Harnessing genotype-
phenotype nonlinearity to
accelerate biological
prediction

It is commonly assumed that phenotypes arise from the
cumulative effects of many independent genes. However,
we show that by accounting for dependent and nonlinear
biological relationships, we can generate models that
predict phenotypes with great accuracy.
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Purpose

A core focus of genetics is understanding the relationship between
genetic variation (genotypes) and biological traits (phenotypes).
Efforts as diverse as tracing the evolution of complex phenotypes,
identifying disease-causing genes, and understanding how
organisms are built are all contingent on deciphering the mapping
between genotype and phenotype.

Our results show that assumptions underlying many current
genotype-phenotype models (namely that genotypes are additive and
linear) do not reflect the nonlinearities present in biology. Non-
additive relationships between genes are well known — one gene
can influence the effects of another (epistasis), and some genes have
multiple phenotypic effects (pleiotropy). By accounting for such



nonlinear interactions between genes and phenotypes, we show that
we can accurately predict suites of simulated phenotypes.

These findings should be of interest to anyone whose work relies on
accurately modeling genotype-phenotype relationships, especially
those in the fields of quantitative, population, and human genetics.
Additionally, we are excited to get feedback on how this work might
help contribute to these fields and possible refinements or
extensions of its utility.

e This pub is part of the platform effort, “Genetics: Decoding
evolutionary drivers across biology.” Visit the platform
narrative for more background and context.

e All associated code is available in this GitHub repository.

e Data from this pub, including empirical and simulated
phenotypes, are available on Zenodo.

Background and goals

For several centuries now, scientists have attempted to decode how
biology emerges from genetic information. Some of the models that
have come out of this assume that traits are associated with
infinitesimally complex genetic bases 113; others hold that distinct

clusters of few, but highly impactful genes drive each aspect of an
organism'’s growth and function 21. Many (if not most) of these

models share a common feature: no matter their complexity,
phenotypes can be understood by simply adding up the effects of
their genetic contributors.

A single human trait best demonstrates this tendency: height.
Dozens, if not hundreds, of genetic studies have been conducted
with the goal of mining ever greater amounts of genetic “gold

dust” 121 predicting variation in height ;3j41. Through these efforts, two

things have become clear: 1) height is highly heritable (> 80% by a
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recent study) 41 but 2) so much of the genome is involved that

identifying a discrete molecular basis seems extremely unlikely.

In response to findings such as these (along with those gleaned from
other human traits), some researchers have begun favoring the use
of “polygenic (risk) scores” [51. By aggregating the effects of many

genomic loci, these scores can explain increasing amounts of trait
variation (albeit at the cost of biological interpretability). Similarly,
the “omnigenic model” [e) proposes that small sets of core, trait-

determining genes work in parallel with many other “peripheral”
genes. Through their sheer number, these peripheral loci thus also
substantially contribute to trait variation. Importantly, in this model,
contributions of core and peripheral genes are entangled and can't
be distinguished, ultimately implicating vast swaths of the genome.
Both polygenic risk scores and the omnigenic model assume the
same inevitable conclusion: identifying the molecular drivers of
complex traits is exceedingly difficult, if not impossible (71. But what if

the problem isn't how we are conceiving of the genetic bases of
complex traits; what if the problem actually has to do with how we
are thinking of traits themselves?

Height really is a complex trait, one that involves a myriad of
interacting biological processes (development, metabolism,
physiology, and so on). Each process is, in turn, regulated by its own
sets of genes and it is likely that at least some of these gene sets
relate to each other in complicated ways. Indeed, many complex
phenotypes result from a variety of interconnected, nonlinear
biological networks and genotypes that can relate to each other in a
variety of directions (e.g., linear, nonlinear) and manners (e.g.,
additive, subtractive, dominant) sj.

We believe that these points, if considered seriously, may have
substantial implications for genetics. How often are phenotypes and
genotypes nonlinearly correlated relative to being purely additive?
Can information about any one phenotype help to predict another?
Does accounting for phenotypic relationships increase predictive
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power? With these questions in mind, we decided to see if an
approach explicitly capturing the complex relationships among
phenotypes might provide some useful insights for genetic analysis
writ large. Specifically, we focus on simultaneous analysis of groups
of multiple phenotypes (here referred to as “polyphenotypes”). We
examine how levels of pleiotropy (the impact of single genes on
multiple phenotypes) and gene-gene interaction (the non-linear
impact of combinations of genes on phenotypes) structure

polyphenotypes.

