
Mapping the spectrum of
archaeal protein sequence–
structure relationships

We analyzed 4,064 Asgard protein families, seeking

generalizable rules governing sequence–structure relationships.

We found a subset of protein families with structural

conservation despite phylogenetic and sequence diversity, but no

global constraints across the proteome.

Purpose
We recently compiled an extensive database of Asgard archaea proteomes [1].

Asgard archaea are a recently described and extremely diverse kingdom

representing 2 billion years of evolutionary diversity. Novel protein sequences,

structures, and functions likely exist among this taxon.

To begin exploring this, we computationally characterized the archaeal sequence–

structure relationships landscape. This diverse landscape contains a continuum of

relationships; most protein families show a weak-to-moderate correlation between

sequence and structure diversity. While the classical framework [2] predicts a tight

coupling between sequence and structural divergence, our findings reinforce that

this is only one of many possible patterns. Embracing the continuum of archaeal

sequence–structure relationships should facilitate more nuanced approaches to

protein modelling and engineering.

All associated code and some data are available in this GitHub repository.
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Larger data files, including all-vs-all TM-align comparisons and per-
column Shannon entropy values, are on Zenodo.

We’ve put this effort on ice! 🧊

Background and goals
Asgard archaea represent one of biology's most evolutionarily significant yet

underexplored lineages. As the closest relatives of eukaryotes [3][4][5], their

proteomes share much of the complex cellular machinery found among

eukaryotes, but have evolved in parallel for approximately 2 billion years. Despite

their relationship with eukaryotes, Asgard archaea were first described in 2015.

Accordingly, characterizations of archaeal proteome diversity are still nascent. The

phylogenetic breadth and long evolutionary history of Asgard archaea make them

an untapped resource for identifying novel aspects of protein structure and

function.

We aimed to begin mapping the sequence–structure landscape across Asgard

protein families, documenting the patterns that emerge from this underexplored

evolutionary context. We found that protein families existed on a continuum

containing many varieties of sequence–structure relationships. Some exhibit

near-perfect structural conservation despite significant sequence divergence,

while in others, sequence and structure diversify together. These findings suggest

that the diverse patterns of evolutionary diversification present among protein

families should be an important consideration when working with archaeal

proteins (and all other parts of the tree of life).

The approach
We analyzed a previously compiled dataset of Asgard archaeal and giant virus

protein families [1]. The dataset contains > 730,000 Asgard archaea proteins,
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which we organized into families using Orthofinder (v3.0; RRID: SCR_017118) [6].

We filtered the dataset to include families with ≥ 20 proteins associated with

entries in the AlphaFold database (AFDB). After filtering, 4,064 orthogroups

comprising 678,072 unique proteins remained.

Multiple sequence alignment and phylogenetic
inference
Each orthogroup’s sequences were aligned using MAFFT

(run_initial_mafft_parallel.py) (v7.526; RRID: SCR_011811) [7] and filtered to retain

only sequences at least 70% the median length

(filter_mafft_alignments_by_length.py). Alignments were re-aligned and trimmed

using the —gappyout  option from TrimAl (refine_alignments.py). We used a highly

parallelized version of FastTree 2 [8] called VeryFastTree (v4.0.5; RRID:

SCR_023594) [9] to infer approximate maximum-likelihood phylogenies for each

orthogroup (run_fasttree_parallel.py).

Sequence diversity analysis
We used a custom script (calculate_sequence_diversity.py) to calculate the

average pairwise sequence identity (APSI), per-column Shannon entropy, and

normalized Hill diversity (using phylogenetic trees) for each orthogroup. This

script generated all of the intra-orthogroup sequence diversity metrics for

subsequent analyses.

Structural diversity calculation
To calculate structural diversity, we collected any high-quality (pLDDT > 70) AFDB

structures for each orthogroup and used TM-align to do all-vs-all structural

alignments (calculate_all_vs_all_metrics.py). We used the mean Chain2 TM-score

for each orthogroup and its standard deviation for analysis.

