
The known protein
universe is
phylogenetically biased

Many protein prediction and design models rely on
evolutionary comparisons. We show that popular
databases are phylogenetically biased, influencing the
statistical utility of the known protein universe in
important ways.

Purpose
Prediction and de novo generation of proteins is rapidly advancing.
Much recent work relies on the comparison of diverse proteins —
taken from massive public databases — to learn the evolutionary
constraints on protein feature variation. By training on hundreds of
millions of proteins, these models learn and, at least theoretically,
generate beyond the structure of the “known protein universe.”
Central to this endeavor is the idea that the current “known protein
universe” is sufficient for learning, and then implementing, the rules
through which evolution has designed proteins.

Here, we explore the phylogenetic makeup of all 214 million proteins
in the AlphaFold database (AFDB). We find strong phylogenetic biases
in the AFDB. These biases are associated with variation in prediction
accuracy, influence the outcomes of downstream protein structural
clustering tasks, and, when controlled for, greatly constrain the
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evolutionary diversity of this representation of the known protein
universe.

These findings help delineate some of the promise and perils of
evolution-informed protein models and should be relevant to
researchers interested in the prediction and design of proteins.

All code generated and used for the pub is available in this
GitHub repository, including scripts for accessing data,
performing analyses, and generating all figures.

Background and goals
We are entering an era of de novo biological design [1]. The

application of machine learning/AI models to large biological
datasets, it is believed, will unlock the potential to generate novel
biological components not found in nature [2][3]. At the vanguard of

this anticipated paradigm shift is the field of protein design. Models
that can generate protein sequences and structures have rapidly
advanced in recent years, attracting substantial scientific and
financial interest [4].

Proteins are appealing targets of generative design for several
reasons. Like human language, proteins are information-complete,
encoding their structure and function in amino acid sequences [5]. In

addition, the sequences and structures of many proteins are
available in public resources [6]. The sheer abundance and diversity

of protein data has motivated the idea that we are on the brink of
learning comprehensive generative rules for the “known protein
universe” [7].

The advent of protein structure prediction algorithms significantly
catalyzed efforts to leverage the known protein universe. Approaches
such as AlphaFold [8], ESMFold [9], and RoseTTAFold [10] contributed
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several key ingredients that laid the foundation for generative protein
design models: in silico metrics for scoring protein prediction,
abundant and re-usable structural training data [11], and, importantly,

an appreciation for leveraging the evolutionary diversity of
proteins [8]. Indeed, though models vary broadly (e.g., in architecture,

type of training data, goals), almost all are based on a common
assumption: the rules of biological design will fall out of evolutionary
comparisons [12].

This assumption is based on another: the sequences and structures
available in 2024 are sufficient for learning general rules of protein
design. While the amount of available protein data is indeed
massive, it’s important to remember that public protein databases
grew randomly over time. There was no top-down roadmap to guide
optimal sampling across the evolutionary diversity of proteins.
Despite this, models have begun to assume that these databases
define the true distributions of naturally occurring proteins [13][14].

Recent work has shown that this assumption can be problematic.
Unequal sampling of proteins has been found to bias the behavior of
protein language models; species that are better represented in
training data have an outsized influence on generated proteins,
limiting the contributions of rarer species and sequences [14].

These findings highlight the fact that training data distribution is an
important influence on the behavior of at least some protein models.
Better characterizing the underlying distributions of training data
would therefore be useful for understanding the potentials and
limitations of protein prediction and design. Luckily proteins differ
from many other types of training data — which can be hard to to
characterize — in that we know the generative process underlying
their sequence and structure: evolution. Even more luckily, the
generative process of evolution leaves behind traceable signatures in
the form of phylogeny.

We decided to see how much we might learn about the distribution
of the known protein universe through the lens of phylogenetics.
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Have proteins been evenly sampled across the tree of life? Does the
phylogenetic distribution of proteins influence model prediction?
How much protein diversity have we actually sampled and is it
universal? We reasoned that answers to these questions would
contextualize current possibilities for protein models and provide
guidelines for better leveraging evolutionary information in their
creation.

