
Epistasis and deep
learning in quantitative
genetics

We explore when deep learning (DL) outperforms linear
models in predicting complex phenotypes. We show that
DL requires at least 20% as many samples as possible
epistatic interactions, and benefits from marker feature
selection and multi-task learning on correlated
phenotypes.

Purpose
Deep learning (DL) methods are becoming increasingly common in
biological research. While powerful in some contexts, it's often
unclear what biological patterns DL models end up learning and how
much of an advantage they provide over simpler alternatives. Such
questions can be probed most efficiently in highly distilled,
simulated datasets, providing insight into the underlying behavior of
DL models. Here we tackle this task in the context of epistatic
interactions in genotype-to-phenotype mapping. We test the ability
of a multilayer-perception (MLP) to beat conventional linear
regression in three in silico experiments meant to probe the
behaviour of DL across familiar quantitative genetics parameters
space, namely numbers of QTLs, relative genetic variance
components, and genetic correlations/pleiotropy among
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phenotypes. Our results help give us intuition about when and where
applying DL is most likely to result in success in more complex, real-
world biological datasets.

Data from this pub is available on Zenodo.

All associated code is available in this GitHub repository.

Background and goals
In recent years, deep learning (DL) has seen widespread adoption in
biological applications, from predicting gene expression and variant
pathogenicity to capturing the “language” of protein sequences [1][2][3].

It’s becoming clear that, in some cases, DL can outperform simpler
statistical models. However, the reason for the success of DL in
biological applications is often less obvious. Predicting when and
where applying DL provides real benefits remains hard, especially in
cases where the underlying biological questions being modelled are
poorly understood.

In this pub, we explore the utility of DL for one specific biological
application, modelling genotype–phenotype relationships.
Conventional methods for mapping genotype to phenotype based on
linear regression have proven useful in a swath of biological
applications, from understanding and treating disease [4], to

increasing the efficiency of agricultural breeding [5], and

understanding evolution [6]. Consequently, DL has increasingly been

applied to such genotype–phenotype mapping tasks. Some of these
efforts have resulted in significant improvements in genotype–
phenotype prediction accuracy (relative to linear regression),
although results tend to be phenotype and dataset-specific [7][8][9][10].

A significant number of studies, however, report little apparent
benefit to applying DL at all, if not a detriment [11][12][11][13][14][15].

Conveniently, the framework of quantitative genetics allows us to
make predictions about which phenotypic variance components DL
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models should be capturing that linear models aren't, which
provides a useful baseline for assessing the behaviour of DL in this
setting. Chief among these are nonlinear interactions that linear
models will miss, such as epistasis and genotype by environment
effects.

Epistatic interactions are perhaps the most poorly explored
component of genotype-to-phenotype maps. Most quantitative
geneticists ignore epistasis. This might make sense for certain study
systems, for example, in human-like populations, most phenotypic
variation should be explainable by additive effects [16]. However,

additive effects can capture all manner of biological effects,
converting biological epistasis to statistical additivity [17]. Under the

right conditions, a significant component of phenotypic variance can
be decomposed into statistical epistatic variance even under the
conventional quantitative genetics statistical framework [18]. This is

consistent with a vast array of studies on protein function, where
beyond a handful of substitutions, epistatic interactions become the
dominant determinant of protein fitness (e.g., see [19]). In short, it's

almost certain that epistasis is a major driver of phenotypic variation
across the tree of life [20]. Building models geared towards capturing

epistatic effects is a critical step in building a fundamental
understanding of genotype–phenotype mappings.

The scattered array of results and efforts on applying DL to
genotype–phenotype mapping inspired us to ask a simple question:
Can we understand when and where DL models outperform
linear regression in a G→P context? We point this question towards
the problem of capturing epistasis. Our aim isn't biologically realistic
simulation per se. Rather, we use simplified datasets to probe the
basic behaviour of DL models with regard to being able to capture
epistatic variance under conditions where we know epistasis is
statistically apparent. Our results illustrate the parameter space
under which DL models can capture epistasis in the convenient units
of classical quantitative genetics (relative variance components,
numbers of QTLs, numbers of samples, etc.).
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The approach
Scaling experiment

