
Repeat expansions associated
with human disease are
present in diverse organisms

Some human proteins are encoded by genes with repetitive

sequences, which, if they expand, damage the nervous system

and cause disorders like Huntington’s disease. We found animals

with similar proteins that have more repeats than we’ve ever

seen in healthy people.

Purpose
We wanted to explore human repeat expansion disorders, which are not well

understood and have few effective therapeutic options. We hoped to provide

clues into these disorders by exploring the taxonomic conservation of proteins

that commonly contain pathogenic repeats and the range of repeat expansion

variability in the organisms where they are found. In the long run, we think this

understanding could suggest appropriate organisms for mechanistic investigation

of these disorders, and help inform therapeutic strategies.

Our first goal was to determine if other species have homologs of proteins with

disease-related repeat expansions. If so, our second goal would be to determine

if any homologs had more repeats than seen in healthy humans. We imagined that

we might find species that exhibit some sort of pathogenic phenotype and could

thereby serve as new disease models. Conversely, we might identify organisms

that have large numbers of repeats but aren’t afflicted by disease, which would

suggest novel avenues for therapeutic investigation.
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Using a combination of sequence- and structural-similarity searches, we

identified ~400 homologous proteins that have longer repeats than found in

healthy humans. We found that some groups of animals have multiple proteins

with repeat expansions, including marsupials, bats, and shrews. While we don’t

currently plan to follow up on this work, we hope other scientists interested in

neurodegeneration, DNA repair, and comparative biology build upon these

findings.

Access data from this pub, including tables of our similarity search hits
and repeat-counting results, on Zenodo.

All associated code is available in a series of GitHub repositories. See code
for profiling the initial comparative results, assessing repeat length
distribution in koala population sequencing data, and validating the
expression of the identified homologs in RNA-seq data.

We’ve put this effort on ice! 🧊

Background and goals
Simple DNA sequence repeats (e.g. CAGCAG) are widespread throughout the

genomes of all eukaryotic organisms [1]. They have important roles in modulating

gene expression and protein function [2]. Yet repeats also have a hidden danger:

they are prone to mutations [3]. The number of repeats can expand over time,

increasing with age [4] and across generations [5]. When these repeat expansions

occur in protein-coding regions, they can cause devastating diseases.

Repeat expansions are associated with over 40 neurological disorders, including

Huntington's disease, which profoundly damages the central motor centers of the

brain and ultimately leads to cognitive impairment [6] and death. Many more

expansion disorders are likely still undiscovered [7]. It’s not fully known which

repeat expansions will lead to human disease, or why repeat expansions primarily

cause diseases specific to the nervous system [8][9]. Answering these questions

could help us understand repeat expansion disorders, with the ultimate goal of
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creating better diagnostics and treatments. Current treatments for expansion

disorders treat disease symptoms (e.g. motor impairment) without addressing

their root cause, leading to poor prognosis and clinical outcomes [10].

Traditional animal models of neurodegeneration have been helpful for

investigating disease processes in vivo and determining new therapeutic targets.

However, their ability to predict clinically relevant treatments is poor, in part

because they fail to accurately model human disease [11]. This is true for repeat

expansion disorders which, despite approximately thirty years of extensive disease

modeling and drug development using worms (C. elegans), flies (D.

melanogaster), and mice (M. musculus) [12][13][14], still lack adequate treatments [7].

Here, we looked for alternative ways to study repeat expansion disorders.

We reasoned that repeat expansions likely occur in similar proteins across

organisms and hypothesized that human disease-associated repeat expansions

(dREs) might occur in other species too. We hypothesized that if we discovered

species with repeat expansions and phenotypes that mirror human disease, these

species would provide a basis for natural disease models. Additionally, some

species may have molecular mechanisms to compensate for repeat expansions,

which would manifest as species with many repeats but without phenotypic

effects. These species, if they exist, could provide insights into the factors

required for repeat expansions to lead to pathology and the factors that prevent it,

providing a basis for developing new therapeutics for repeat expansion disorders.