The approach
Data

Measuring taxonomic completeness
We used the multi-domain scale phylogeny [12] as the basis for

calculating taxonomic completeness measurements. Given that the
identification and estimation of species diversity is more volatile
than higher taxonomic levels, we measured taxonomic completeness
by the diversity of families within each phylum of the phylogeny. To
do so, we created a family-level phylogeny by randomly choosing a
single species from each family and reduced the tree using the
keep.tip  function in the R package ape [15].

The procedure for calculating taxonomic completeness was as
follows. First, species within the phylogeny that contributed at least
one protein structure to the AFDB were identified. These species
were then associated with their family and phyla classifications.
Using these classifications, we then identified the families present in
the AFDB for each phylum. The most recent common ancestor of
each phylum (getMRCA  function in ape) was identified and used to
extract a subtree for all phyla (extract.clade  function in ape). Family-
level presence/absence in the AFDB was represented as a binary
vector and used to measure Faith’s phylogenetic diversity (PD
function in the R package Picante [16]) for each phylum. Taxonomic

completeness was then calculated by normalizing the phylogenetic
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diversity of families within the AFDB by the total phylogenetic
diversity of each phylum. The distribution of taxonomic
completeness across the phylogeny was visualized using the contmap

function in the R package phytools [17].

The distributions of domain-level taxonomic completeness were
statistically compared using Dunn’s test. The association between
phylogenetic distance, number of families, and taxonomic
completeness for each phylum was assessed by creating a linear
model using the lm  function in R.

Analyzing Foldseek representative proteins
The taxonomic completeness of Foldseek representative proteins
was assessed using the method described above. Representative
proteins were associated with their taxonomic classifications, which
were then used to calculate family-level diversity per phylum (as was
done with the AFDB in Figure 3). The results were visualized using the
contmap  function in the R package phytools, as above.

We assessed phylogenetic influences on the relationship between
taxonomic completeness in the AFDB and Foldseek clusters using a
phylogenetic generalized least squares (PGLS) regression. First, a
variance-covariance matrix capturing phylogenetic relationships was
calculated using the function comparative.data  in the R package
caper [18]. The PGLS was then constructed using the function pgls  in

caper (using maximum likelihood for branch length optimization).

The relationship between species abundance, pLDDT, and Foldseek
clustering outcomes was first assessed by calculating representative
protein number, total protein number in the AFDB, and mean pLDDT
for each species. The relationship between total protein number in
the AFDB and mean pLDDT was measured using Spearman
correlation. Spearman correlations were calculated over a range of
cutoffs corresponding to minimum representative protein number
(the distributions of which are presented in Figure 4, A). The

5

https://doi.org/10.7717/peerj.16505
https://doi.org/10.32614/cran.package.caper


distributions of pLDDT across domains were statistically compared
using Dunn’s test.

Assessing the effects of data balancing
The effects of data balancing were simulated by testing a range of
protein sample sizes. Given the diversity of sampling across species
in the AFDB, increasingly conservative sampling (i.e., requiring a
greater number of proteins per species) has an inherent filtering
effect on the phylogenetic diversity of the available data.

The specific effects of filtering were assessed by calculating Faith’s
phylogenetic diversity (using clade_PD ) of species contributing at least
n proteins to the AFDB over a range of minimum values (from 0 to
20,000 proteins). The distribution of these measurements is
presented in Figure 5, A. Taxa diversity was also assessed at each
cutoff by calculating the proportion of taxa left as a function of the
total number for each level of the taxonomic hierarchy (as in Figure
5, B). The percent of cluster space was calculated by identifying all
the number of unique clusters represented at each cutoff, divided by
the total number of Foldseek clusters (as in Figure 5, C).