Simulations
For our initial set of simulations probing the scaling behaviour of DL
models, we did a parameter sweep across 1) log-scaled number of
simulated samples (from 10 –10  individuals) and 2) Number of
causal QTLs (16–6,326 bi-allelic loci). We tested each sample size
parameter with 10 causal QTL number parameters. We chose these
QTL numbers based on a scaling factor relating the number of
possible pairwise QTL interactions to the number of samples,
defined by equation 1 below. A scaling of one implies as many
samples as possible pairs of QTLs, a scaling of 0.1 implies 10× as
many samples as possible pairs of QTLs, a scaling of 10 implies 1/10
as many samples as possible pairs, and so on:

We tested the following 10 scaling factors (0.1, 0.2, 0.3, 0.5, 1, 2, 4, 7,
12, 20), generating datasets across both n > p and p < n regimes (with
regard to numbers of epistatic pairs). The actual number of QTLs
used to achieve these scaling factors was calculated using the
following formula, rounding the output to the nearest even integer:

This scaling provides a convenient way of generating combinations
of sample size and QTL numbers that probe informative and
comparable parameter spaces across simulations.
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We used AlphaSimR (v1.61) to generate all simulated genotype–
phenotype datasets. By altering the relAA  parameter in the addTraitAE
function, we generated five independent phenotypes in each
simulation run, ranging from purely additive to almost fully epistatic
(relAA values: 0, 0.1, 0.5, 1, 3). This, in practice, resulted in a set of
traits that had the following relative additive variance (V /V )
components: 1, 0.8, 0.5, 0.3, 0.15. For simplicity, all phenotypes were
scaled to have a mean of 0 and a variance of 1, and had a broad
sense heritability of ~0.99. We simulated haploid populations with no
genetic or demographic structure. Founder genomes were sampled
using the quickHaplo  function, which generates a population with
roughly 50/50 allele frequencies (based on simple binomial
sampling) and loci that are random with respect to each other (i.e.,
no linkage disequilibrium). We then directly used the genotypes and
phenotypes of these founders for genomic prediction with no further
manipulation. We generated 10 replicates of the 10 –10  sample
simulations, five replicates of the 10  sample simulations, and three
replicates of the 10  sample simulations, decreasing replicates in the
larger simulations due to increasing model fit times and reduced
variability between simulation replicates.

Model fitting
We used two methods to fit linear regression models to provide a
performance baseline for more complex DL models. First, we used
the RidgeCV model implemented in scikit-learn (v1.5.1) to fit a ridge-
regression model on each phenotype independently. To evaluate
model performance in a robust way, we randomly split the data in a
15%–85% test-train split, determined the best tuning parameter 𝛌
through cross-validation, performed model fitting, and finally
calculated Pearson's r on predicted vs. true phenotypes in the test
data subset. We repeated this process 10 times, taking the average
Pearson’s r as the final model performance metric. This approach is
statistically analogous to performing rrBLUP, a classic genomic
prediction model framework used in the field of plant and animal
breeding, where 𝛌 is set analytically through variance component
decomposition.
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While analytically fit penalized regression is the most obvious
benchmark to use for DL models, this family of models becomes
hard to work with when sample sizes and parameter numbers
become large due to quadratically increasing computational
complexity. To manage this, we fit an approximation of ridge
regression using stochastic gradient descent. Briefly, we
implemented a simple model with one linear layer in PyTorch (v1.5.1)
with a custom loss function consisting primarily of a mean absolute
error (MAE) loss, but with a Kullback–Leibler (KL) divergence
component, constraining the distribution of weights in the linear
layer to match a prior based on the normal distribution N(0,1). The
KL divergence was computed as 0.5 × sum(weights ) across all model
parameters. The total loss then was a sum of these two components,
where we weighted the contribution of the KL divergence term
through a tunable parameter set to 0.1. We fit the model using
stochastic gradient descent (learning rate 0.1) with the PyTorch
ReduceLROnPlateau scheduler that halved the learning rate after
three epochs without improvement in the validation loss. To prevent
overfitting, we implemented early stopping with a patience of 20
epochs and a minimum improvement threshold of 0.001 on the
validation loss. We found high concordance in the performance of
the stochastically fit linear model and the RidgeCV models we fit on
smaller datasets (10 –10  samples) using a KL divergence loss weight
of 0.1 (see analysis in this supplementary notebook). As a result, we
used this stochastically fit linear model as the baseline for
simulation runs across all our parameters.