The approach
To demonstrate a proof-of-concept as efficiently as possible, we took a

comparative approach (Figure 1). We used a published list of 60 disease-

associated repeat loci from humans [15] and trimmed it down to just the 55 that

occur in unique proteins. We then used a two-pronged strategy, using both

sequence similarity with protein BLAST and structural similarity with Foldseek [16],

to find homologous proteins in other species. We searched for structural similarity

on a subset (19/55) of proteins to confirm the utility of this approach and allow for

iteration. After identifying structurally similar proteins, we downloaded the amino
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acid sequences for those proteins and profiled the repeats. We only analyzed

repeats for query proteins that have a single repeating amino acid within coding

regions (26/55 proteins). Finally, we compared the lengths of homolog repeats we

found to the longest repeat length observed in healthy humans.

We describe detailed methods below — click here to skip straight to the results.

Figure 1. Schematized workflow for identifying homologs with repeat expansions.

Sequence homology
We used the gget package [17] using the gget.blast  command in Python

(version 3.11.4) to BLAST our proteins of interest against the non-redundant NCBI

protein database with default search settings and a limit of 10,000 hits. We

filtered our results with a sequence identity of 30% and a query coverage of

50%. After finding homologs, we filtered our results so each species had at most

one homolog per queried protein.
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Structural similarity
To find structurally similar proteins, we pulled human disease-related expansion

protein AlphaFold structures of any size that were in the Protein Data Bank [18][19].

In cases where protein isoforms did not have an AlphaFold structure, we

predicted structures of the isoforms using an ESMFold API query [20] if they were

shorter than 400 amino acids, or using ColabFold (version 1.5.2) with default

settings [21] if they were larger than 400 amino acids. We used these PDB files to

query the Foldseek web API [16] using the AlphaFold/UniProt50, AlphaFold/Swiss-

Prot, and AlphaFold/Proteome databases (all version 4) with a maximum of 1,000

hits returned per database [18][19]. The scripts we used to query ESMFold and

Foldseek are available in our GitHub repo (foldseek_apiquery.py and

esmfold_apiquery.py).

Repeat length determination and comparison to
humans
We used a custom-written script, developed with ChatGPT (GPT-3) and verified

using test sequences for accuracy, to look for repetitive amino acid sequences in

the homologs we found. TM-scores below 0.2 are considered to be unrelated

proteins [22]; therefore, before repeat counting, we filtered Foldseek hits to keep

only those with a > 0.2 TM-score against the query protein. For comparison to

human repeats, we identified the longest repetitive stretch of whichever amino

acid is linked to disease in the human homolog, regardless of its location. We

then compared this length to the maximum repeat length in healthy humans

based on the published list of disease-causing repeats [15]. COMP had no

maximum listed and the PABPN1 limit was only relevant to the nucleotide, not

amino acid repeats, so we sourced these limits from other references [23][24]. For

the distribution of human androgen receptor repeat lengths (Figure 3, top left),

we used data from the STRipy database.

When comparing the distribution of repeat lengths to humans, we took the

longest repeat in each species. For ZIC3 and HOXD13 homologs, we noticed our

searches returned homologs of ZIC2 and HOXA13, which have longer repeats and

pathological limits in humans. Therefore, to avoid false positives, we excluded

ZIC3 and HOXD13 from taxonomic tree visualizations. We used the seaborn

package (version 0.12.2) in Python (version 3.11.4) to visualize the results.
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Taxonomic tree and bar chart visualizations
To make taxonomic trees, we extracted lineage information for each NCBI taxid

from the NCBI taxonomy table downloaded from the NCBI FTP site, as described

in “NCBI_taxid_to_lineage_and_barchart_tree_plotting.ipynb.” We used the

tidyverse (version 2.0.0) [25], magrittr (version 2.0.3) [26], and pacman (version

0.5.1) [27] packages in R (version 4.2.2) to analyze the data, to produce counts and

average counts for the number of homologous proteins per taxonomic group and

query protein, and to create a bar chart of the number of hit proteins per query

protein. We used lineage information from NCBI taxonomy to create a taxonomic

tree in phyloT (version 2) with phyloT database (version 2022.3); we used

scientific names as node identifiers, expanded internal nodes, set the the

“polytomy” option to “yes,” and exported a Newick tree. We then uploaded Newick

files to the iTOL (version 6.8) web server for visualization and formatting [28][29].