Sequence–structure analysis
We conducted all subsequent analyses and figure generation in the Jupyter

Notebook “sequence_structure_notebook.ipynb.” We defined “Structurally Rigid”

and “Structurally Plastic” families as having mean TM-scores in the top or bottom

quantile among all families, respectively.
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To categorize protein families by their sequence–structure relationships, we

classified orthologous groups into profiles based on their structural diversity

metrics, as follows:

# --- 1. Define Thresholds using Quantiles (25th and

75th percentiles) ---

mean_tm_low_thresh =

df_master['Mean_TMscore'].quantile(0.25)

mean_tm_high_thresh =

df_master['Mean_TMscore'].quantile(0.75)

stddev_tm_low_thresh =

df_master['StdDev_TMscore'].quantile(0.25)

stddev_tm_high_thresh =

df_master['StdDev_TMscore'].quantile(0.75)

# --- 2. Create Binned Level Columns ---

conditions_mean = [df_master['Mean_TMscore'] <

mean_tm_low_thresh, df_master['Mean_TMscore'] >=

mean_tm_high_thresh]

choices_mean = ["Low_Mean_TM", "High_Mean_TM"]

df_master['Mean_TM_Level'] =

np.select(conditions_mean, choices_mean,

default='Medium_Mean_TM')

conditions_std = [df_master['StdDev_TMscore'] <

stddev_tm_low_thresh, df_master['StdDev_TMscore'] >=

stddev_tm_high_thresh]

choices_std = ["Low_StdDev_TM", "High_StdDev_TM"]

df_master['StdDev_TM_Level'] =

np.select(conditions_std, choices_std,

default='Medium_StdDev_TM')

# --- 3. Create Descriptive Structural Profile ---

def assign_structural_profile(row)\:

if row['Mean_TM_Level'] == 'High_Mean_TM' and

row['StdDev_TM_Level'] == 'Low_StdDev_TM'\:

return 'Structurally Rigid'

elif row['StdDev_TM_Level'] == 'High_StdDev_TM'\:

return 'Structurally Plastic'
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We integrated functional annotations using InterPro domain architectures and

calculated intrinsic disorder predictions to understand what sequence features

correlate with different structural profiles. Finally, we performed per-column

conservation analysis across multiple sequence alignments to identify patterns of

sequence conservation within structurally rigid versus plastic families.

Statistical analysis
To determine if the distributions of mean per-column Shannon entropy, APSI,

mean intrinsic disorder, and mean domain complexity differed between structural

profiles, we applied the two-sample Kolmogorov–Smirnov test. We calculated

Cohen's d to quantify the effect size of any observed differences. For non-

parametric comparisons of median TM-scores, we used a Mann–Whitney U test

and a one-sample t-test to measure whether the median TM-scores of

orthogroups were significantly deviated from a null expectation. We then

calculated Cohen's d to quantify the effect size of any observed differences.

Visualization
We used arcadia-pycolor (v0.6.3) [10] to generate figures before manual

adjustment.

AI tool usage
We used Claude to suggest wording ideas and then choose which small phrases

or sentence structure ideas to use. We also used Gemini (2.5 Pro) to help write

code, clean up code, and to provide iterative feedback on our research plan as we

were considering how to approach this project. For example, running the all-vs-all

structural diversity comparison was too heavy for a local machine. Gemini 2.5 Pro

proposed specifications and parameters for running it on an AWS EC2 instance,

which we implemented. It was also Gemini 2.5 Pro’s idea to represent

distributions as kernel density estimates. We used Google Jules to assist with

code review and repo organization. We also used Claude to review our code and

selectively incorporated its feedback.
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The results

The archaeal sequence–structural landscape
contains distinctly rigid and plastic protein families
We previously classified ~730,000 Asgard archaea proteins into families based on

sequence relationships [1]. In that work, we observed that protein family sequence

diversity existed on a continuum and displayed a variety of relationships between

phylogenetic diversity, sequence variation, and amino acid features [1]. We wanted

to build on that work by incorporating protein structural predictions to resolve the

sequence–structure landscape further. We identified 678,072 unique proteins

with structural predictions. These proteins were associated with 4,064 protein

families. We first wondered if we could locate exceptionally “rigid” (structurally

conserved) or “plastic” (structurally variable) populations of protein families. We

hypothesized that this stratification would enhance our ability to identify outliers

in subsequent analyses.

