Predicting peptides from tick
salivary glands that suppress
host detection

We predicted tick salivary gland peptides that may help the tick
evade host detection while feeding. Using phylogenetics and
peptide prediction, we identified 12 candidates. However, testing
the trait in the lab proved challenging, so we aren’t continuing
the project.
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Purpose

In this pub, we predict peptides from tick salivary glands that may inhibit the
host's ability to detect parasitic activity and try to test for this activity in vitro.
When ticks bite their hosts, the host often doesn’t feel it. This is partly because
ticks secrete molecules in their saliva that can interfere with sensory perceptions
such as itch, pain, and inflammation. We refer to these systems as “host
detection.” We're interested in understanding how long-feeding ticks suppress
host detection to uncover new therapeutic strategies for skin conditions.
Motivated by our previous studies on chelicerate proteins that suppress host
detection, we have extended our focus to peptides, given their inherent drug-like
properties.

We used a computational framework to predict peptides that contribute to the
tick's ability to feed on hosts undetected for long periods of time. We used
phylogenetic trait-mapping data to find proteins statistically linked with
suppression of host detection and then checked for the presence of signal
peptides to select those likely secreted into tick saliva. We then refined our
selection by considering additional factors such as expression in tick salivary
gland transcriptomes, ease of synthesis, solubility, and similarity to other peptides
(which helped us span the diversity of peptide sequences). This multi-tiered
filtering process pinpointed the most viable candidates for experimental testing.

We identified 12 peptides that we think are likely to suppress host detection and
have properties that make them easier to work with in experimental settings. We
were initially excited to test these peptides for their ability to modulate host
immunity by looking at mast cell degranulation, since mast cells are one of the
first immune cells encountered by ticks 1. However, common mast cell
degranulation assays were unreliable in our hands, leading us to ice this line of
research 21. Given that putative trait host detection suppression is so broad, we
have been unsure how to follow up in the lab. We're sharing our results in case
others are interested in our approach or further testing these predictions.

¢ All data and code to predict peptides from proteins associated with
suppression of host detection are available in this GitHub repository.
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e All associated data and code to predict peptides from tick salivary gland
transcriptomes are available in this GitHub repository.

We’ve put this effort on ice!

Background and goals

Ticks have adapted to consume host blood without detection. In particular,
female hard-bodied ticks have lengthy "blood meals" spanning over a week.
Through specialized molecules in their saliva, these ticks not only facilitate the
extraction of blood but also manipulate host sensory perceptions like pain and
itch and immune responses like inflammation to evade host detection [3j41. We
define "host detection" as the systems employed by the host to rapidly identify
and react to parasites or other sources of danger. By interfering with these
systems, ticks remain unnoticed and continue their feeding undisturbed. Some of
these molecules involved in host detection suppression could have therapeutic
benefits for humans, especially in managing itchiness, pain, and inflammation in
the skin s1.

While tick saliva is a cocktail of pharmacologically active molecules, we were
interested in whether ticks use peptides to suppress host detection. Peptides are
a diverse class of small protein sequences. The exact definition of a peptide
varies, but for this pub we’ll use short chains of 2-100 amino acids that are
genomically encoded or ribosomally synthesized and cleaved from a precursor
protein rex7isisiien1. We were drawn to peptides as a class because of their
appealing therapeutic properties. Peptide drugs typically have a low toxicity and
high potency compared to small molecules. They can also be easier to synthesize
than larger biologics. Moreover, our interest in peptide discovery dovetails with
our focus at Arcadia on proteins and evolutionary tools.

There's evidence that ticks use salivary peptides to modulate many parts of host
biology n2i13114101511161117101811191261, SO We set out to identify novel tick peptides that
suppress host inflammation, itch, or pain. After initial computational prediction,
we narrowed the list of candidate peptides based on which are easiest to
synthesize and work with in the lab. In total, we identified 12 peptides for further
testing. We followed up with these peptides in the lab using a mast cell assay, but
didn’t gain insights into the biology of these peptides because of difficulties with
the assay itself [21. We're unsure how to follow up with these peptides

experimentally, but are sharing our results in case they're useful to others.

If you're interested in learning about our methodological details, read on. If you'd
like to see how our pipeline performed, skip to our results.

The approach

For a high-level sense of how we performed this work, continue to the “Overview”
section below. To jump straight into all the nuts and bolts of each step, jump to
the “Detailed approach” section.
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Figure 1. An overview of our approach to identifying candidate tick salivary gland
peptides that suppress host detection and selecting peptides for experimental
validation.