Our deep learning model was constructed as a two-hidden-layer
multilayer perceptron (MLP) network. While this is a relatively simple
architecture, MLPs can approximate any function (linear or
nonlinear) [21], making them amenable to learning epistatic

interactions, and fully connected feed-forward layers such as the
ones we employ are an essential component of many, more tailored
DL models such as convolutional neural networks and
transformers [22][23]. We implemented the MLP model in PyTorch

(v1.5.1), with an architecture consisting of an input layer of size 2 ×
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QTL  (one per one-hot encoded QTL), followed by two hidden layers
of size 4,096. After each hidden layer, we applied batch normalization
(with momentum parameter 0.8) followed by leaky ReLU activation
functions (negative slope 0.01). The output layer contained five units
(one per phenotype) with a linear activation function.

MLP training was performed with a batch size of 128 on an 85%–15%
train-test data split (the same split as for the linear stochastically fit
models). We employed a learning rate scheduling strategy using the
PyTorch ReduceLROnPlateau scheduler that halved the learning rate
after three consecutive epochs without improvement in the
validation loss. For model training, we used the AdamW optimizer
with an initial learning rate of 0.01 and a weight decay coefficient of 1
× 10  to mitigate overfitting. We implemented an early stopping
protocol that terminated training when the validation loss failed to
improve by at least 0.003 for 10 consecutive epochs, with an upper
limit of 150 epochs. We used a standard MAE loss term and
evaluated final model performance on the test set, reporting the
Pearson correlation coefficient between predicted and actual
phenotypes as for the linear regression models. We initially
experimented with hyperparameter optimization for learning rate
and hidden layer size values, but found negligible effects on model
performance across our simulation parameters.

QTL “dilution” experiment
Our first follow-up experiment involved “diluting” a set of informative
QTLs with progressively increasing numbers of uninformative QTLs
to test whether DL models could still recover epistatic mappings
when only a subset of loci is causal. We focused on the 10 -sample
scenario, as this was a large enough sample size to give reasonably
consistent simulation outputs but small enough to allow for rapid
model fitting and evaluation.

Simulations
As a control scenario, we chose 100 causal QTLs, a parameter space
where 10  samples provide enough data for a neural network to
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almost fully learn the G→P map without overfitting. To these causal
QTLs, we added 0, 150, 400, 650, 900, 2,400, 4,900, and 9,900
uninformative QTLs by manipulating the total number of markers
sampled when creating population founders, but retaining only 100
QTLs with phenotypic effects. We only focused on epistatic traits with
relAA  set to 0.5 (corresponding to a V /V  = 0.3) along with a purely
additive trait (relAA=0 , V /V  = 1) as a control. We generated five
replicates of each simulation condition.

Model fitting
As a first pass, we used the same RidgeCV model (implemented in
scikit-learn) and MLP (implemented in Pytorch) we used in the scaling
experiment to compare linear and DL model performance. The only
modification to the training workflow was an additional learning rate
optimization step implemented in Optuna (v3.5.0) for the MLP model.
These analyses revealed the need to perform feature selection to
improve model performance when many uninformative QTLs are
present.

Our simple approach to implementing this first trained a modified
stochastically fit linear model with a Laplace prior on the weights
(approximating LASSO rather than ridge regression) to enforce more
sparsity in the linear layer weights, thereby providing a simple way of
extracting informative features (one-hot encoded QTLs in our case).
We used the same strategy of modifying the MAE loss with a KL
divergence term, using a weight of 0.001, keeping all other
parameters unchanged. Selected features exceeding an importance
threshold (0.03) were retained and sorted by learned weight. We then
used hyperparameter optimization to simultaneously determine the
optimal number of features to retain and tune the learning rate
[again implemented through Optuna (v3.5.0) with 20 trials] based on
validation loss in the MLP.

The final best feature set was then used to train two models: a
pruned version of the LASSO model and a pruned version of the MLP.
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Model performance was again evaluated using Pearson's correlation
between predicted and actual phenotypes in the test data.