The approach

For reasons both causal and correlative, phenotypes co-vary. For
example, as referenced above, height is likely correlated with other
phenotypes such as mass or metabolic rate. In this pub, we quantify
the nature and prevalence of phenotype-phenotype relationships
within large groups of phenotypes (what we refer to as
polyphenotypes) to gain insight into the processes that cause these
phenotypes. We find non-linear relationships among phenotypes in
natural populations to be widespread. Furthermore, we find that, in
simulations, the degree of non-linear phenotypes is modulated by
the degree of gene-gene interaction and pleiotropy. We then
demonstrate that, where present, phenotype-phenotype
relationships can be leveraged to increase prediction accuracy for
individual phenotypes.

Data collection/generation

All the data we used to study empirical variation across sets of
phenotypes are publicly available. Sources and details for these data
are available in Table 1. We chose datasets on the basis of
phenotype number, sample size, and population type. We sought
datasets in which a minimum of 15 phenotypes were measured for
at least 100 individuals of the same species or interspecies cross. We
also generated a set of random, unrelated phenotypes to compare



with the observed phenotypic relationships contained within these
datasets. To do so, for a single “phenotype”, we randomly generated
integer values (values could be any integer between 1 and 1,000) 600
times. This process thus resulted in 600 simulated “individuals”, each
with a randomly chosen phenotypic value. This was repeated to
ultimately generate 30 simulated phenotypes, each composed of 600
individual observations. After filtering on data completeness (see
below for details on dataset-specific filtering) we imputed missing
values using the mean value for each phenotype and then performed
rank normalization using the R function RankNorm from the package
RNOmni.

Below are descriptions of dataset-specific filtering. We tailored
filtering parameters to each study given variation in sample size and
the rate of missing data.

Arabidopsis: We excluded individuals if they had NAs for more than
20 phenotypic measurements. Similarly, we excluded phenotypes
with more than 20 NAs. In addition, we removed non-continuous
phenotypes (at least five unique values required per phenotype).

Yeast. We removed non-continuous phenotypes (at least five unique
values required per phenotype).

C. elegans: We removed non-continuous phenotypes (at least five
unique values required per phenotype).

Mouse (AIL). We removed non-continuous phenotypes (at least five
unique values required per phenotype).

Mouse (JAX): We excluded samples that were missing more than 100
measurements. Similarly, we excluded phenotypes missing more
than 100 measurements. In addition, we removed non-continuous
phenotypes (at least five unique values required per phenotype).

Fruit fly. We excluded samples that were missing more than 50
measurements. Similarly, we excluded phenotypes missing more
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than 50 measurements. We reduced the dimensionality of gene
expression values from Huang et al. 2015 110 using PCA (we extracted
the first 30 PCs). In addition, we removed non-continuous
phenotypes (at least five unique values required per phenotype).

Main N N
Name reference Type samples phenos
Arabidopsis  [11] Natural strains 514 110
(accessions)

Yeast [12] F1 segregant 13,950 40
C. elegans [13] Recombinant inbred 2,017 19
lines (RIL)

Mouse [14] Advanced intercross 1,063 133

(AIL) line (AIL)

Mouse [15][16][17] Laboratory strains 106 271
(AX)

Fruit fly [18] Inbred lines 147 270
Random This pub - 600 30

Table 1. Datasets we used for empirical analyses of nonlinearity.

All of these data are available on Zenodo.

We simulated 100 phenotypes for 121 populations (N individuals per
population = 500). These populations were created by first simulating
genetic data and deriving the phenotypes from these genotypes. For
each individual, we randomly assigned one of three allelic states at
each of 300 loci (e.g., homozygous reference, heterozygous,
homozygous alternate). Then, we generated a genetic architecture for
each phenotype by randomly assigning 100 loci to that phenotype
and giving each possible allele at each locus a weight of influence
between zero and 10.