We predicted peptides from groups of protein sequences known as orthogroups (collections of
proteins from multiple species descended from a single ancestral protein) that we previously
identified as likely to be associated with host detection suppression. We filtered these peptides
down to a small number of candidates for experimental follow-up. The first round of filters used
biological information to increase the likelihood that a candidate peptide is a genuine bioactive
peptide that suppresses host detection. The second round of filters focused on selecting
experimentally feasible peptides to work with and represent the sequence diversity of candidate
peptides.

Our overarching goal is to discover peptides that suppress host detection by
learning from the evolutionary adaptations of ticks, which have developed
mechanisms to feed on hosts undetected for long meals. Using an evolutionarily-
inspired approach, we recently identified groups of proteins that we believe are
associated with suppression of host detection [211. The bulk of this pub describes
how we predicted peptides from these proteins and identified which peptides we
thought were genuine bioactive peptides that may suppress host detection and
which are feasible to follow up with experimentally (Figure 1).

Our analysis began with proteins from chelicerates, a subphylum containing ticks
and other arachnids. We'd recently used a phylogenetic trait-mapping approach to
identify “orthogroups” that are statistically associated with host detection
suppression [211. An orthogroup, also known as a gene family, is a set of proteins
from multiple species that all evolved from a single protein in the last common
ancestor of those species. To determine these orthogroups, we first applied our
previously released NovelTree phylogenomic workflow to 40 chelicerate species
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with differing propensities to bite humans, blood feed, and cause and suppress
itch, inflammation, and pain [211. NovelTree infers gene families, gene family trees,
species trees, and gene family evolutionary history (221. Using the NovelTree

output, we applied a trait-mapping_approach to select the orthogroups most

strongly associated with host detection suppression [215. This analysis produced
the proteins we analyze in this pub. We reasoned that if any of these proteins
encode a peptide, the peptide might be the causative host detection-suppressing
molecule.

Our first step in this analysis was to predict peptides from the proteins in
orthogroups significantly associated with host detection suppression. To do this,
we used our previously released peptigate pipeline in protein-only mode [23).

Peptigate is a workflow that predicts and annotates three types of bioactive
peptides from transcriptomes or proteins. We filtered the peptides predicted by
peptigate to those we thought had the highest chance of being bona fide
peptides present in the saliva using the filters below.

1. Removed predicted propeptides: One tool within the peptigate pipeline
predicts propeptides, a part of a protein that's cleaved during maturation or
activation but usually has no independent function once cleaved. We
removed these predictions.

2. Removed orthogroups where no peptides had similarity to peptides
expressed in tick salivary glands: We removed peptide predictions
where there was little evidence that the peptide is present in the salivary
gland (and therefore unlikely to be in tick saliva). We expect salivary gland
predictions to be incomplete, so we only required one peptide per
orthogroup to match a salivary gland peptide.

3. Kept orthogroups where at least half of the proteins had a predicted
peptide: We wanted to enrich for orthogroups where a peptide was most
likely to be involved in the protein's function. We did this by keeping
orthogroups where at least half of the proteins had a peptide prediction.

4. Kept peptides/parent proteins that contain a signal peptide: In
arthropods, a signal peptide decorates most proteins that are exported to
the saliva from the salivary gland 2412s12611271128].

5. Expressed in tick salivary gland transcriptomes: The initial peptide
predictions from our candidate host detection-suppression-associated
proteins (211 came from whole-genome or transcriptome data, so expression
could occur in any tissue. Since host-manipulating peptides are likely
produced in the salivary gland, we kept peptides similar to those predicted
from salivary gland transcriptomes (see below for how this was
determined).

After applying these initial filters, we ended up with peptides in orthogroups
where computational evidence most strongly suggested the potential for
suppression of host detection. We then applied a second set of filters to refine
our selection, focusing on the peptides that seemed most feasible for
downstream experimental testing and best showcased the diversity within the
orthogroup. Our target was to narrow down to 19-20 peptides. We used the three
filters below.

1. Ease of synthesis: Some peptides are easier to synthesize than others.
The two main factors that impact synthesis are the peptide length (shorter
is easier) and the hydrophilicity of the sequence (more hydrophilic is
easier). We selected peptides that should be easier to synthesize when
choosing between similar candidates.

