Identifying candidate
accessory domains by mining
putative venom protein
fusions

Hoping to find proteins that alter physiology in useful ways, we
screened venom data sets for toxins fused to domains with
additional functionality. We identified candidates, but struggled
to infer any novel functions, and none seem well-conserved
across venomous species.
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Purpose

Animal venoms are complex mixtures of mainly toxin proteins and peptides that
can broadly interfere with host physiology. While toxins are the most well-
characterized proteins in venoms, there is evidence that molecules facilitating
toxin activity are present as well. We decided to search for toxin-like or toxin
proteins with extra accessory domains with interesting functions (especially toxin-
facilitating functions). Based on evolutionary precedent in bacteria, we thought we
might find novel accessory proteins/domains by searching for uncharacterized

domains fused to known toxins.

We developed a computational strategy to screen for potential gene fusion events
and identified 1,225 possible candidates across 145 species. The accessory
portions of the identified proteins are not well-conserved nor broadly conserved
across venomous species. We tried sequence-based analysis (BLASTp and HMM)



but ran into issues with annotating sequences of potential accessory domains.
Most had only a very general or low-confidence predicted function. We are
working to refine functional annotation as a whole, and this project further

emphasized the need for new or improved solutions to functional prediction.

While we don’t plan to follow up on this work, we're sharing our results in case
they may be useful for those studying venom biology or perhaps to the functional
annotation community.

e All associated code and metadata are available in this GitHub repository.

e You can access data from this pub on Zenodo, including FASTA files
containing representative sequences of the clustered toxin reference
database, our custom venom and tick toxin dataset, and the accessory
sequences of the toxin outliers.

We’ve put this effort on ice!

Background and goals

Venoms are secretions that an animal produces in a specialized gland that are
delivered to a target animal through a wound — they contain molecules that
disrupt normal physiology to assist feeding or defense 1. A single venom can
contain hundreds of different toxins, and the ability to produce venom has
evolved independently more than 100 times across the tree of life [21. There has
been a lot of convergent evolution across venom toxin proteins, which target key
aspects of host physiology (neurological functions, the cardiovascular system,
homeostasis, etc.) (3141

Additional venom proteins are known to facilitate the action of toxins. For
instance, hyaluronidases are found in multiple venoms across species. Their
hyaluronic acid hydrolysis activity is described as a “spreading agent,” facilitating
toxin diffusion through the prey’s skin layers (5. While a great deal of work has
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focused on venom toxins, little is known about other functional molecules,

particularly those with toxin-facilitating functions, in venoms.

For bacterial botulinum neurotoxins produced by Clostridium species, non-toxin
proteins are known to be essential for the toxins’ activity. The neurotoxin-
associated proteins NTNH, HA, and ORFX play important roles to help the
botulinum neurotoxin survive the acidic environment of the digestive tract (NTNH)
and cross the intestinal barrier (HA). These neurotoxin-associated proteins have
emerged from either toxin gene duplication followed by divergence (NTNH) or
gene fusion between clostridial toxins and pre-existing HA and ORFX genes,
which played other roles in Clostridium (e1.

By combining old parts to make something new, gene fusion is an efficient
mechanism of evolutionary innovation, generating proteins with complex
structures and functions. We sought to understand whether similar fusion
scenarios between a toxin and another accessory protein have happened in
animal venoms, and whether such gene fusions may have evolved convergently in

multiple venoms.

There are no set and simple methods to identify gene fusion events and they are
rarely investigated at the protein level, but rather at the gene or transcript level.
We anticipate that any protein resulting from a fusion event between a toxin and
another protein will emerge as a length outlier among its toxin homologs. We
screened 145 species’ venom transcriptome public datasets (that provide the
protein content information of venoms), to identify possible venom proteins that
result from the association of a toxin domain and an accessory domain as
identified length outliers in their toxin category. For such proteins, we further
investigate the accessory sequences to determine (i) whether they are found
broadly across different venoms, (ii) whether they are associated with multiple
toxin types, and (iii) whether we can infer their functions.

While focused on gene fusion involving toxins in venoms, this work provides a

general framework for screening evolutionary innovation through gene fusion.
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The approach

The overarching goal of this work is to determine whether proteins resulting from
the fusion of a toxin and another protein with an accessory function are found in
venoms and whether any accessory functions are convergent across species.

As we can infer predicted protein sequences from transcriptomes, we started by
generating a custom dataset of venom proteins from available venom gland or
salivary gland transcriptomes (145 species) (Figure 1). In parallel, we clustered the
toxin reference database, a curated database that is part of UniProt’s animal toxin

annotation project (Tox-Prot) (71, and further refer to it as the “Venom proteins and
toxins” database. We next compared our custom dataset to this database to find
sequence-based similarities between our custom dataset proteins and the
reference toxins. We thereby generated groups of related proteins where each
group contains at least one protein from our custom dataset and is characterized
by a single toxin of the toxin reference database. We then identified proteins
emerging as length outliers within each group independently. We continued the
analysis by extracting the “non-toxin” sequences (the putative accessory
sequences) of each outlier. We further clustered accessory sequences based on
their sequence homology. We isolated a representative sequence for each
accessory cluster and conducted Pfam annotation in an attempt to identify
accessory domains. Finally, we investigated whether these accessory sequences
are broadly shared or specific to venomous species or known toxins.
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Figure 1. Overview of computational workflow.