Genetic correlation experiment
Our second follow-up experiment involved testing how much model
performance can be improved when multiple genetically correlated
traits are generated again using the 10 -sample scenario from the
initial scaling experiment.

Simulations
We generated groups of traits with pleiotropic QTLs, varying the
strength of pleiotropy to generate groups of traits with varying
strength of genetic correlation. We again implemented this using the
addTraitAE  function in AlphaSimR by specifying a cross-phenotype
covariance matrix for both additive and epistatic QTL effects (using
the same covariance values for both effect types). We generated
phenotype sets with QTL effect covariance values of 0.25, 0.5, 0.75,
and 0.95 for sets of both 10 and 100 phenotypes. Additionally, we
created a control case of no pleiotropy/genetic correlation by simply
creating sets of randomly initialized traits through a for-loop. We
varied the number of causal QTLs from 100 to 1,000 to test if cross-
phenotype genetic correlations would allow models to learn effect
sizes from more QTLs than is possible for independent traits. Again,
we only focused on epistatic traits with relAA  set to 0.5
(corresponding to a V /V  of 0.3) in a population of 10  samples. We
generated five replicates of each simulation condition.

Model fitting
For this experiment, we used the same cross-validated ridge
regression and MLP described in the previous experiments. We used
Optuna to optimize the MLP's learning rate through 10 trials, leaving
all other hyperparameters as is. Model performance was again
evaluated using Pearson's correlation between predicted and actual
phenotypes in the test data.

4
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Additional methods
We used Grammarly Business to help copyedit draft text to match
Arcadia’s style. We used Claude to help write code, review code,
streamline and clarify text that we wrote, and suggest relevant
literature that we further reviewed and cited. We also used ChatGPT
to help find information during code review. We used arcadia-
pycolor (v0.6.2) [24] to generate figures before manual adjustment.

The results
We performed three simple in silico experiments to probe the ability
of DL models to capture patterns of statistical epistasis in genotype-
to-phenotype prediction tasks. The first "scaling" experiment
establishes the baseline data requirements for DL models to capture
statistical epistasis across phenotypes of varying complexity. The
second "dilution" experiment tests how these scaling patterns
change when causal QTLs are mixed with uninformative ones,
simulating more realistic genomic data. The third "genetic
correlation" experiment explores whether training on multiple
correlated phenotypes further alters the scaling behavior, adding one
final dimension of biological realism.

DL scaling experiment
In our first “scaling” experiment, we probed the most basic aspect of
scaling one can study in a G→P mapping context: How much data
does a DL model need before it starts outperforming a linear
regression benchmark? The answer helps establish a baseline for
when we expect DL models to capture statistical epistasis. It also
starts to give us insight into why DL models fail to provide an
advantage in some G→P datasets but not in others.

We tested model performance across a range of phenotype genetic
architectures, from purely additive (V /V  = 1) to almost fully
epistatic (V /V  = 0.15). Causal QTL number was chosen by adjusting
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for the number of possible epistatic QTL pairs. We focused on
pairwise interactions rather than additive terms, since the former
grows much faster than the latter as QTL number increases. Our
parameter selection strategy involved sampling set ratios of possible
QTL pairs to sample sizes, starting at 0.1× as many QTL pairs as
samples, and finishing with 20 times as many QTL pairs as samples
(see “The approach” for more details).
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Figure 1. Scaling performance of a multilayer perceptron (MLP) in the context
of simulated genotype to phenotype prediction.

Results shown for five phenotypes, ranging from purely additive (V /V  = 1) to
mostly epistatic (V /V  = 0.15), across four dataset sample sizes (10 –10 ), and
various causal QTL numbers (see methods).
(A) Relative test set prediction gain of MLP against a linear regression benchmark vs.
QTL number. Y-axis statistic calculated as the difference in Pearson’s r between two
models normalized by the linear model's Pearson’s r. Dashed line indicates model
parity.
(B) Test set Pearson’s r for MLP only, plotted against scaled number of QTLs. Scaling
calculated as number of possible pairwise QTL interactions divided by sample size.
Dashed line indicates parity between sample size and number of possible epistatic
interactions.