To assess per-species sampling completeness, we calculated the
ratio between protein n in the AFDB and the total number of proteins
per species in the NCBI Genome database. Given the broad dynamic
range of this value — referred to as “protein ratio” in the results
section — its logarithm was used for analyses. We compared the
relationship between protein ratio and mean pLDDT over a range of
minimum protein numbers (Figure 6) and visualized the results using
contour plots via the R function contour .
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The results
Protein databases are taxonomically biased
We first wanted to understand the basic taxonomic makeup of the
known protein universe. A straightforward approach to this is to
measure the number of protein structures in the database that are
contributed by each species. Visual inspection demonstrated that, in
both the Protein Data Bank (PDB) and AlphaFold database (AFDB), a
small number of species represented orders of magnitude more
proteins than all others (Figure 1, A–B). In the PDB, these structures
were dominated by eukaryotic samples (likely owing to the bias
toward solving human protein structures) (Figure 1, A), while the
AFDB was weighted toward prokaryotes (likely owing to the bias
toward sequence bacterial genomes) (Figure 1, B). Despite domain-
level differences, both databases were associated with strongly left-
shifted cumulative distributions, indicating that a significant
proportion of their proteins come from a very small number of
species (Figure 1, C). Gross taxonomic biases in species sampling
therefore exist in the PDB and AFDB (this has also been noted about
UniProt and other databases [14]).
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Figure 1. Species-level distributions of proteins in public databases.

(A) Circular packing plot of protein number per species in the Protein Data Bank
(PDB). Circle diameter corresponds to protein number. Circles are colored by domain
(green = eukaryotes; pink = bacteria; purple = archaea). The pie chart in the upper
right corner the proportion of the database represented by each domain.
(B) Circular packing plot of protein number per species in the AlphaFold database
(AFDB).
(C) Cumulative distributions of per-species protein number in the PDB (orange) and
AFDB (blue).

What is the structure of these biases? Are they randomly distributed?
Or are coherent groups of species well-represented and others not?
To explore this, we measured how well-sampled phyla were in the
AFDB using the complete TimeTree of Life phylogeny [12]. We

assessed this “taxonomic completeness” by analyzing the ratio of
observed and total possible phylogenetic diversity within each
phylum (Figure 2, A; see Approach for details). We hypothesized that,
if species were randomly sampled across the tree of life (ToL), the
distribution of taxonomic completeness would be at least somewhat
uniform across phyla. Conversely, strong taxonomic biases might
lead to a strongly skewed distribution with only a few phyla well-
represented.
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Figure 2. Taxonomic completeness of the AFDB.

(A) Graphical depiction of the approach used here to calculate taxonomic
completeness.
(B) Taxonomic completeness of AFDB phyla. Domains are labeled on the right (“Ar” =
archaea).
(C) Violin plot of taxonomic completeness distributions across domains of life. (*** =
p < 0.0001; Dunn’s test).

A quick note (and a bit of conceptual framing) before proceeding. All
analyses presented hereafter explore patterns and distributions of
what is currently known about the diversity of, and relationships
among, species across the ToL. It’s important to remember that what
is known is a subset of what actually exists (i.e., the actual structure
and composition of the ToL). The two should not be confused. A
small example: > 1,300 bacterial phyla likely exist, the vast majority
of which are uncultured and uncharacterized [19]. In this pub, we have

phylogenetic data for 26 bacterial phyla. Therefore, any conclusions
we make about taxonomic sampling concern phyla that have been
sequenced and are at least somewhat characterized. To reiterate, the
goal here is to understand the evolutionary structure of protein
databases to better leverage them for training, prediction, and
generation. Any claims about the structure of evolution itself should
be interpreted within this context.

The distribution of taxonomic completeness was roughly bimodal
across the ToL (Figure 2, B). Some phyla were completely sampled
(18/77 phyla; 23%). Many others were not represented (25/77 phyla;
32%) and close to half were somewhat complete (34/77 phyla; 44%).
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The most obvious trend was at the domain level: prokaryotic phyla
(bacteria and archaea) were significantly better sampled than their
eukaryotic counterparts (Figure 2, B–C; p = 0.0004, Dunn’s test).
Within eukaryotes, phyla were highly variable. Better-sampled phyla
included fungi, Archaeplastida (land plants, green algae, red algae),
and a handful of better-studied protist phyla (e.g., pathogenic
oomycetes and diatoms). Many metazoan phyla were poorly
sampled. Bacterial phyla that were not well represented included
Fusobacteriota, Chlorobiota, Ignavibacteriota, Balneolata, Candidatus
Melainabacteria, and Thermomicrobiota.