We modeled effects of pleiotropy and gene-gene interaction on
phenotypes, varying the impact of each systematically across
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populations such that each population had a unique pairing of the
probability pleiotropy and the probability of gene-gene interactions.
These probabilities were per gene-phenotype pair or gene-gene pair
and ranged from 0-1 in increments of 0.1, thus forming an 11 by 11
grid with one simulated population for each pairing. For example:
population 1 has probabilities P(pleiotropy) = O, P(epistasis) = 0;
population 2 has probabilities P(pleiotropy) = 0.1, P(epistasis) = 0; and
SO on.

To model pleiotropy, for each individual population for each
phenotype, we assigned each locus already determined to influence
a phenotype (100 loci per phenotype, 9900 locus-phenotype pairs) to
be involved in pleiotropy with a population specific-probability as
defined above. If we determined the locus-phenotype pair to be
involved in pleiotropy, the weights assigned to that locus were
included in the calculation of that phenotype. Similarly, to create
gene-gene interactions (e.g., epistasis) that varied across
populations, we assigned each gene-gene pair (N = 4,950) to be
involved in an interaction with a population-specific probability as
defined above. If we determined a locus was involved in an
interaction, we randomly assigned that interaction to one of the six
possible pairs of alleles (i.e., interaction among loci here occurs only
between single pairs of alleles). We then multiplied the weights of
those alleles. Finally, we calculated the phenotypes for each
individual by summing the weights at loci influencing that
phenotype.

Creating the autoencoder

We implemented a neural network called a denoising autoencoder to
test the utility of examining multiple phenotypes for phenotypic
prediction (191. Autoencoders consist of two networks — first, an

encoder that forces the data through an information bottleneck, and
then a decoder that takes information compressed through that
bottleneck and tries to reconstruct the data. Accurate reconstruction
of the data following the compression through the information
bottleneck suggests that the network has learned a representation of
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that data. During training, noise is added to the input data,
preventing a common failure mode in which the learned
representation does not extrapolate to data that was not in the
training set; the learned model fails to generalize.

Briefly, our autoencoder consisted of an encoder with two fully
connected rectified linear layers that we subjected to batch
normalization and a similarly structured decoder. The latent space
separating the two networks contained 32 nodes. We conducted the
training with phenotypic data from 80% of the simulated individuals
over 100 epochs with a batch size of 16. To all training data, we
added 0.1 standard deviation of noise. Following training, we
predicted phenotypes on the remaining 20% of the data. To evaluate
the utility of increasing the number of phenotypes under different
values of pleiotropy and interaction, we trained individual models
using 5, 10, 20, and 30 phenotypes, and evaluated the model
accuracy on five phenotypes. We calculated prediction error as the
mean absolute percentage error. We implemented the autoencoder
in PyTorch 201

Analysis of empirical phenotypes

After filtering, imputation, and rank normalization (see “Data
collection/generation” section) we computed the frequency of
nonlinear phenotypic relationships for each dataset. To do so, we fit
a linear and a nonlinear model for all possible phenotypic pairs
within the dataset. We generated the linear model with a linear
regression (Im function in R). W generated the nonlinear model using

a generative additive model (gam function in the R package mgcv)
with a single smoothing spline term (via the mgcv function s). We
compared model fits using the Akaike information criterion (AIC) and
considered three possible outcomes: a tie (equal AIC), the nonlinear
model is a better fit (nonlinear = lower AIC), or the linear model is a
better fit (linear = lower AIC). We then calculated the frequency of
nonlinearity from the ratio of the number of cases in which the
nonlinear model had lower AIC compared to the full number of
phenotypic comparisons.


https://doi.org/10.48550/ARXIV.1912.01703

Given the possible diversity of phenotypic relationships within any
given dataset, and to facilitate the measurement of variance in
nonlinearity rates, we used a permutation-based approach to
calculate nonlinearity across subsets of each dataset. To do so, we
calculated the nonlinearity rate for 1,000 random sets of phenotypes
for each dataset (data proportion per random set = 0.25). We
visualized this distribution using violin plots (as in Figure 1, A). We
then measured the variation of these permutation distributions using
the R function var (as in Figure 1, B) and calculated the correlation
between all phenotype pairs using Pearson’s correlation (as in Figure
1, Q.