We classified 454 protein families as structurally rigid (the upper quartile of

median TM-score and the lowest quartile of TM-score standard deviation) and

652 as structurally plastic (the highest quartile of TM-score standard deviation). To

determine whether the structural profiles of these groups were statistically

distinct from the dataset overall, we calculated density distributions of the median

pairwise TM-scores of the rigid and plastic families, in addition to the complete

dataset (Figure 1, A). TM-scores of the rigid families differed significantly from the

overall distribution (rigid median TM-score = 0.94, dataset median TM-score =

0.81; p = 5.2e−171; Mann–Whitney U test) as did the plastic families (plastic

median TM-score = 0.71; p = 4.9e−29; Mann–Whitney U test), indicating that

these populations are statistically separable from the general continuum.

Does sequence diversity mirror these patterns of structural variation? To address

this, we calculated the average pairwise sequence identity (APSI) for all families

(37%) as well as the plastic (35%) and rigid families (47%) (Figure 1, B). Again,

rigid and plastic families significantly differed from the entire dataset (p =

1.04e−70 and p = 3.4e−56; Kolmogorov-Smirnov test), suggesting that sequence

variation also separates these populations.

6

https://doi.org/10.57844/ARCADIA-PRC5-56P7
https://doi.org/10.57844/ARCADIA-PRC5-56P7


This raised the question of whether structurally rigid families are simply a function

of greater overall sequence conservation, rather than any notable protein features.

To test this, we calculated the average median TM-score of families within APSI

buckets (e.g., 35–40%, 45–50%). We compared those to the median TM-score of

the structurally rigid and structurally plastic families (Figure 1, C). The structurally

rigid families and structurally plastic families had median TM-scores that deviated

significantly from expectation (p = 6.67e−183 and 2.75e−41; one-sample t-tests),

but the effect size (Cohen’s d) for the structurally rigid families was about four

times greater (2.296 vs. −0.566). These results support the hypothesis that there

are distinct, identifiable, outlier protein families concerning their structural

properties. In this case, the structurally rigid families exhibit disproportionately

high conservation given their sequence divergence. Conversely, structurally

plastic families are significantly less conserved than expected. This demonstrates

that these two categories represent statistically identifiable populations that may

provide insight into novel patterns of sequence–structure diversification.
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Figure 1. Structurally rigid families exhibit higher than expected structural conservation.

(A) Kernel density plots of median TM-scores reveal that structurally rigid families have near-
maximal structural conservation (median TM-score = 0.94) and a narrow distribution.

(B) Density distributions of APSI values reveal that while rigid families generally have higher
sequence identity, there's substantial overlap between categories.

(C) Curve of the average median TM-score at a given APSI across the dataset. Blue and red stars
indicated the structurally rigid and plastic families, respectively.

Structurally rigid protein families are
phylogenetically diverse
Does the evolutionary history of protein families predict structural rigidity? For

example, recently evolved families may be more rigid than older ones with more

time to diversify. To explore this, we estimated the evolutionary diversity of each

8



protein family using a normalized version of Hill’s diversity. There was no

correlation between Hill’s diversity and structural diversity (Figure 2, A), and the

density distribution of the structurally rigid families, though shifted slightly to the

right, wasn't significantly different relative to either all families or the structurally

plastic ones (Figure 2, B). This result points to an intriguing feature of the

structurally rigid families, in that their broad representation across the Asgard

phylogeny suggests they're old protein families with tightly conserved folds. We

also analyzed the mean-per-column Shannon entropy, a metric describing the

amino acid variability at every ungapped position in the alignments. This metric

was weakly correlated with structural diversity (Pearson's r = 0.28) (Figure 2, C),

but its density distribution shows the structurally rigid families as outliers (p =

3e−67, Cohen’s d = −1.17; Kolmogorov-Smirnov test) (Figure 2, D). The structurally

plastic families also differed significantly from the dataset overall (p = 1e−8). Still,

the effect size was relatively small (Cohen’s d = 0.25), suggesting these families

are less of an outlier than the structurally rigid ones.