Analysis of repeat length distribution in koala
population sequencing data
To confirm that our results were not caused by an individual anomaly or genome

assembly error, and to look at the distribution of repeat lengths in a natural

population, we took advantage of previously existing koala population sequencing

data [30]. We designed a pipeline to look at the repeat lengths in the koala RUNX2,

FOXL2, ARX, and ZIC2 genes. Because only data-heavy BAM files of reads aligned

to the koala reference genome were available (rather than individual genome

assemblies), we used:

s5cmd (version 2.2.2) [31] to download a single BAM file and associated

indexing file from AWS

SAMtools (version 1.17) [32] to extract the regions of the four genes of

interest from the alignment based on their location in the koala reference
genome (RefSeq assembly GCF_002099425.1)

BEDtools (version 2.31.0) [33] to extract the reads from these extracted

regions into per-gene FASTQ files

We removed the BAM and indexing files immediately after extraction to avoid

storing BAM files locally. We repeated this process for all 430 koala samples. We

then:
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assembled extracted reads for each gene using SPAdes (version 3.15.2) [34]

predicted open reading frames (ORFs) and translated them with orfipy
(version 0.0.4) [35]

pulled the correct ORF out from the set of predictions using pattern
matching to four amino acid sequences directly upstream of the expansion

determined expansion lengths of the relevant amino acid (glutamine or
alanine) for each gene and sample

collected the results into a final table

The expansions we analyzed were around 60 base pairs (20 amino acids), relative

to the 150 bp sequencing read length, suggesting that assembly error is unlikely

to prevent us from accurately capturing expansions. We incorporated all of these

steps, starting from data download, into a Snakemake pipeline [36].

Validation of expression of homologs in brain and
muscle tissues
From a list of species containing homologs of disease-causing repetitive genes,

we queried for existing RNA sequencing datasets in the SRA for those species.

We used the NCBI Entrez tools (version 19.2) [37] to first search in the SRA for all

datasets matching the species of interest and gather the SRA run info. We then

passed these run accessions to pysradb (version 2.2.0) [38] to access the metadata

for each run. We filtered for SRA runs that were whole-tissue RNA-seq

experiments from either brain or skeletal muscle tissues and with a minimum

sequencing depth of 1 million reads.

We then created a workflow that automates downloading and processing data for

mapping the RNA-seq experiments against the corresponding species genome.

For each species, we downloaded the RefSeq genome and corresponding GTF

annotation file. We downloaded each RNA-seq experiment with SRA-tools (version

3.0.6). We indexed each species’ reference genome with STAR (version

2.7.11a) [39], mapped corresponding RNA-seq experiments with STAR, sorted with

SAMtools (version 1.18), and quantified gene counts with HTSeq (version

2.0.3) [40]. We then applied a threshold that if a gene was above the median count

of reads in a sample, we counted it as “expressed.” We then plotted the

percentage of genes for a species in a sample type that we counted as expressed.
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For parsing and plotting expression results, we used R (version 4.3.1) and

packages tidyverse (version 2.0) [25] and ggpubr (version 0.6.0) [41].

Additional methods
We used ChatGPT to write some code and clean up other code.

The results

Figure 2. Homologs of human proteins with disease-associated simple sequence repeats.

The number (top row) and the taxonomic distribution of homologs identified using a combination of
sequence- and structure-based searches for each query protein (x-axis).

Using a combination of sequence and structural similarity, we identified ~1,000–

10,000 similar proteins of each of the 55 proteins we queried, which we describe

here as “homologs” (Figure 2). Such homologs are widely distributed across

metazoans. We also identified proteins, like FXN, that have homologs in fungi and

plants but are highly divergent from humans (Figure 2, bright and muted green).