2. Solubility: For our downstream assays, we needed the peptides to be
dissolved in solution. Therefore, we selected more soluble peptides when
choosing between similar candidates.
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3. Similarity to other peptides: When multiple peptides in an orthogroup
met the above criteria, we selected representatives spanning the sequence
diversity. We clustered peptides at 80% identity, and if they fell into the
same cluster, we advanced only one representative for experimental
testing.

Detailed approach

Predicting peptides from proteins associated with
suppression of host detection

We used protein sequences associated with the host detection suppression trait,
as determined by previous work (21, as input to peptigate 23] to predict peptides
produced by those proteins. The outputs of the trait mapping are protein
sequences in orthogroups, a score denoting the strength of each cluster’s
association with host detection suppression, and a p-value denoting the statistical
likelihood of the association being observed by chance (21

To briefly summarize the methodology from that work, we conducted the analysis
using a two-step approach to determine the p-value of these scores. First, we
grouped orthogroups into clusters. We then associated the clusters with the host
detection-suppression trait and only kept clusters from speciation that were
significantly associated. Then, we applied a post-hoc test to determine which
orthogroup within these clusters drove the association. We took this two-step
approach to mitigate the issue of p-value inflation due to multiple testing. Even
with this approach, however, no individual orthogroups were significantly
associated with host detection suppression after correcting for multiple testing.
We therefore filtered to orthogroups that had a positive association with host
detection suppression (removed negative scores) and that had a p-value < 0.05
before multiple testing correction [21.

We used these sequences as input to the protein-only mode of peptigate [23].
Peptigate predicts three types of peptides: cleavage, ribosomally synthesized and
post-translationally modified (RiPP), and small open reading frame (sORF)-
encoded. The protein-only mode predicts cleavage and RiPP peptides but only
filters to proteins that are less than 190 amino acids in length to identify sORF-
encoded peptides. For more information on these types of peptides and how
peptigate works, see the peptigate pub [23.

Determining whether a peptide contains a signal peptide

To determine whether a peptide contains a signal peptide, we used annotations
from prior work 211. This previous project annotated the signal peptides on input
proteins using the tool DeepSig 1291. We look for signal peptides in sORF-encoded
peptides that contain signal peptides themselves, as well as in the precursor
proteins for cleavage peptides, as cleavage peptides aren't likely to contain signal
peptides themselves.

Identifying peptides expressed in tick salivary glands

We downloaded tick salivary gland transcriptomes on the NCBI's Transcriptome
Shotgun Assembly Database (TSA) to identify peptides expressed in tick salivary
glands. We identified 28 transcriptomes from 18 species (Table 1). We also added
an Amblyomma americanum transcriptome that we generated during a recent
genome annotation effort (3e1. While this transcriptome derives from salivary
glands and other tick tissues, we recorded the tissue in which each transcript
originated. This enabled us to zero in on just the subset of proteins that
originated from salivary glands.


https://doi.org/10.57844/ARCADIA-4E3B-BBEA
https://doi.org/10.57844/ARCADIA-6500-9BE8
https://doi.org/10.57844/ARCADIA-4E3B-BBEA
https://doi.org/10.57844/ARCADIA-4E3B-BBEA
https://doi.org/10.57844/ARCADIA-6500-9BE8
https://doi.org/10.57844/ARCADIA-6500-9BE8
https://doi.org/10.57844/ARCADIA-4E3B-BBEA
https://doi.org/10.1093/bioinformatics/btx818
https://doi.org/10.57844/ARCADIA-9602-3351

We then ran the peptigate peptide prediction pipeline on each transcriptome (23;.

We used DIAMOND blastp (v2.1.9) to determine the sequence similarity
between peptides predicted from host detection suppression-associated proteins
from our prior work (211 and those from tick salivary gland transcriptomes [311. We
considered any BLAST hit as a match, in part because filtering short BLAST
matches is difficult.