These patterns reveal that structural rigidity isn't simply a consequence of recent

evolutionary origin or limited phylogenetic sampling. The structurally rigid protein

families are ancient and broadly distributed across Asgard archaea and have

maintained their folds for 2 billion years, despite extensive sequence divergence.
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Figure 2. Multiple diversity metrics confirm structural category distinctions.

(A) Structural diversity versus normalized Hill Diversity shows minimal correlation (r = −0.06) but
clear separation between structural profiles.

(B) Normalized Hill Diversity density distributions differ markedly between rigid and plastic families.

(C) Structural diversity versus per-column Shannon entropy reveals moderate correlation (r = 0.28).

(D) Shannon entropy distributions highlight conservation differences, with rigid families showing
distinct patterns.

Rigid and plastic protein families don’t differ in
domain number or intrinsic disorder

Finally, we explored whether more complex domain architectures or intrinsic

disorder are linked to structural conservation. Structurally rigid families have a

significantly lower mean number of domains per protein (1.95) than structurally

plastic ones (2.59) (p = 5.8e−12; Kolmogorov-Smirnov test), but with a modest

effect size (Cohen’s d = −0.43) (Figure 3, A). Intrinsic disorder also doesn’t

meaningfully distinguish the structurally rigid families from others in the dataset
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Figure 3. Domain architecture, but not intrinsic disorder, distinguishes structurally
rigid families.

(A) Domain count distributions show structurally rigid families are biased toward simpler
architectures (mean = 1.95 domains) compared to plastic families (mean = 2.59 domains).

(B) Intrinsic disorder distributions are remarkably similar between categories, suggesting
disorder content doesn't predict structural rigidity.

(Figure 3, B), suggesting that the determinants of structural conservation are

more likely to be specific architectural or sequence features, not broad properties

like disorder or the number of domains.

11



Key takeaways
Our analysis of 4,064 Asgard protein families reveals that while most families at

least loosely follow predictable sequence–structure relationships, there's a

statistically identifiable population of structurally conserved families with broad

sequence divergence. In some cases, this small subset displays sequence–

structure decoupling, maintaining fold even when sequence identity drops below

35%. Among Asgard archaea, at least, extensive sequence variation doesn't

necessarily destabilize protein folds, and some sequence-diverse protein families

exhibit near-perfect structural conservation despite being ancient and broadly

distributed across the phylogeny. This variation highlights that various sequences

can encode standard structural features, suggesting that some form of constraint

(e.g., biophysical or evolutionary) has continually acted on these families to

generate structural conservation.

More systematic approaches may elucidate the nature of these constraints. In this

case, domain number and intrinsic disorder didn’t have clear explanatory power,

suggesting that more nuanced patterns of local variation are likely at play. Given

this, and the broad continuum of patterns observed here, we decided that

identifying the molecular mechanisms of this conservation was outside this

project's scope. These results suggest that, while statistically distinct populations

of the protein universe can be identified, one-size-fits-all models will continually

fail to capture the breadth of observed sequence–structure relationships.

Next steps
We’ve decided to leave our current efforts here. A proper follow-up may involve

generating models that integrate structural, evolutionary, and sequence

information to flexibly capture the diversity of patterns present in the archaeal

protein universe.

For the broader research community, several directions could yield significant

insights. Comparing the patterns identified here with those present in other taxa

could help identify archaeal-specific novelties. Developing computational tools to
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identify structurally rigid families from sequence alone would accelerate the

discovery of robust protein scaffolds for engineering applications. Finally, the

protein families we've identified represent a unique resource for understanding

protein evolution — they're natural experiments in maintaining function while

exploring vast expanses of sequence space.
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