This intrigued us because we chose to investigate these proteins for their

connection to neurological disease. Our results suggest a subset of these proteins

are widely conserved in species without a nervous system, suggesting repeat
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expansion may lead to different outcomes across species and cell types. Overall,

we conclude that protein families underlying expansion disorders are not human-

specific, but instead shared across species.

Figure 3. Taxonomic distribution of homologs of human proteins with disease-associated
simple sequence repeats.

Taxonomic tree of groups with at least one homolog to a dRE protein, with branches colored by
taxonomic group. Outer bars display the average number of query proteins for which the organisms
in the taxonomic group had a hit. We’ve included a handful of organism silhouettes to provide a
sense of what types of organisms have dRE homologs.

To consider our results through an evolutionary lens, we mapped homologs onto a

taxonomic tree (Figure 3). We found that while metazoans have many homologs of

our queried proteins, the average number of homologs varied widely by taxonomic

group. The wide variety in homology across groups suggests that there may be

important patterns of evolutionary loss and duplication that would help elucidate

the origins and functions of repeat expansion proteins.
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We next wanted to understand if there was natural variation in repeat lengths in

the homologs we found, and particularly if there was any variation outside the

range found in healthy humans. To do this, we assessed the repeat lengths in

each homolog and compared them to the maximum length observed in healthy

people. We used the amino acid sequence to look for repeats, and therefore only

analyzed coding-region repeats that are not the result of insertion mutations

(26/55 proteins). For example, the androgen receptor has a repeat length

between 12 and 32 in the human population (Figure 3, A; top) and the maximum

number of repeats in healthy humans is 40 (Figure 4, A; green dashed line). When

compared to the repeat lengths in androgen receptor homologs (Figure 4, A;

bottom), we saw most species have repeat lengths below the healthy human limit.

However, using this methodology, we observed four species (Brandt’s bat,

Eurasian Badger, Short-eared elephant shrew, and White-tailed rat) with repeat

lengths longer than we see in healthy humans.

This finding was not unique to the androgen receptor. We saw that most species

have homologs with fewer repeats than the healthy human maximum. Yet, for

each protein, we found a few species that have homologs with repeat lengths that

match or exceed the healthy human limit (Figure 4, B). This is exciting because it

suggests species may exist that have proteins with similar structures and

mutations to the human homologs that cause nervous system disease.
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Figure 4. Distribution of amino acid repeat lengths for identified homologs relative to the
healthy human limit.

(A) Distribution of repeat lengths in human population data (top) and distribution of the number of
repeats across species with homologs (bottom) of the androgen receptor (AR) query protein. The
green dashed line indicates the maximum number of repeats observed in healthy humans.

(B) Distribution of repeat lengths across homologs relative to their length in humans. This plot only
includes repeats that, for each individual query protein, are known to cause human disease (e.g.
polyglutamine for AR). We’ve normalized the repeat length in each homolog to the maximum
number of repeats found in healthy humans. For one species, Brandt’s bat, the calculated TBP
repeat length exceeds the y-bounds of the graph, so we’ve cut off the top of the violin plot for
legibility.

Finally, we wanted to know if there were any particular species or taxonomic

groups that would be the best candidates for finding compensatory mechanisms

to repeat expansion-associated disease. We suspected that organisms with

multiple proteins containing repeat expansions may have evolved mechanisms to

avoid their deleterious effects. For each species, we asked how many homologs it

has with repeats that exceed the length found in healthy human variation. We

found that, on average, some taxonomic groups, including rodents and bats,

typically have 1–2 homologs with repeat expansions per species (Figure 5, A).

These expansions are not restricted to a specific set of homologs, but are found

across many of the homologs we investigated (Figure 5, B & Figure 6). In

contrast, we found that on average, certain taxonomic groups, like marsupials

(Diprotodontia), have three or more homologs with repeat expansions per species

(Figure 5, A). These are limited to a small subset of homologs, primarily in the
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genes ARX, FOXL2, RUNX2, and ZIC2 (Figure 5, B, and Figure 6), all of which play

important roles as developmental transcription factors. The presence of multiple

genes containing expansions that would be pathogenic in humans could suggest

that these proteins have different functions or interacting partners,

developmental contexts, or cellular environments in marsupials that prevent them

from being pathogenic. The apparent enrichment of “long” expansions in

marsupials could also suggest that they’ve evolved mechanisms for preventing or

dealing with toxic gain-of-function effects for these expansions.