The DL model scaled in a surprisingly consistent fashion relative to
the linear benchmark. Regardless of sample size and trait
architecture, the DL model tended to exhibit two stable regimes. At
small QTL numbers (QTL pairs ≪ sample size), the DL model learned
to predict almost all epistatic and additive variance, outperforming
the linear benchmark. At large QTL numbers (QTL pairs > sample
size), the DL model shifted to learning additive effects only,
approximating the performance of the linear benchmark (Figure 1, A
& B). Our results suggest a fairly simple rule of thumb: our DL model
starts to capture epistatic variance when there are at least 20% as
many training samples as possible QTL pairs (Figure 1, B). However,
predictive performance improves rapidly after this point, and most
epistatic variance is explained only when there are more training
samples than epistatic features to learn. Our results are considerably
more variable across replicates from smaller sample sizes
(particularly at 10  samples), but averaged across replicates,
behaviour is consistent across all sample sizes.

On the one hand, these results are somewhat encouraging. Even
under n = p conditions (with p referencing epistatic features rather
than QTLs), DL can capture epistatic variance — a regime where a
linear model incorporating all pairwise combinations might be
theoretically solvable with regularization but would incur large
computational costs. On the other hand, given the number of
genotyped QTLs vs. the number of samples in most G→P mapping
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datasets, it's likely that in most cases DL models won’t provide a
large difference in predictive power over a linear regression.
However, the setup we use is, of course, artificially distilled. All the
QTLs we simulate are causal, and we use a limited number of
unrelated phenotypes, two conditions that are rarely true in real-
world G→P datasets. Given this, we wondered what would happen if
we relaxed these constraints to create more biologically realistic
scenarios.

QTL dilution experiment
In the above experiment, all QTLs we simulated were informative.
What happens to scaling relationships if we introduce uninformative
ones? We reasoned that this “dilution” experiment would better
reflect the structure of real phenotypes, which are often only
impacted by a fraction of the genome. This lets us test how scaling
behaviour can be managed in the case where we know some of the
input data can be ablated with little loss of information.
Consequently, this experiment aims to expand the parameter space
where we expect DL models to outperform linear regression.

We focused on the base case of 10  samples, 100 causal QTLs, one
fully additive trait (V /V  = 1), and one highly epistatic trait (V /V  =
0.3). From our first scaling experiment, we know that these
parameters should allow a DL model to almost fully capture all
variance components of these phenotypes (scaling factor of ~0.5).
We progressively dilute these 100 causal QTLs with more and more
uninformative QTLs (from 0 to 9,900, resulting in 100–10,000 total
QTLs) to mimic the basic structure of many biological datasets where
only a small subset of QTLs have large additive effect sizes (and
therefore are able to contribute substantially to epistatic variance).

4

A G A G

14



Figure 2. Performance of three genotype–phenotype models in predicting
phenotypes with progressively diluted causal QTLs.

Phenotype architecture always has 100 causal QTLs, starting with no additional
QTLs, and ending with 9,900 non-causal QTLs. Total QTL number for phenotypes
reported on top of each subplot. Two phenotypes simulated per condition, one
purely additive (V /V  = 1), one mostly epistatic (V /V  = 0.15). Three models are
compared: a simple MLP, a pruned Lasso regression model with low-weight features
removed, and a pruned MLP also trained on the same filtered features as the Lasso
model. Y-axis statistic is the difference in test set Pearson’s r compared to a ridge
regression benchmark, dashed line indicates model parity.

As a first pass, we compared an unmodified version of the MLP from
our scaling experiment and cross-validated ridge regression on these
QTL dilution datasets. We found that DL models rapidly lost the
ability to capture epistatic variance as uninformative QTLs were
added to the dataset (Figure 2). For the epistatic trait, DL model
performance worsened with 250 total QTLs, and effectively matched
the linear model at 750 QTLs and beyond. This indicated that, even
though added QTLs were uninformative, the unmodified DL model
wasn't able to efficiently recover biological signal to learn epistatic
interactions. For the additive trait, both models were roughly
equivalent up until very large numbers of QTLs (10,000), where the
linear model started to outperform the DL model. While model
performance did degrade rapidly with QTL number, relative to the
initial scaling experiment, the DL model continued outperforming the
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linear model in a larger parameter space. For example, at 500 QTLs,
the DL model was still demonstrating consistent benefit over the
linear model. This scenario has a scaling factor of ~12.5, which is
much larger than the minimum scaling factor of five identified in the
first experiment.