What accounts for this sampling disparity? Intuitively, the sheer size
of phyla (i.e., the number of families per phylum) is a straightforward
explanatory factor. Indeed, phylum size was significantly predictive
of taxonomic completeness (linear regression; t-value = −2.2, p =
0.03). However, the model itself was not very explanatory (r  = 0.09).
This suggests that other factors contribute to taxonomic sampling
variation, the true landscape of which is likely a byproduct of both
biological and historical influences. For example, the two largest
phyla (Arthropoda, 1,574 families; Chordata, 1,060 families) —
despite being some of the most studied in all of biology — each have
modest levels of taxonomic completeness (0.51 and 0.64,
respectively). These estimates are likely more accurate for these
phyla than less well-studied ones. In general there may not be
enough information to estimate what we have left to uncover for
many phyla (as is very likely the case among many bacterial phyla).
Therefore, sampling may be influenced as much by where biologists
have decided to place their attention as by the complexity of
taxonomy itself. Thus the current state of affairs: eukaryotes are
substantially well-sampled within the known organismal universe,
yet the known universe is likely itself just a fraction of the real
diversity of life.

2
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Biases in the AFDB are recapitulated by
clustering methods
How might biases in database structure influence downstream
applications? Given that structural clustering is among the more
common uses of protein databases, we decided to assess one of the
largest structural clustering datasets currently available: the Foldseek
cluster database [7]. The Foldseek database comprises ~2.3 million

clusters computed from 214 million AFDB proteins using a highly
efficient structural clustering workflow [7]. Structural clustering is

putatively able to identify remotely related proteins, allowing aspects
of protein family evolution and function to be potentially gleaned. If
it is indeed true that a substantial portion of protein structural space
has been sampled — as is often assumed — then large-scale protein
cluster databases may be approaching comprehensive
representation of protein structural diversity (and, hence, functions)
across the tree of life [7][20].

A key step in the Foldseek workflow is the identification of
“representative proteins” after an initial sequence-based clustering
step (via the MMseqs2 algorithm) [21]. Proteins with the highest

prediction confidence (pLDDT; predicted local distance difference
test) within the MMseqs2 clusters are chosen as representatives.
These representative proteins are then used as input to
Foldseek [22] which, using structural comparisons, identifies a smaller

subset of clusters. Given the importance of these proteins for
constructing the final clusters, we wondered the extent to which
taxonomic bias might be present among the representatives. We
hypothesized that, if taxonomic biases in the AFDB data influence
prediction accuracy of the AlphaFold model, then these biases
should also be present in the Foldseek representatives. Put another
way, if there is a relationship between the number of proteins per
taxa in the AFDB and pLDDT, taxa that are better represented in the
AFDB should also be more likely to occur in the representative
protein set.
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We found that the taxonomic distribution of Foldseek representatives
very closely mirrored that of the full AFDB dataset (Figure 3, A). Phyla
that were well represented in the AFDB were, by and large, also well
sampled among the representative proteins across the different
domains of life (Figure 3, A). There was a strong relationship between
the AFDB and Foldseek with respect to the number of proteins per
phylum within each (R  = 0.92, linear regression; Figure 3, B). The
distributions of taxonomic completeness were also strongly related
(R  = 0.92, linear regression; Figure 3, C, black line). Notably, the
strength of this relationship was consistent even when accounting
for phylogeny via a phylogenetic generalized least squares (PGLS)
regression (R  = 0.92, PGLS; Figure 3, C, red line), reinforcing the idea
that taxonomic biases in the AFDB are non-randomly distributed.
Furthermore, the non-random taxonomic makeup of the AFDB
appears to strongly influence pLDDT-based representative protein
selection as implemented in methods such as Foldseek.

2
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Figure 3. Comparing completeness of the AFDB and Foldseek.

(A) Comparison of the phylogenetic distribution of taxonomic completeness within
the AFDB (left) and among Foldseek representative proteins (right).
(B) Distribution of the number of proteins within each phylum for the AFDB and
Foldseek (linear regression R ).
(C) Distribution of per-phylum taxonomic completeness within the AFDB and among
Foldseek representative clusters (black line = linear regression; red line = PGLS).