To further validate our findings in marsupials, we analyzed publicly available

population sequencing data for koalas [30]. We looked at the distribution of repeat

expansion lengths in the ARX, FOXL2, RUNX2, and ZIC2 proteins. Of the 430

genomes we analyzed, only 10 koalas have expansion lengths in any of these four

genes that differ from the reference genome, validating our initial finding. In the

10 cases that differ from the reference, these expansions are shorter than the

reference expansion. In addition to the previous findings, we saw many COMP

homologs, especially in birds and fish, with expansions longer than those seen in

humans (Figure 5, B & Figure 6); however, these expansions are only marginally

longer (by one amino acid), making us uncertain about the biological significance

of this difference.

12

https://doi.org/10.3390/genes14030546


Figure 5. Taxonomic distribution of homologs with amino acid repeat lengths that exceed
the maximum repeat length seen in healthy humans.

(A) Taxonomic tree of groups with at least one homolog to a dRE protein that contains a repeat
longer than what is seen in healthy humans. Outer bars display the average number of query
proteins for which the organisms in the taxonomic group had a homolog with a repeat length that
exceeds this maximum. We’ve included a handful of organism silhouettes to provide a sense of
what types of organisms have long repeat expansions. This plot only includes repeats that, for each
individual query protein, are known to cause human disease (e.g. polyglutamine for human
androgen receptor). The average does not take into account any organism in the group that did not
have at least one homolog with a repeat length greater than the human maximum.

(B) Heatmap showing, per query gene, how many species (out of the total organisms in the group
with at least one homolog with a repeat length greater than the healthy human maximum) had an
extended repeat in this protein. Actual species numbers out of total species included in the group
are shown as a fraction in the heatmap cell .

13



Figure 6. Species-level information for homologs with amino acid repeat lengths that
exceed the maximum repeat length seen in healthy humans.

This plot only includes repeats that, for each individual query protein, are known to cause human
disease (e.g. polyglutamine for human androgen receptor).

14



From our preliminary comparative results, we wanted to validate if the homologs

in the identified species are expressed in brain or muscle tissues, since most of

the disease-causing loci are associated with neurodegenerative diseases. We

were able to collect RNA-seq data from brain and/or muscle tissues from 42

species and focused on a subset for these preliminary checks, including the

Australian echidna, common brushtail, European shrew, gray short-tailed

opossum, koala, little skate, monito del monte, and naked mole rat (Figure 7). We

set a conservative threshold where any gene with a read count higher than the

median count in that sample was considered “expressed.” We found that for the

most part, the identified homologs in these species are indeed expressed in brain

and muscle tissues. These results are encouraging, suggesting that the identified

homologs may have functional significance in these tissues and could be useful

for downstream wet-lab experiments

Figure 7. Expression of homologs in brain and muscle tissues in select species.

We collected brain and muscle RNA-seq experiments and mapped to the reference genome of
each species. We considered genes “expressed” in that tissue if the count of reads mapping to the
gene was higher than the median read count. For each species, we show the percentage of the
specific tissue type samples in which we consider the gene expressed.
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Overall, we identified species with homologs to human proteins that contain

repeats longer than any seen in healthy humans. We hypothesize that these

species may have functional challenges associated with repeat expansion

disorders, or have evolved molecular mechanisms to compensate for repeat

expansions. While we did not look into compensatory mechanisms in this work, we

think these species could provide a fruitful basis for disease models and new

therapies for expansion disorders.

Key takeaways
In this project, we wanted to learn whether other organisms have natural

occurrences of repeat expansions associated with human diseases. We took a

comparative approach and found that most human proteins with disease-

associated repetitive genome sequences have homologs across metazoans.