Our results from the first scaling experiment strongly suggest that
the datasets we're simulating here should be sufficient for the DL
model to learn all relevant biological features (i.e., additive and
epistatic effects of the causal QTLs). It follows then that if we're able
to bias the attention of the model to the relevant QTLs, we may be
able to recover even more epistatic variance. We experimented with
several different strategies for doing so, including adding an
informational bottleneck in the first layer of the DL model by
reducing the number of neurons, iteratively pruning weak
connections in the first layer of the DL model, and iteratively training
a LASSO regression model with feature selection based on weight
values. In the end, the simple strategy that we found to work most
consistently involved pretraining a LASSO regression model once on
all QTLs to determine feature importance (ranking QTLs by learned
weight), and then using Optuna to determine the number of features
to prune from the dataset based on DL test set performance with
various QTL number cutoffs.

Pruning uninformative QTLs improved epistatic trait prediction for
both linear and DL models in simulation replicates with 750 or more
QTLs. This illustrates the overall benefits of input filtering through
feature selection for any type of model (Figure 2). Compared to the
pruned linear model, the pruned DL model showed evidence of
superior performance for epistatic traits at intermediate QTL
numbers (750–1,000), suggesting that some (but not all) epistatic
variance can be recovered from a subset of informative QTLs using
feature selection. However, at very large QTL numbers (> 5,000),
there was no appreciable difference between the pruned linear and
DL models, indicating that our strategy likely doesn't scale well as the
number of uninformative markers approaches the sample size.

16



Despite this, the pruning strategy further pushes the parameter
space where a DL model can outperform linear regression to an
impressive scaling factor of ~50, an almost 10× improvement over
the first scaling experiment.

These results demonstrate that DL models might be able to capture
epistasis when trained on more QTLs than our first scaling
experiment suggested. This is particularly true if the training data are
enriched for informative QTLs. However, there's another major
source of statistical power that might alter the scaling behaviour of
DL models: genetic correlations between multiple phenotypes. In the
next experiment, we test how such a scenario might further alter DL
model scaling behavior.

Genetic correlation experiment
In our third “genetic correlation” experiment, we probed how the
scaling relationship between QTL number and sample size changes
when models are trained on multiple genetically correlated
phenotypes. This experiment injects a new axis of biological realism
into our scaling tests; that organismal phenotypes aren't random
with respect to each other due to pleiotropy at causal QTLs.

We again focused on the base case of 10  samples and 100 causal
QTLs, simulating only epistatic traits (V /V  = 0.3). We varied the
strength of genetic correlation among these traits by adjusting the
pleiotropic correlation of causal QTL effect sizes (for both additive
and epistatic effects), ranging the strength of correlation from 0
(independent phenotypes) to 0.95 (almost perfect phenotypic
correlation). We tested if having 10 or 100 correlated traits allowed
our DL model to capture epistatic variance at larger QTL numbers
(200–1,000) than possible for pleiotropically uncorrelated
phenotypes.

4
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Figure 3. Effect of genetic correlations among phenotypes for MLP prediction
performance relative to a linear model benchmark.

Epistatic phenotypes simulated (V /V  = 0.15) with progressively larger numbers of
causal QTLs (x-axis). Phenotypes range from independent (pleiotropy in QTL effect
sizes = 0) to almost perfectly correlated (pleiotropy in QTL effect sizes = 0.95). Y-axis
statistic is the difference in test set Pearson’s r compared to a ridge regression
benchmark averaged across all phenotypes in every simulation replicate. Dashed
line indicates model parity.
(A) 10 correlated phenotypes simulated.
(B) 100 correlated phenotypes simulated.

We found that multi-task learning on genetically correlated traits
could indeed aid DL models in learning to capture epistatic variance.
However, the magnitude of this benefit was sensitive to QTL number
and number of phenotypes. In almost all cases, we found that the DL
model outperformed ridge regression for phenotypes with 300 QTLs
or fewer, indicating that in these scenarios the model was able to
learn to recover some signal of epistasis (Figure 3, A & B), echoing
results from our scaling experiment.