Species Transcriptomes Contigs BioProject

Amblyomma 1 3,139 PRJNA218793

americanum

Amblyomma 1 5770 PRJNA241272

cajennense

Amblyomma 1 2,9571 PRJINA703041
maculatum

Amblyomma parvum 1 2,838 PRJNA241271

Amblyomma triste 1 8,098 PRJNA241269
Amblyomma 1 1,812 PRJNA595760

tuberculatum

Hyalomma 1 142,391 PRJNA358517

dromedarii

Hyalomma 1 5,337 PRJNA311286

excavatum

Ixodes ricinus 4 51,452 PRJNA177622, PRINA217984,

PRJNA312361, PRINA589581

Ixodes scapularis 1 5,950 PRJNA9®5811

Ornithodoros 2 15,946 PRJNA318033, PRINA719007

brasiliensis

Ornithodoros turicata 1 7,560 PRJIJNA446065

Rhipicephalus 2 63,419 PRJNA255770, PRINA255770

annulatus

Rhipicephalus & 171,611 PRJNA297811, PRINA309182,

appendiculatus PRJINA309182

Rhipicephalus bursa 3 79,955 PRJNA348674, PRINA348674,
PRJINA348674

Rhipicephalus 1 8,179 PRJNA329522

microplus

Rhipicephalus 1 11,227 PRJINA170743

pulchellus

Rhipicephalus 1 11,312 PRJNA606595

sanguineus

Rhipicephalus 2 25,336 PRJNA381085, PRINA905810

zambeziensis

Table 1. Publicly available tick salivary gland transcriptomes.

Selecting peptides based on ease of synthesis and solubility

To determine the ease of synthesis and solubility for each peptide sequence, we
uploaded all candidate sequences to the GenScript “Peptide Analyzing Tool” (free

to use but requires that users create an account to access it). Ease of synthesis is
reported categorically as easy, medium, or hard, while solubility is reported
categorically as good or poor.
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Selecting representative peptides
To determine whether two peptides have similar sequences, we clustered all
predicted host detection-suppressing peptides using MMseqs2 easy-cluster

(v15.6f452) with a minimum sequence identity of 80% (32].

Additional methods

We used ChatGPT and Notion Al to suggest wording ideas and then chose which
small phrases or sentence structure ideas to use. We used Grammarly Business to
help copy-edit draft text to match Arcadia's style.

The results

We aimed to predict tick peptides that we could test experimentally. Peptide
synthesis is expensive, and the downstream assays are low-throughput, so we
wanted to end up with 19-20 top peptide predictions for testing.

Narrowing to peptides with the best computational
support for host detection suppression

We started our peptide selection journey by working with peptides predicted from
3,690 proteins in 87 orthogroups significantly and positively associated with host
detection suppression [211. We predicted 741 peptides (712 distinct sequences) in
46 orthogroups associated with suppression of host detection. After removing
propeptide predictions and orthogroups where no peptides matched those
predicted in salivary gland transcriptomes, we ended up with 314 peptides (311
distinct sequences) in 16 orthogroups (Table 2).
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Proteins
with a sORF & Cleavage

predicted Predicted signal & signal

Orthogroup Proteins peptide peptides peptide peptide Synthesized
0G0001774 62 45 (0.68) 45 32 4 3
0G0008102 20 18 (0.75) 18 2 1" 5
0GO00088e 93 68 (0.73) 84 ] 40 4
0G0011284 9 1(0.11) 1 o ] ]
0GO008888 16 1(0.06) 1 0 o o
0G0002194 56 2(0.04) 2 0 o )
0GO000189 240 21(0.09) 21 0 [} )
0GO000746 102 5 (0.85) 5 o ] ]
0GO000194 237 23 (0.10) 23 0 o o
OGO001663 64 6 (0.09) 6 0 o )
OGOO00385 154 9 (0.06) 9 0 [} )
0G0O000143 281 10 (0.04) 1 o 2 ]
OGO000079 394 55 (0.14) 55 1 o o
OGO0008305 179 26 (0.15) 26 0 ) )
0GO015609 5 3(0.6) 3 0 [} )
0GO009053 15 4(0.27) 4 o ] ]

Table 2. Candidate groups of proteins and peptides that suppress host detection.

Bold indicates the three orthogroups that met our filtering criteria. “Orthogroup” refers to gene
families generated in our prior host detection suppression trait-mapping analysis [21]. “Coefficient”
is the host detection suppression score from trait-mapping. “Proteins with a predicted peptide”
refers to the number of proteins with at least one predicted peptide from the peptigate pipeline.
Fractions appear in parentheses next to the numbers to indicate the fraction of the proteins in the
orthogroup that had a peptide prediction. “Predicted peptides” refers to the total number of
peptides predicted by the peptigate pipeline for that orthogroup. For some proteins, peptigate
predicted more than one peptide. “sORF & signal peptide” is the number of predicted sORF
peptides with a predicted signal peptide. “Cleavage & signal peptide” is the number of predicted
cleavage peptides that originated from a precursor protein that had a predicted signal peptide.
“Synthesized” is the number of peptides we synthesized for experimental validation.

