range of
brightnesses at which the top and bottom candidates used for experimental validation are indicated
with labeled bars.



Our generation strategy employed random mutagenesis with uniform sampling
across all 20 canonical amino acids. For each variant, we randomly selected four
positions from the 238-residue baseline sequence and replaced each with a
randomly chosen amino acid different from the original residue. While more
sophisticated approaches exist, including structure-guided design and
evolutionary-based sampling, this uniform random strategy was chosen to provide
an unbiased exploration of sequence space that was quick and easy to implement.

Using this strategy, we generated 1,000 novel sequences and predicted their
activities using the ensemble CNN model (see “The approach”). Predicted

fluorescence scores ranged from 1.19 to 3.89, with a mean of 1.85 + 0.66,
indicating substantial predicted variation in activity across the generated variants
(Figure 2, C). From the top 100 predicted sequences, we selected the top five and
bottom five variants to provide a wider range of predicted activity for experimental
validation (Figure 2, Q).

Experimental validation

To evaluate the novel GFP sequences we generated, we used a dual-reporter
system where an N-terminal RFP is fused via a rigid linker to the GFP variant of
interest, similar to Sarkisyan et al. 9. This allowed us to monitor expression of our

proteins with red fluorescence, while measuring activity or fitness of our proteins
with green fluorescence. Based on this setup, we were able to express all ten
variants along with the controls we included, our baseline GFP, and a few proteins
from the distribution of Sarkisyan et al. (best, mid, worst) (91. Our analysis differed

from Sarkisyan et al. in that they employed cell sorting while we looked at
individual cell populations using a plate reader or microscope 1.

While all proteins did consistently display red fluorescence, their level of green
fluorescence intensity, or fitness, was more varied (Figure 3, A). First, the controls
we selected from the Sarkisyan et al. dataset aligned well with the expected, with
the “best” protein appearing brightest, the “worst” protein being the dimmest, and
the “mid” protein being somewhere in the middle (9 (Figure 3, B). Inconsistent with

their results, we found that our baseline GFP was brighter than the “best” protein
variant from their dataset (Figure 3, B).
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Figure 3. Experimental analysis of GFP variants reveals functional proteins.

(A) Fluorescence microscopy images of two variants, GFP1_2 and GFP1_10. GFP1_10 was our
brightest variant, while GFP1_2 was one of the dimmest. The left and right images show the same
field of view with RFP fluorescence on the left and GFP fluorescence on the right. Scale bar is 100 pm.

(B) The baseline-normalized GFP-to-RFP ratio for the ten variants and the three controls, along with
the baseline. The bars show the mean, while the dots show individual replicates. The inset is the
baseline-normalized brightness “score” values from the training data, highlighting where the controls
fall within that data.

From our variants, we found three that were as bright or brighter than our
baseline GFP and the “best” protein control, variants 10, 9, and 4 (EFigure 3, A & B).
Two of these are from the “bottom five” and one is from the “top five” (Figure 2, C).
Three of our proteins were around the “mid” controls (Figure 3, B). These were
fluorescent, but not as bright as the baseline GFP. Finally, four proteins were very
weakly fluorescent and underneath the threshold that Sarkisyan et al. defined as
fluorescent in their analysis, variants 8, 1, 2, and 3 91 (Figure 3, A & B).

Interestingly, this includes the three proteins from the “top five” set (Figure 2, C).

Access our data, including sequence embeddings, on Zenodo
(DOI: 10.5281/zen0do0.17088257).
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Key takeaways

Among the most common bottlenecks that limit protein design are the difficulty of
experimental validation and incomplete understanding of fitness landscapes (the
space of functional outcomes given possible sequences). We hypothesized that, by
developing computational prediction and experimental validation capacities in
parallel, these bottlenecks could be addressed in tandem. Using avGFP as our test
case, we trained an ensemble CNN model that could accurately predict protein
brightness up to eight mutations away from the baseline protein. At the same
time, we generated an approach to experimentally validate GFP brightness using a
dual-reporter system. Of 10 novel GFP variants, we identified two that were
brighter than the baseline, while several others displayed fluorescence.
Interestingly, despite predicting multiple functional proteins, the ensemble CNN,
as implemented, failed to accurately predict the distribution of measured
brightnesses, highlighting a clear target for potential future development. Finally,
it should be noted that this body of work — from conception to validation — was
completed in under four months and can now be iterated over on the order of
weeks.

Next steps

This work was central to creating an internal approach to jointly developing
computational and experimental protein design capabilities. The lessons learned
and tools generated here have already been applied to other efforts more central
to our goals. Given this, we have decided to ice these efforts and forego any future
iteration on GFP design.

That said, there are several next steps we'd suggest to those interested in
continuing this work. Resolving the mismatch between predicted and empirical
brightnesses would be worth it. From an experimental perspective, testing more
variants may help connect specific residues/sequences to brightness variation and
resolve this disconnect. Computationally, it might be useful to implement more
sophisticated procedures for protein generation. Given the well-known constraints
around GFP’s active site and other structural features, structurally informed
approaches might be a sensible next step. It would also be interesting to further



fine-tune the two variants that were brighter than the baseline GFP. Our
framework could be used to perform simple in silico directed evolution of these
variants and, in the process, further map the complexities of GFP’s local fitness
neighborhood.
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