Analysis of synthetic phenotypes

To further dissect patterns of phenotypic nonlinearity, we generated
10,201 phenotypic matrices spanning possible combinations
between gene-gene interaction and pleiotropy probabilities (each
ranging from zero to one in increments of 0.01). We measured the
nonlinearity rate of each phenotypic matrix using the same approach
outlined above. We visualized the distribution of nonlinearity as a
function of gene-gene interaction and pleiotropy by creating a
generalized additive model (GAM). Here, nonlinearity was treated as
a response variable predicted by gene-gene interaction and
pleiotropy and was implemented using the gam function in the R
package mgcv (as in Figure 2, B). The predicted nonlinearity values
are visualized in two dimensions, representing all possible
combinations gene-gene interaction and pleiotropy probabilities.

We next wanted to characterize the entropy of full phenotypic
datasets. Taking influence from the phenotypic integration
literature (211, we first calculated the “generalized variance” (the
determinant of the variance-covariance matrix) for each phenotypic
matrix. Generalized variance is a useful measure in that it allows us
to directly compare phenotypic datasets with different
dimensionalities 211. To extract a single-vector descriptor, we then

calculated the eigenvector of the generalized variance matrix using
spectral decomposition (eigen R function). We then calculated the
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entropy of the leading eigenvector using the R function
entropy.empirical from the R package entropy [221. We could thus use

the resulting entropy estimate to infer the overall information
contained among an arbitrarily large set of phenotypic
measurements.

We next developed a method to infer the correlational structure of a
phenotypic set by calculating entropy across increasingly large,
random subsets of phenotypes. Broadly, this method sweeps
through pre-set portions of a dataset, randomly selects a set of
phenotypes for each portion, and calculates entropy using the
method described above. We applied this test to phenotypic
matrices with varying probabilities of pleiotropy (probability zero to
one, 0.01 increments) by calculating entropy for increasingly large
proportions of samples (10% to 90%, 10% increments). For each
portion, we analyzed 10 permuted sets of phenotypes and calculated
their mean entropy. The results of this analysis appear in Figure 3, A.
We extracted slopes of the resulting entropy distributions from a
linear regression (Im function in R) comparing pleiotropy probability
and entropy (Figure 3, B).

Autoencoder analyses

We calculated autoencoder prediction error as the mean absolute
percent error between prediction and ground truth. We conducted
autoencoder training using 80% of the individuals in the dataset and
evaluated accuracy on the remaining 20%.

We calculated entropy as above using the same parameters
(portions: 10% to 90% of samples in 10% increments; 10
permutations per portion).
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The results

Nonlinearity is prevalent among biological
traits

To our knowledge, it remains unclear just how common additivity
and linearity are in genetic systems. To address this, we compiled a
dataset of “polyphenotypes” (see definition above) from a diverse
set of interbreeding species populations (see Approach for details).
We reasoned that inferring the rate of nonlinear phenotypic
relationships would allow us to glean how well linear/additive
models would fit these populations.

Using a simple test (see Approach) we determined the (non)linearity
of pairwise phenotypic relationships within each species population.
We found that all species display rates of nonlinearity that are
significantly greater than expected by chance (p < 0.001, Kruskal-
Wallis test) (Figure 1, A), ranging from 43.5% (fruit flies) to 84.4%
(Arabidopsis) (Figure 1, A). These observations support the idea that
nonlinearity is a prevalent feature of biological phenotypes and
contributes to a substantial portion of species’ phenotypic
relationships.

The range of nonlinearity also differs greatly across populations. For
example, nematodes display almost 10x more variation in
phenotypic relationships than fruit flies (C. elegans = 0.19, fruit flies =
0.029; mean normalized standard deviation) (Figure 1, B), while
randomly generated data display the greatest degree of relative
variation (0.39; mean normalized standard deviation). Interestingly,
these randomly generated data should be largely independent of
each other and, thus, may be considered representative of a set of
non-pleiotropic, additive traits. Supporting this idea, we found that
the mean pairwise correlation of the random phenotypes is
significantly less than that of the species data (Figure 1, C). Overall,
these observations suggest that complex aspects of phenotypic
relationships may be inferred using a set of relatively simple
descriptive statistics.