We felt confident that each orthogroup had a high likelihood of suppressing host
detection, given the trait-mapping analysis. However, we were less convinced that
the proteins in all 16 orthogroups encoded peptides. To optimize for orthogroups
most likely to encode peptides, we filtered to orthogroups where we predicted a
peptide from at least half of the proteins (Table 2). This left us with four
orthogroups and 150 predicted peptides.

Next, we filtered these predictions to those that contain a signal peptide.
Chelicerate salivary glands use signal peptides to target proteins to the saliva [24].
Tick saliva contains many of the molecules that ticks use to manipulate host
biology 141, so we wanted to optimize for peptides most likely to be in saliva. The
three orthogroups that passed our majority-peptide-predictions filter also passed
this filter (Table 2). Within these orthogroups, a total of 89 peptides had a
predicted peptide sequence as well as a signal peptide. We selected peptides to
synthesize from these 89 sequences.

Selecting peptides for synthesis

We next worked to narrow down the 89 peptides to approximately 10. To do this,
we applied four filters within each orthogroup. First, we looked for peptides in
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each orthogroup that were “easy” or “medium” to synthesize according to
GenScript’s “Peptide Analyzing Tool” (this tool is free to use but requires that

users create an account to access it). We also looked for peptides with “good”
solubility. These criteria ensure that the peptide is economical to synthesize and
easy to handle in the lab. For example, peptides with poor solubility might not mix
into a saline solution, which is the vehicle for most injections. Synthesis difficulty
and solubility are influenced by factors such as peptide length, the presence of
hydrophobic or charged residues, and sequence complexity. When no peptides in
an orthogroup matched these criteria, we selected from all peptides (including
“difficult” to synthesize and “poor” solubility).

From this subset of peptides, we then picked peptides that matched peptides
predicted from tick salivary glands. Our earlier trait-mapping effort (211 analyzed
whole genomes or transcriptomes. Selecting peptides similar to those expressed
in the salivary glands increases our likelihood of identifying peptides used in tick
saliva to manipulate the host.

We also examined whether peptides within the orthogroup were similar to each
other. We clustered the peptides at 80% sequence identity and assigned a
representative sequence. When multiple peptides clustered, we selected either
the peptide with the best synthesis and solubility profile or the representative

sequence.
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# of

similar

Predicted peptide Orthogroup Solubility  Synthesis peptides  Salivary gland peptide match
Rhipicephalus-microplus_XP- 0GO008102 Poor Medium 1 GIKNO1002979.1.p1_start91_end134
037271377.1_start70_end114
Amblyomma- 0GO008102 Good Easy 1 GINVO1009842.1
sculptum_GEEX®1004552.1.p1
Amblyomma- 0GO008102 Good Easy 1 Transcript_929497.p2_start21_end72
americanum_evm.model.contig-245149-
1.2
Dermacentor-andersoni_XP- 0GO0e8102 Poor Medium 1 None
054924338.1_start87_end106
Rhipicephalus-microplus_XP- 0GO008102 Poor Medium 1 GIKNO1002127.1.p1_start100_end137
037271378.1_start78_end115
Dermacentor-silvarum_XP-049518196.1 0GO001774 Good Easy 2 GBBKO1002034.1
Ixodes-scapularis_tr B7P452 B7P452- 0GO001774  Good Easy

IX0sC
Ixodes-scapularis_tr B7Q422 B7Q4z2- 0GO001774  Good Easy

IXOsC
Hyalomma- 0GO000880  Poor Medium 14 GFGIQ1047205.1.p1_start29_end60
asiaticum_KAH6923445.1_start29_end58
Rhipicephalus-microplus_XP- OGOO00880  Poor Medium 1 GBJSO1000632.1.p1_start34_end70
037269427.1_start34_end70
Dermacentor-silvarum_XP- 0GOOO0880 Poor Medium 5 GINVO1004785.1.p1_start33_end81
037559871.1_start39_end87
Dermacentor-andersoni_XP- 0GO000880  Poor Medium 6 GBJS01005204.1.p1_start39_end77

050051547.1_start39_end77

Table 3. Peptide metadata and characteristics we used to select the 12 peptides flagged
for experimental validation.

In addition to the information here, all peptides had signal peptides.