When examining scenarios with few QTLs, we observed that,
peculiarly, DL models performed better with low levels of genetic
correlation (0.05–0.25) between traits. However, this effect is likely an
artifact of our simulation design rather than a biologically
meaningful pattern. This happens because our simulation framework
had to distribute correlated effects across a limited number of QTLs
for many traits, creating an unusual information structure. In the low
correlation settings (e.g., 0.05), if a QTL strongly affected one trait, it
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would typically have minimal effect on other traits — a pattern that
becomes more pronounced with fewer QTLs and more traits. This
artificial pattern diminishes in scenarios with more QTLs and fewer
traits. While these nonlinear relationships aren't detected by simple
linear models, our DL model could exploit this hidden structure. To
address this issue, our control condition used independently
generated traits rather than traits with pre-specified correlation
structures. Since this pattern is a simulation artifact rather than a
biological insight, we focus our interpretation on the general
difference between conditions with and without genetic correlation
between traits.

For both 10-trait and 100-trait simulations, pleiotropy appeared to
boost DL model performance modestly only for small numbers of
QTLS (100–300) with rapidly diminishing returns (Figure 3, A & B). For
large numbers of QTLs (500–1,000), it appears yet again that the DL
model switches to capturing additive effects, leading to overall
slightly subpar performance relative to the linear benchmark, with
pleiotropy only providing a minor benefit in the 100-trait simulations.
The primary benefit of multi-task learning in this setting seems to be
a boost in model performance when it's in a parameter space where
it would be capturing epistatic variance, even on a single trait, rather
than a wholesale shift in scaling relationships, as in our dilution
experiment.

Focusing on the simulations with 300–1,000 QTLs and 10 traits,
where pleiotropy seems to benefit DL model performance but the
statistical artifact we pointed out earlier seems minimal, we note that
even moderate levels of pleiotropic genetic correlation (e.g., 0.25)
appear to enhance prediction accuracy. This is an encouraging
result, as it suggests that multi-task learning on even moderately
genetically correlated phenotypes is a fruitful approach for
enhancing DL model success. This echoes our previous work with
phenotype–phenotype autoencoders [25], and further reinforces our

suggestion to take advantage of phenotypic mutual information. The
benefits of multi-task learning have been well established in the
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machine learning literature [26][27], and have been shown to help in a

genomic prediction context for both linear regression [28] and deep

learning [8]. Consequently, a thorough examination of the strategy for

which and how many phenotypes to gather data on when designing
experiments will be helpful for gaining as much performance as
possible from DL models aimed at capturing epistasis.

Key takeaways
Our in silico experiments demonstrate that deep learning (DL) models
can capture complex genetic interactions (epistasis) that traditional
linear models miss, but only under specific conditions. We found
that DL models begin to learn epistatic interactions when training
samples reach at least 20% of the possible pairwise genetic
interactions, with rapid improvement as more training data was
added. However, these scaling relationships are more permissive
when only a subset of genetic markers are causal — a common
scenario in real-world biological data. Strategic feature selection and
analyzing multiple related traits simultaneously can be used to
further boost model performance. These findings help us
understand why DL has shown mixed results in genomic prediction
tasks. They also provide practical guidelines for when to use DL.
Studies considering multiple related phenotypes, populations with
genetic structure, and adequate sample sizes are most likely to
benefit.

Next steps
Our results have several implications for using DL models in
genotype-to-phenotype mapping tasks. First, our scaling data across
all experiments imply that efforts to apply DL to n ≪ p datasets
(treating all possible epistatic interactions as p) will be challenging.
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DL will likely only provide a benefit in datasets with very large sample
sizes if substantial statistical epistatic variance is present in the
phenotypes of interest. Our dilution results highlight the value of
constraining the training data for model performance. Conventional
wisdom in fields like breeding is to use all available markers, as
regularized linear models generally perform well for phenotypic
prediction in n > p regimes [29][30] and this strategy allows for fine-

scale tagging of haplotypic structure. However, if we're interested in
using DL models to capture epistatic interactions, such a strategy
fails as the number of interactions among input QTLs scales roughly
exponentially. Consequently, DL models seem to benefit when
constraints can be placed on their search space.