However, given their heterogeneity, determining how epistasis and
pleiotropy might affect the frequency of phenotypic nonlinearity is
hard using these datasets. Some data come from advanced genetic
crosses (e.g., the DGRP and JAX data) while other datasets sampled
variants from a diverse natural population (Arabidopsis). In addition,
the polyphenotypes reflect the interests of the original studies and,
therefore, occupy somewhat random and undetermined regions of
phenotypic space. Therefore, while it is apparent that nonlinearity
exists in a variety of quantitative genetic datasets, it is difficult to use
these data to develop strong intuitions about its sources.
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Figure 1. Characterizing phenotypic nonlinearity across species.

(A) Half-violin plots comparing the percentage of nonlinear relationships among
phenotypes for six species and a random dataset. For each species, we present full
sets of data points to the left and show the distribution in the half-violin plot on the
right.

(B) The degree of variation in nonlinear relationships for each species.

(C) Half-violin plots comparing the distribution of phenotypic correlations for each
species.

Synthetic phenotypes let us interrogate
nonlinear effects

With this in mind, we sought to control many of these covariates to
allow more direct interrogation of pleiotropy, epistasis, and
phenotypic structure. Using a novel approach, we generated a series
of polyphenotypes from simulated genotypic data. Briefly, we
generated n random genotypes from a probability distribution for a
given number of individuals (see Approach for a more in-depth
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description). Each genotype could influence an output phenotype
given a set probability distribution and could interact with others via
a predefined probability. We also allowed genes to influence more
than one phenotype with a set probability, letting us vary the amount
of epistasis (probability of gene-gene interactions) and pleiotropy
(probability of phenotype-phenotype interactions) in the data. Using
this approach, we generated a dataset in which all combinations of
epistatic and pleiotropic probabilities were considered (from P =0 to
P =1, 0.01 increments). This produced a final set of 10,201
polyphenotypes, each containing 20 synthetic phenotypes measured
across 600 simulated individuals.

A main goal in generating this synthetic dataset was for it to capture
a broad range of nonlinear relationships. To assess how well the
dataset accomplishes this, we used the same test as above (see
Figure 1; Approach) to calculate the rate of nonlinearity for each of
the 10,201 polyphenotypes. Notably, these percentages span the
values observed among the empirical phenotypes, with a mean
nonlinearity rate of 47.53% (min = 16%, max = 100%; Figure 2, A;
Figure 1, A). In addition, nonlinearity varies smoothly across the
distribution of pleiotropy/gene interaction probabilities (Figure 2, B).
Together, these observations suggest that our data generation
approach successfully produced a naturalistic range of nonlinearity
from which to sample.
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Figure 2. The distribution of nonlinearity within a simulated phenotypic
dataset.

(A) Histogram of nonlinearity for all 10,201 simulated phenotypic data matrices.

(B) The 2D distribution of nonlinearity (represented by color) as a function of
pleiotropy and gene-gene interaction probabilities. We calculated the distribution
using a generative additive model.

Entropy and nonlinearity capture diverse
phenotypic interactions

How can we best identify drivers of biological nonlinearity? Can we
statistically decouple the effects of different genetic and phenotypic
interactions? Motivated by our efforts to apply information theory to
genetics (more on this in a companion pub coming soon), we
hypothesized that we may start to untangle some of the drivers of
nonlinearity by measuring the information content (or “entropy” as
defined in information theory) of polyphenotypes. We reasoned that
entropy may be informative in multiple ways. First, overall entropy
reflects the interrelatedness of polyphenotypes. Lower values may
reflect a set of phenotypes that are driven by the same underlying
biology (e.g., multiple, correlated measurements of a trait such as
finger length). On the other hand, higher values may indicate that
polyphenotype data contain measurements from multiple,
orthogonal features of biology (e.g., finger length and education
level). The second way entropy may be informative is through its
distribution across different portions of a polyphenotype. Consider
the case of completely orthogonal phenotypes. If we select random
combinations of orthogonal phenotypes and measure their entropy,
it should be the case that entropy proportionally increases as we



analyze larger and larger sets of phenotypes (i.e., more new
information is being added with each increase in the number of
randomly chosen phenotypes). In contrast, for a set of strongly
correlated phenotypes (e.g., in the case of pleiotropy), one should
expect entropy to stay constant as we analyze larger sets of the
phenotypes (i.e., no new information is added).