As mentioned previously, it’s possible that the concordance between
AFDB and Foldseek representative proteins occurs because pLDDT is
influenced by taxonomic biases. To explore this possibility, we
compared species-level variation in pLDDT to the distribution of
representative protein numbers in Foldseek. We reasoned that if
higher pLDDT values are achieved by species with more proteins in
the AFDB, then there should be a linear relationship between these
measures over the range of representative protein numbers. Indeed,
we found that representative protein number was positively
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correlated with pLDDT (Figure 4, A; Spearman correlation). For
example, at a cutoff of 1,500 proteins/species this relationship
displayed a plateau of Spearman correlation ~0.7 (Figure 4, A).
Interestingly, the correlation coefficients at cutoffs < 150 proteins
were negative, suggesting that species contributing lower numbers
of proteins had disproportionately high pLDDT values, leading to
negative coefficients. Plotting joint distributions between pLDDT and
protein number revealed that these correlations were driven by a
small number of bacterial species with many proteins possessing
mean pLDDT values > 70 (Figure 4, B). This reflects that pLDDT values
were stratified by domain: bacterial and archaeal species were
associated with significantly greater mean pLDDT than eukaryotic
species (Figure 4, B–C; p < 0.0001 for both, Dunn’s test). It’s also
notable that the shape of these relationships closely mirrored those
seen by Ding & Steinhardt [14] when comparing the Progen2 [23] and

ESM2 [9] predictions to the number of per-species input proteins.

Figure 4. The relationship between training data structure and prediction
accuracy.

(A) Distribution of Spearman correlation coefficients over a range of representative
protein n cutoffs. The dotted line corresponds to the cutoff exemplified in panels (B)
and (C).
(B) The relationship between mean pLDDT of representative proteins (y-axis) and
number of proteins in the AFDB (x-axis). Points are colored by domain. (Spearman
correlation).
(C) Comparison of mean pLDDT across domains (*** = p < 0.0001; Dunn’s test).
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Taken together, these results suggest that taxonomic biases covary
with AlphaFold’s pLDDT measurements and can impact downstream
applications of AlphaFold that rely on pLDDT, such as Foldseek. This
impact can be seen through the strong concordance between the
taxonomic makeup of AlphaFold and the representative proteins
used in Foldseek’s clustering workflow (Figure 3). Notably, this also
reflects effects on the behavior of other protein prediction models
(Progen2, ESM2) arising from uneven species sampling [14]. In these

cases, uneven sampling led to systematic biases in the output of
protein language models and negatively influenced aspects of
protein design [14]. A remedy for these issues is more intentional

curation of protein datasets [14]. With this in mind, we explored how

curation of the AFDB would impact the size of the known protein
universe.

Data balancing greatly reduces the
accessible protein universe
Taxonomic biases in the AFDB are reflective of it being an
imbalanced dataset wherein certain classes — namely, taxa —
disproportionately contribute. Dataset imbalances can be handled in
a variety of ways. A common (and straightforward) approach is
undersampling: even numbers of representatives are selected from
each class in an attempt to ensure equal contributions from each.
Undersampling’s simplicity gives it a general utility but also makes it
prone to some undesirable behaviors that are worth noting. For
example, undersampling can lead to overfitting when working with
small datasets and can generate unrealistic representations when
classes vary substantially in size. This latter scenario may very well
be the case here, as the upper limit of sample sizes will be lower for
bacteria (smaller genomes, fewer proteins) than eukaryotes (bigger
genomes, more proteins). Despite these caveats, we reasoned that
undersampling is likely to be implemented elsewhere as a means for
controlling phylogenetic bias and thus could provide a useful first
approximation of the effects of data balancing on the makeup of
diversity within the AFDB.
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To assess the impact of undersampling, we generated a series of
balanced datasets selecting partitions containing n proteins from
each species (from 1 to 20,000 proteins). Species were excluded if
they did not have at least n proteins in the AFDB. After exclusion, we
calculated the phylogenetic diversity of species in each dataset (see
Approach).

Balancing had a substantial effect on phylogenetic diversity (Figure 5,
A). For example, the transition from a minimum protein n of 1 to a
minimum n of 2 generated a loss of 23% of phylogenetic diversity
(Figure 5, A). A minimum n of 1000 represented 38% of overall
phylogenetic diversity in the AFDB (Figure 5, A). Phylogenetic diversity
plateaued around n = 5,000 at ~5% of diversity captured (Figure 5, A).
Diversity was most immediately lost at the species level: 48% of
species were pruned when requiring > 2 proteins/species (Figure 5,
B). The species distribution was mirrored by that of genera, with both
plateauing at ~5% diversity when n = 5,000 (Figure 5, B). Overall, each
taxonomic category lost substantial diversity as dataset partition
sizes increased; less than half of phyla were represented when n =
5,000 (Figure 5, B). These results indicate that a substantial majority
of phylogenetic diversity contained in the AFDB is driven by species
associated with a small number protein structures, leading to a rapid
decrease in the size of the accessible protein universe after even
modest filtering.
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Figure 5. Effects of data balancing.