We next found that some species have repeats that are longer than ever found in

healthy humans. This suggests other species have proteins that look very similar

to those that cause human disease. We don’t know what the functional effects of

these proteins are and our findings suggest three possibilities:

1. Some repeat-expanded homologs in other species naturally lead to
pathology that mirrors human disease. These species could be good
natural models for human repeat expansion disorders.

2. Some repeat-expanded homologs do not lead to pathology because of
compensatory mechanisms, which could serve as a starting point for
identifying therapeutics.

3. Some repeat-expanded homologs do not lead to pathology for some other
reason, perhaps due to differences in overall cellular context or physiology.

Finally, we found that rodents, bats, and marsupials might be good starting points

for further investigation because they have multiple homologs with repeat

expansions.

Our results suggest that other species have naturally occurring repeat expansions

similar to those that cause disease in humans. We conclude that there are likely
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species that could be investigated as natural models of human expansion

diseases, or as sources of therapeutics.

Limitations
This project was a quick proof-of-principle intended to determine if repeat

expansions, similar to those found in human disease, occur naturally in some

species. To pursue this goal as efficiently as possible, we limited our search to

coding-region repeats and used amino acid sequences to characterize repeat

lengths. This strategy provided promising initial results, but cannot determine

whether there are repeats at the nucleotide level, nor can it quantify repeat

lengths in non-coding regions, which account for ~50% of the disease-related

repeat expansions for which we identified homologs. It would complement these

initial findings to count nucleotide repeats in both the homologs we analyzed and

the homologs of non-coding repeat expansion proteins.

Our strategy was also limited by the quality of genome assemblies from which the

gene and protein sequences originated. Short-read sequencing technologies

cannot fully resolve simple sequence repeats longer than 250 bp. Genomes

sequenced with high-coverage long-reads such as PacBio or Nanopore can be

used to span long repeat units. However, depending on the repeat type, errors in

assembly such as irreversibly collapsing repeats in the assembly graph and

fragmentation, can still occur [42]. Additionally, there are far fewer high-quality

genomes sequenced with long-read technologies than those with short-read draft

genomes due to the economic cost of long-read sequencing. Therefore, there are

likely cases of false negatives in our results due to genome sequencing and

assembly methods for the corresponding homologs. While we would not put a lot

of stock in the absolute value of the expansion count, as this may vary by

individuals and could be impacted by assembly errors, we do think that the

presence of an expansion is likely a true signal rather than a false positive.

Indeed, many of our protein homolog hits come from genomes generated with

long-read sequencing technologies. We manually investigated 31 of our hits with

the longest repeat lengths and found that the majority (18/31, 58%) came from

long-read genomes. We conclude that long-read sequencing data was a crucial
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resource for this approach and that continued analysis will benefit from ongoing

efforts to increase long-read datasets across species [43].

Next steps
We’ve iced this project because it lacks the translational potential to justify

experimental next steps at Arcadia. Repeat expansion disorders are rare, and

many occur developmentally, which makes the translational path forward

challenging. For us, further experiments would require developing in-house assays

that work in diverse species and improve upon existing options with unclear

translational relevance (e.g. protein aggregation). While we don’t currently plan to

make this investment, we think future experimental next steps could include:

1. Investigate the structure and in vitro aggregation properties of repeat-
expanded homologs to determine how they might be useful for disease
modeling.

2. Heterologously express repeat expansion homologs in human cells to
investigate whether they have pathogenic morphological and physiological
effects.

3. Heterologously express repeat-expanded human proteins in the cells of
species with natural repeat expansions to determine if some species are
resistant to disease-relevant repeat expansion.

4. Perform comparative genetics and transcriptomics of species with repeat-
expanded homologs to identify innovations that help overcome the toxic
effects of repeat expansion.

Currently, we don’t believe that assays of repeat expansion protein properties can

be done in a way that is unbiased by our incomplete understanding of mechanism

and also has clear translational relevance for human disease. Additionally, we

believe heterologous expression experiments will be challenging to interpret

based on the differences introduced by expressing proteins across species. These

caveats present a substantial bottleneck that we are not prepared to overcome at

this time. We hope that others surmount the experimental challenges to pursue

these promising avenues and explore repeat-associated human disease from a

fresh angle.
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