Applying this framework to all 10,201 polyphenotypes, we calculated
entropy across increasing proportions of randomly selected
phenotypes (see Approach). We found that entropy distributions
strongly vary with the probability of pleiotropy. Increasing pleiotropy
equates with a flattening of the distribution (Eigure 3, A). This point is
further demonstrated by an extremely strong relationship between
entropy distribution slopes and pleiotropy (Pearson’s r = -0.95;
Figure 3, B). These observations support the notion that entropy is a
reliable measure of the interrelatedness of a set of phenotypes.
What's more, this suggests that, by analyzing the within-
polyphenotype distribution of entropy, we may infer the amount of
phenotypic pleiotropy with minimal knowledge of the underlying
genetics.

Are similar measures available for determining the frequency of
gene-gene interactions? Taking a hint from the previously identified
relationship between nonlinearity and gene-gene
interactions/pleiotropy in Figure 2, we found that nonlinearity varies
strongly in the absence of gene-gene interactions but decreases in
dynamic range as interaction probability increases (Figure 3, C).
Furthermore, comparing the relationship between the entropy slope
and percentage of nonlinearity reveals an interesting trade-off
between gene-gene interactions and pleiotropy (Figure 3, D). There is
an overall negative relationship (Pearson’s r = —0.82) suggesting that,
as pleiotropy increases, so too do nonlinear phenotypic interactions.
Furthermore, as gene-gene interactions increase (as indicated by
point color in Figure 3, D), the variance of entropy/nonlinearity
relationships decreases.



Taken together, these results suggest that pleiotropy leads to
increasingly nonlinear phenotypic relationships, especially in the
absence of genetic interactions. Furthermore, we can study this
trade-off via entropy and nonlinearity, which are both non-genetic
measures. Finally, these patterns indicate that phenotypic
nonlinearity — like that observed both here and among real
phenotypes (Figure 1) — also reflects genetic nonlinearities, hinting
at potential insufficiencies of additive/linear models for capturing the
genetic components of biological traits.
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Figure 3. Characteristics of gene interaction and pleiotropy variation.

(A) Shannon entropy calculated across dataset proportions for all pleiotropy
probabilities. Entropy is measured in bits.

(B) Scatter plot of the slopes for each distribution plotted in Figure 3, A. r: Pearson'’s
correlation.

(C) The percentage of nonlinear interactions between phenotypes as a function of
pleiotropy probability (x-axis).

(D) The joint distribution of entropy slope and % nonlinear interactions for all 10,201
synthetic phenotype matrices. r: Pearson’s correlation.
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We indicate pleiotropy probability (A and B) and the probability of
genetic interactions (C and D) using a color scale.

Accounting for phenotypic nonlinearity
significantly increases predictive power

If genetic nonlinearities are truly prevalent across many types of
biological traits, which types of models might be better suited for
capturing their effects? Neural network-based strategies are enticing
options for several reasons. Neural networks inherently learn
nonlinearities across their layers, letting them model complex
interactions between inputs and outputs (e.g., between phenotypes
and genotypes). In addition, they can model multiple inputs and
outputs, facilitating nonlinear mapping of multiple phenotypes at
once. We therefore hypothesized that neural network strategies
might help us determine the benefit of accounting for complex,
nonlinear interactions between phenotypes.

To do this, we constructed an autoencoder for modeling and
predicting phenotypic relationships (see Approach; Figure 4, A).
Taking simulated polyphenotypes as input, the model encoded
phenotypic relationships into a lower-dimensional latent space and
generated predictions via a decoder (Figure 4, A). We used this
strategy to predict aspects of all 10,201 polyphenotypes. Specifically,
we generated four sets of predictions for each, varying the number
of input phenotypes (n =5, 10, 20, 30) used to predict an output set
(n =5; Figure 4, A). We then assessed the accuracy of each model by
calculating the percent error between observed and predicted
phenotypes.