(A) Proportion of total phylogenetic diversity in the AFDB with increasingly
conservative data balancing. Point color corresponds to phylogenetic diversity.
(B) Proportion of total diversity for each level of the taxonomic hierarchy. Colors
indicating taxonomic levels are indicated in the upper right hand corner of the plot.
(C) Percentage of Foldseek clusters maintained with increasing conservative data
balancing. Point color corresponds to the percentage of cluster space occupied at
each cutoff.

We also assessed how data balancing affected the coverage of
Foldseek cluster space. While balancing did lead to a consistent
decrease in cluster space (Figure 5, C), the relationship was more
modest than that observed with phylogenetic diversity (Figure 5, A–
B). This robustness to balancing makes sense given that more
abundant taxa drive the structure of Foldseek clusters while species
with fewer proteins contribute proportionally less (Figure 3).
However, though more modest, balancing still resulted in a relatively
substantial decrease in the size of Foldseek cluster space, with > 20%
of size lost at n = 1,000 and > 50% at n = 5,000 (Figure 5, C). These
patterns further support the notion that Foldseek clusters
recapitulate the taxonomic makeup of the AFDB.

The data balancing tests described above were agnostic to the real
variation in proteome size among species within the AFDB. We
hypothesized that, by accounting for proteome size, we might gain
an orthogonal view into the effects of taxonomic biases on Foldseek
clusters. Specifically, we were interested to see if species with
under/over-represented proteomes were better modeled by AFDB
and/or contributed more representative proteins in the Foldseek
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clustering workflow. To test this, we calculated the ratio of AFDB
protein number and proteome size for each species (referred to as
“protein ratio” in Figure 6). We then compared this protein ratio to
the mean pLDDT of each species’ representative proteins and
analyzed this relationship over a range of protein n cutoffs. This
comparison allowed us to infer the effects of prediction accuracy
(pLDDT), AFDB representation, and proteome size over sets of
species that were increasingly influential on the structure of Foldseek
clusters.

We noted a major difference in the behavior of eukaryotic and
prokaryotic distributions (Figure 6). While the distribution of
eukaryotic species stayed relatively stable over the range of cutoffs
(Figure 6, A, i–vi), there was a substantial shift in the prokaryotic
distribution (Figure 6, A, i–vi). As cutoffs became more stringent,
there was an enrichment for species with very well-sampled
proteomes and elevated mean pLDDT measures (Figure 6, A, v–vi).
This is again reflective of the strong concordance between the
taxonomic distribution of the AFDB and Foldseek representative
proteins (Figure 3). It also demonstrates that these latent taxonomic
biases are amplified with more conservative data balancing
requirements (i.e., larger n proteins per species).

Figure 6. Data biases are amplified by balancing.

Contour plot comparing protein ratio (logarithm of the proportion of proteins in the
AFDB and proteins in proteome) and mean pLDDT of individual species calculated
over a range of cutoffs (from > 1 protein (i) to 2,000 proteins (vi).
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Key takeaways
Protein databases unevenly sample phylogenetic diversity
(Figure 1)

Sampling biases are taxonomically structured in the AFDB;
established prokaryotic phyla are significantly better sampled
than eukaryotic phyla (Figure 2)

Sampling biases are predictive of protein cluster composition
(Figure 3)

Better sampled species possess higher pLDDT values in the
AFDB (Figure 4)

Data balancing leads to a substantial decrease in the
phylogenetic diversity of the known protein universe Figure 5)

Data balancing amplifies phylogenetic disparities in AlphaFold
performance (Figure 6)

Implications
This pub lays out approaches to characterizing the structure and
biases of the known protein universe. Given the broad scope of
contemporary protein modeling, follow-up efforts will inherently be
multi-faceted. Below we describe the implications of greatest interest
to our work (and likely that of others).