For example, convolution has proven to be remarkably effective in
the field of computer vision, as it guides DL models to learn features
by first looking at the local informational context in images before
scaling upwards to longer-range, more abstract patterns [23][31]. Our

results highlight that the key problem is figuring out how we can
apply such search space constraints in the context of biological G–P
mapping. An obvious first step is the one we have employed in our
dilution experiment: only use informative QTLs when training a
model. Another existing strategy that's often employed in the
genomic prediction DL literature is to use convolution across
neighboring loci to capture and summarize local LD, thereby
reducing the number of input features for downstream model use [10]

[13][9][14]. This may be valid for achieving constraint with one major

caveat from the perspective of epistasis. Epistasis manifests as the
interaction between two (or more) loci. As a result, any noise with
regard to genotypic state at the interacting loci will be especially
harmful for prediction accuracy (as error will be compounded across
multiple loci). Consequently, it’s unclear a priori if convolution, which
will tend to smooth out individual genotypic signals across a
chromosomal window, will always be the best approach for reducing
the number of learnable features. In some cases, LD may be strong
enough in a local window that convolution reduces dimensionality
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without much penalty on recovering epistasis, but future simulations
will be needed to determine when this is the case.

One complementary strategy for inducing informative limits in the
search space of DL model training would be to inject biologically
informed constraints into model training. Several previous studies
have attempted this through means such as encoding protein–
protein interactions using graph neural networks [32] or embedding of

KEGG pathways in MLP models [33]. More work, however, will be

needed to evaluate which databases of biological interaction are
most useful in guiding DL model training relative to standard
regularized linear model baselines.

Given our findings, which G→P datasets do we expect to be well-
suited to DL model training? Datasets such as F1 QTL mapping
populations are probably the best suited for such tasks. While the
number of polymorphic markers in F1 populations is often larger
than the dataset size, the effective number of independent markers is
much smaller due to the clustering of markers into tight linkage
blocks, a form of structure that should be very amenable to local
convolution. As a concrete example, we point to a 100k strain, ~1,500
marker, yeast F1 population where DL models have consistently
outperformed simple linear regression [34][35][8]. This is also partly

true in large commercial agricultural breeding datasets, which
consist of highly structured populations and are also the product of
controlled crosses, but ultimately will depend on the exact scale at
which linkage blocks occur. In some instances, DL has been shown
to outperform linear regression in agricultural genomic prediction
tasks, although results are generally on a phenotype-by-phenotype
basis and are likely related to variance component differences [10][9]

[13]. Finally, although difficult, it's possible that for certain phenotypes

in human mapping populations, such as disease state, DL models
may still outperform linear regression depending on the genetic
architecture [20]. That is, if epistasis between a small number of loci is

important in determining disease, our results suggest that DL
models may provide a boost to predictive performance, particularly
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if coupled with feature selection. This tracks with some results on
genomic prediction of diseases such as cardiac hypertrophy using
machine learning in UK Biobank data [36].

While this work begins to paint a picture of when DL models might
add benefits in genotype–phenotype mapping, the experiments we
use are simple, and our results are almost certainly liberal. For
example, adding environmental noise, more realistic genetic
structure, and measurement error will likely require more training
data for DL models to maintain predictive performance. Future
simulation work should explore the exact nature of these
relationships to build a more accurate picture of model performance
in realistic data regimes. We also used a very simple MLP as our
focal DL model. We felt this was appropriate, both because fully
connected feed-forward layers such as the one our MLP is
constructed with are the basis for most DL model architectures, and
because this architecture seems to match the relative simplicity of
our simulations. It's possible that more advanced model
architectures, such as those based on the transformer architecture,
may outperform our simple model. It'll be interesting to perform the
benchmarks in this pub with this and other architectures.

In conclusion, our work tackles the ambiguous landscape of DL
applications in genotype–phenotype mapping, revealing specific data
regimes and experimental designs where these models offer genuine
advantages over traditional approaches. By quantifying the
relationships between sample size, genetic architecture complexity,
and model performance, we've moved closer toward a more
nuanced understanding of the potential benefits of DL in a dataset-
agnostic way. We hope our philosophy of simple but targeted
simulation provides a useful framework for developing specialized
architectures and training strategies tailored to the unique
challenges of biological data, ultimately bridging the gap between
computational efficiency and biological interpretability in the quest
to decode the genetic basis of complex traits.
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