We found that the autoencoder approach predicted phenotypes with
extremely high accuracy (mean error = 1.76%; Figure 4, B) and that
models become more accurate when the number of input
phenotypes increases (Figure 4, B). In fact, all models using more
than five input phenotypes display significantly decreased error
distributions (Kruskal-Wallis test followed by Dunn’s test; Figure 4,
B). It's also apparent that the error distributions themselves display a



degree of heterogeneity, with some clear outliers displaying error
percentages above 4% (Figure 4, B). Plotting percent error as a
function of pleiotropy shows that these outliers are associated with
cases in which the probability of pleiotropic interactions was very
low (Figure 4, C), indicating that pleiotropic interactions can help
increase the accuracy of multi-phenotype models. More broadly, it's
apparent that by accounting for nonlinearities such as pleiotropy,
autoencoder strategies are able to predict individual phenotypes
with great accuracy.
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Figure 4. An autoencoder for phenotypic prediction.

(A) Cartoon overview of the autoencoder architecture and analytical design. We used
phenotypic matrices of different sizes (5, 10, 20, 30 phenotypes) as input to predict
an output set of five phenotypes.

(B) Violin plots comparing percent error for all predictions from the four different
model classes (5, 10, 20, 30 phenotypes). Asterisks indicate significant differences
according to a Kruskal-Wallis test followed by Dunn’s test.

(C) Model error as a function of pleiotropy probability for the four model classes.

Finally, we explored whether these models could generate realistic
polyphenotypes. To do so, we measured the entropy of each set of
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predicted phenotypes. Overall entropy decreases as the probability
of pleiotropy increases (Figure 5, A), reflecting the patterns observed
among the input phenotypes (Figure 4, A). There is also a similarly
tight relationship between percent error and entropy across all
models (Pearson’s r = 0.78; Figure 5, B). When comparing mean
percent error and entropy slope, we found a strong separation
between the five-phenotype model and all others (Figure 5, C).
Models with more input phenotypes display lower entropy slopes
and greater degrees of model accuracy. Furthermore, the 10-
phenotype model displayed the lowest error rate and entropy slope
(Figure 5, C), a pattern that is also apparent in the comparisons of
percent error across the models (Figure 4, B). It is interesting to
consider that this may reflect something important about the
structure of the synthetic phenotypes. Specifically, the 10-phenotype
model may represent a better trade-off between input phenotype
information content and the overall model complexity (i.e., the 20-
and 30-phenotype models may just be adding redundant
information).

In total, these findings suggest that the autoencoder did indeed
create realistic polyphenotypes with expected entropy distributions.
Given this, we conclude that models 1) accommodating
polyphenotypic designs and 2) accounting for biological nonlinearity
provide opportunities to greatly increase the predictive capacity of
genetic analysis.
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Figure 5. Characterizing autoencoder output.

(A) Entropy compared to pleiotropy probability for the four model classes.

(B) The relationship between entropy slope and model error across all runs. r:
Pearson’s correlation.

(C) Entropy slope compared to mean error for each model class.

Key takeaways

Nonlinearity is a prevalent feature of biological phenotypes
(Figure 1)

Phenotypic nonlinearity varies as a function of genetic and
phenotypic interactions (Figure 2)

Measures from information theory, such as entropy, can
quantify the structure of phenotypic interactions (Figure 3)

Models that account for nonlinearity and phenotypic
interactions have increased predictive potential and improve
as the number of phenotypes increases (Figure 4)

Model accuracy varies as a function of the information content
of phenotype sets (Figure 5)

Implications

Biology is in an age of increasingly large, high-dimensional, and
complex datasets. Endeavors such as AlphaFold are attempting to
map the full universe of protein structures [23j241. Similarly, a number

of multi-team efforts are characterizing human cell type diversity via
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a host of omics and cell biological data types r251. These datasets —

and others like them — contain (or will contain) a diversity of
phenotypic measurements possessing unknown and complex inter-
relationships. A goal for many of these efforts will be to identify
these relationships and, ultimately, use them to decode the function
of complex biological systems (e.g., identifying how RNA expression,
chromatin accessibility, and cell morphology interact to generate a
cell type). This undertaking butts up against a statistical sampling
problem: is there enough data available to power such analysis for
the system you're interested in? Put another way, have you sampled
enough of “phenotypic space” to account for the biology in question?