Public protein databases are biased. The utility of protein models will
therefore be contingent on whether, and how, training data are
curated. Furthermore, generalization beyond natural protein
distributions will likely be difficult without mitigating these biases [14].

Importantly, though, curation won’t be a panacea. As seen here, data
balancing decreased accessible phylogenetic diversity and
exacerbated latent taxonomic biases in AlphaFold2 prediction
accuracy. Appreciation of these constraints may substantially impact
future model design, architecture, and implementation.
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A simple example: prokaryotic proteins are better sampled in the
AFDB than eukaryotic proteins. Better sampling appears to be related
to more confident predictions (i.e., higher pLDDT). Better predictions
lead to a disproportionate influence on structural clustering. If not
accounted for, this bias will likely be recapitulated in other
applications. Recognizing these constraints provides options.
Treating prokaryotes and eukaryotes independently may make sense
in some cases. Alternatively, the bias may be exploited to generate
proteins possessing more prokaryotic-like features. Whatever the
goal, bias characterization should play a central role in comparative
approaches.

However, even with better curation and model design, there is
reason to believe that current approaches will continually fail to
capture realistic evolutionary patterns. Most models infer
evolutionary patterns (via lengthy and expensive training) by treating
proteins as independent observations. This leads models to learn
“star phylogenies”: evolutionary hypotheses lacking the hierarchical
relationships that are hallmarks of natural diversification [24].

Crucially, these representations are very susceptible to a
phenomenon known as — in the language of evolutionary biologists
— phylogenetic non-independence [25].

Evolution generally functions through gradual changes. Closely
related species are likely to have been influenced by the same
evolutionary events and, therefore, can be expected to possess
similar traits. Given this, the traits of related species cannot readily
be considered independent. Incorrect attribution of independence
leads to the presence of pseudoreplication (overestimation
independent sample number), severely limiting model power [26].

Models with pseudoreplication will fail to capture the true structure
of the dataset, leading to overfitting and a general lack of
interpretability [25].

This may spell trouble for the future progress of protein prediction
and design. The known protein universe is already massive,

20

https://doi.org/10.1016/j.cels.2021.05.017
https://doi.org/10.1086/284325
https://doi.org/10.2307/1942661
https://doi.org/10.1086/284325


encompassing hundreds of millions of data points. It is (and has
been) extremely tempting to believe that we can now learn — and
generalize beyond — the generative rules of protein evolution given
the sheer volume of the data. And why not? LLM-based chatbots such
as ChatGPT achieve impressive feats from similarly sized datasets,
learning generative features of human syntax, grammar, and
semantics. Shouldn’t this be possible for biological sequences which,
at first blush, seem to be not very different from words?

Unmitigated non-independence and phylogenetic biases make this
currently unlikely for proteins. The known universe is effectively
much smaller than appreciated. As shown here, these patterns vary
across taxa and are unevenly distributed across the tree of life. Since
the generalization of ML models is dependent on learning the true
distributions of underlying data, until addressed, these factors will
likely cap the generalizability of protein prediction and design.

There are some potential solutions. Future collection of protein data
(i.e., sequences and structures) should be done with the goal of
optimizing biological diversity. Undersampled, yet diverse, taxa
should be prioritized across the ToL. Measures like taxonomic
completeness can help this type of “phylogenetic data engineering”
by helping prioritize efforts and measure progress. This type of
targeted approach will help us begin to infer the true distributions of
naturally occurring proteins (or even, simply, know if we are getting
close).

Finally, it’s worth noting that the statistical power and limitations of
any dataset are determined by processes generating the data. For
example, human language datasets also display the type of
pseudoreplication and non-independence inherent to comparative
biological data [27]. These are inborn features of language generation

that, when unaccounted for, likely limit the generalizability of
linguistic models. Luckily, the generative process underlying
biological diversity is known: evolution. What’s more,
phylogeneticists have been refining and implementing models of
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diverse evolutionary processes for decades. There are substantial
opportunities to leverage evolutionary approaches to confront the
biases described here. In general, explicit inclusion of phylogenetic
information into protein models may reduce training cost, improve
model accuracy, and expand generalizability.
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