In the “Salivary gland peptide match” column, names correspond to transcript names in the
Transcriptome Shotgun Assembly database with peptide coordinates appended, while “None”
indicates that the peptide didn't match against tick salivary gland peptides.

We identified 12 peptides that best matched our criteria and had diverse
sequences (Table 3). These peptides belong to three orthogroups.

The first group of peptides is predicted from OGOO01774. We selected three
peptides from this orthogroup. Two are annotated as the peptides defensin and
drosomycin (Table 3). Defensin and drosomycin are both host defense peptides.
Defensin, in particular, can act as an antimicrobial peptide or participate in
immune signaling [331. We find it encouraging that both sequences were
annotated as peptides and are interested in whether they interact with the
immune system.

The second group of peptides is from OGOOOO880. These sequences are
glycine-rich (Table 3). Glycine-rich peptides have antimicrobial activity across
diverse organisms, from plants to chelicerates [3413si3613713811391. Since we aren't
interested in antimicrobial activity in our use case, we were excited to learn that
some glycine-rich peptides have other functions in vertebrates 4ej411. The ability
of glycine-rich peptides to elicit cellular and organismal phenotypes is promising
for the potential function of our candidate peptides.

Sequence
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The last group of peptides is from OGOO®O8102 and comprises five sequences.
These peptides are annotated as a mixture of sORF and cleavage peptides.
However, the initial proteins in this group ranged from 99 to 114 amino acids in
length. The proteins that were 100 amino acids or less are sORF peptides, while
those that were greater than 190 amino acids are cleavage peptides. None of the
peptides were annotated or had matches against known peptides in the
Peptipedia metadatabase [42;. This makes it difficult to predict the potential

function of these peptides.

Working with putative host detection suppression-associated proteins from
NovelTree [211 was advantageous because the proteins that generated the
peptides were already organized into orthogroups. Although some peptides within
an orthogroup shared sequence homology, many didn't. These orthogroups
established connections between peptides that we couldn't have inferred from
their sequences alone.

Testing peptides experimentally for host detection
suppression traits

Our goal was to identify peptides that suppress host detection. After predicting
these peptides computationally, we next wanted to test for these traits
experimentally. In hindsight, we could have done a better job of thinking through
which assays would be most informative at the outset of the project. We chose to
test whether our peptides could block a form of immune activation involved in
host detection 21 using a mast cell degranulation assay. Mast cells are involved in
the skin’s response to ectoparasites like ticks, and this assay measures [3-
hexosaminidase release into the supernatant as a marker of degranulation. While
developing the assay, we found that compound 48/80, a common mast cell
activator, caused substantial cell lysis at the concentrations typically used [21. This
effect raised concerns about the reliability of the assay. Further, even if the assay
had worked well, it would have covered only a small portion of the broader pain,
itch, and inflammation space. For these reasons, the chance that our peptides
would show an effect in this specific context was low. We didn't find a suitable
assay that captures a wider range of host detection pathways, so we were unable
to move forward with experimental testing of our peptide predictions.

Key takeaways

« Development of a specific peptide prediction strategy: We developed
an approach to predict peptides that can suppress detection in host
organisms during tick feeding. Our approach first used trait-mapping data
and signal peptide predictions to identify candidate peptides and then
used synthesis, solubility, sequence similarity, and expression profiles in
tick salivary glands to select the best candidates for experimental follow-
up.

¢ Selection of peptides for experimental testing: We identified 12
peptides from three orthogroups to test in downstream experimental
assays. Peptides from two orthogroups have characteristics or annotations
similar to known bioactive peptides from other chelicerates.

o Difficulty in experimental follow-up: We attempted to test our predicted
peptides using a mast cell degranulation assay but found the assay
unreliable, technically challenging, and too limited in scope to capture the
full range of host detection traits. Without a better-suited assay, we
couldn’t experimentally evaluate the peptides in vitro.


https://doi.org/10.1101/2024.07.11.603053
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https://doi.org/10.57844/ARCADIA-3207-4695
https://doi.org/10.57844/ARCADIA-3207-4695

Next steps

Given our difficulty in experimental follow-up, we've decided to put this effort on
ice. We're hopeful that our peptide prediction approach may be helpful to others
or that someone may be interested in the predicted peptide sequences. We'd also
be curious to hear if anyone has thoughts on a general experimental assay or
several very simple ones that can quickly test for activity across host detection
suppression traits like inflammation, pain, and itch.
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