These are hard questions to answer a priori. However, asking them is
useful. If it's possible to efficiently sample phenotypic space,
minimizing measurement redundancy, then scalability and cost-
effectiveness would correspondingly increase. It's interesting to
consider how the aggregated results of this pub may help. Our
framework predicts that samplings of different parts of phenotypic
space should be associated with correspondingly variable parameter
combinations (Figure 6). We'd predict that sampling a single
phenotype would be associated with uniformly low values of
entropy, nonlinearity, and predictiveness (Figure 6, A). On the other
hand, if multiple correlated phenotypes (perhaps due to pleiotropy)
were sampled, the rate of nonlinearity and predictiveness would
increase, but entropy would not (Figure 6, B; Figure 4, C). If multiple
orthogonal phenotypes were measured, we'd find increased entropy
and predictiveness and a modest amount of nonlinearity (Figure 6, C;
Figure 4, C). Due to their numerical generality, it should be possible
to measure the entropy and nonlinearity of most (if not all)

polyphenotypes.

Given this, we propose that these measures may be implemented as
a general-purpose toolkit for inferring the phenotypic structure,
predictiveness, and even genetic patterns (i.e., gene-gene
interactions and pleiotropy) associated with a given polyphenotypic
dataset. There are likely many useful extensions of this. For one, we
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can use phenotypic entropy to measure the complexity of a
phenotypic dataset. We could therefore determine if ongoing
collection is adding new or informative dimensions to a dataset.
Similarly, we may use entropy and nonlinearity to estimate the
number of generative biological processes associated with a
polyphenotype (if one, then entropy should be low and nonlinearity
high; if multiple, entropy will increase). Indeed, the entropy of a
polyphenotype is the number of bits of information necessary to
capture the phenotypic structure and, as a result, the generative
processes that drive that structure. With these measures in hand, it's
possible to hypothesize, a priori, the structure of genetic mapping
results and, by factoring in these patterns, design studies around
minimally necessary and maximally informative polyphenotypes.
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Figure 6. Mapping phenotypic space.

(A) (Top) A cartoon representation of phenotypic space. Here, we assume that we can
use some form of high-dimensional measurement to separate and cluster
phenotypes. Individual phenotypes are represented by colored shapes with
increasing densities (darker color) toward the center of the shape. The amount of
phenotypic space sampled is represented by the filled dotted line. In Scenario 1,
measurements for only a single phenotype are available. (Bottom) Predicted
measurements for total entropy, the slope of entropy, nonlinearity, and overall
predictiveness (i.e., ability to predict a sampled phenotype given the amount of
space that has been sampled). Values are represented as arbitrary units (AU).

(B) In Scenario 2, we've measured multiple correlated phenotypes (as reflected by
their same color). In this case, nonlinearity increases due to the inter-phenotype
correlation, as does predictiveness.

() In Scenario 3, we've sampled multiple orthogonal (differently colored)
phenotypes, Here, entropy increases and nonlinearity is somewhat lower than in
Scenario 2 (since orthogonal phenotypes tend to display higher rates of linear
relationships). We can still predict phenotypes with accuracy, but proportionally less
than in the situation of multiple correlated phenotypes.

More generally, a “phenotype-forward” framework that allows for
complex nonlinear relationships between traits (as we suggest here)
has the prospect of reflecting organismal structure that is likely
missed when we examine phenotypes individually. For example,
modeling height and weight simultaneously likely provides more
biological insight and predictive ability than modeling them
independently, as some of their causal mechanisms are shared. The
neural network method we use here explicitly captures these
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relationships and has the possibility of “encoding” the generative
processes for sets of phenotypes with at least partially overlapping
causes.

Treating the organism as a system in this way has the potential to
answer more complex questions than modeling individual
phenotypes alone. Such approaches may prove critical to leveraging
the increasing amount of phenotypic data to achieve better
biological understanding and outcomes across a host of problems.
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