Read about our methods in detail below or skip straight to “The results.”

Creating the custom venom transcriptome dataset

We first downloaded proteins or transcribed RNA datasets from venom glands or
salivary glands. We downloaded protein accessions or transcribed RNA files from
transcriptome shotgun assemblies (TSA) datasets for transcriptomes that are



publicly available and listed them in the metadata file,
“SRA_TSA_venom_gland_accessions.csv.”

Many species were associated with accessions with already-called predicted
proteins. For each of these species, we generated a FASTA file that contains all
proteins in the TSA, titled by the species name. Other species only had
accessions with transcriptome data without called proteins. After downloading the
transcribed sequences for each of these species’ individual FASTA files, we used
TransDecoder (version 5.7.0) (81 to obtain predicted ORFs/proteins.

Overall, we obtained protein sequences for the venom glands of 124 species and
from the salivary glands of 21 tick species (Figure 2). We generated Figure 2 using
TimeTree 91 and the phylogenetic tree viewer software FigTree (version 2018-11-
25 - v1.4.4). We pooled all the protein FASTA files into a single FASTA file that
represents our custom “venom proteins from transcriptomes” dataset, the starting
point for the rest of the analysis.
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Figure 2. Phylogenetic tree of the species included in this work.

Species have been collapsed into larger groups of species categories. We generated this tree using
TimeTree and available information regarding the different species. We further edited the tree to
collapse species into groups using FigTree. Because no genetic information was available for some
species, this tree is actually missing two groups: crustacean (one species: Xibalbanus tulumensis)
and bloodworm (one species: Glycera tridactyla).

Searching the custom venom proteins against the
UniProt venom proteins and toxins reference
database

In UniProt, the animal toxin annotation project contains a manually curated
database of proteins and toxins from various venoms. We used this curated
database as our reference toxin database and refer to it as the “venom proteins
and toxins” database in this work. As we expect this database to contain identical
or similar homologs, we clustered it using mmseqs2 easy-cluster (version
14.7e284) neyri21, and kept only one representative sequence per cluster to
remove redundancy. Out of the original 7736 sequences of the “venom proteins
and toxins” database, we obtained 1645 clusters and thus 1645 reference
sequences. We then used mmseqs2 createdb to generate a toxin reference

database from these sequences.
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We further used mmseqs2 easy-search peymi2) to search this query toxin
reference database against the target database: our custom venom proteins
dataset. During this search, we aligned each venom protein to each
representative sequence of the toxin reference database to find possible matches
and generate alignment scores.

Ultimately, 33,515 proteins from our custom venom proteins dataset got at least
one hit in the toxin reference database.

Identifying protein length outliers in toxin groups

As each protein from the custom venom protein dataset may have yielded
multiple matches with the reference database, we kept only one hit per venom
protein, corresponding to the hit with the lowest E-value. Then we defined a
“toxin group” as any ensemble of all the venom proteins that hit the same
representative toxin from the toxin reference database. Consequently, each toxin
group contains at least one venom protein and is characterized by a reference
toxin protein. Altogether, we generated 394 groups.

We filtered out any group that contained less than five venom protein sequences,
which left us with 236 groups. For each venom protein, we calculated its length
ratio compared to the group-associated reference toxin. We further used this
length ratio as the metric to identify length outliers within each cluster.

In each cluster, an outlier is defined as any venom protein that meets both of
these criteria:

e Soft outlier criteria: Length-ratio greater than Q3 + 1.5*IQ (Q3: 3rd quartile
of the group length-ratios distribution, IQ: the interquartile range)

e Minimal ratio criteria: Length-ratio greater than 1.5

We identified 1,225 outlier sequences out of 33,207 sequences, which you can
find in the file, “Venomproteins_ticks_toxins_outliers_June2023.csv.” We isolated

the amino acid sequences of these outliers to identify accessory sequences, as
described below.
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Extracting and clustering outlier accessory
sequences

We next identified and extracted the accessory sequences from the identified
outlier sequences. Accessory sequences are defined as any sequence that doesn’t
match a reference representative sequence from the toxin reference database.
We used DIAMOND (version 2.1.6) (131 to create DIAMOND individual databases of
the 1,225 outlier sequences and of the toxin reference database, and to further
perform a protein BLAST (BLASTp) of the outlier sequences against the reference

toxin sequences.

Our strategy was to extract putative accessory sequences for every hit obtained
for each outlier sequence and generate a multi-FASTA file. For every DIAMOND
hit against the toxin reference sequences, we removed the portion of the venom
protein that aligned to the reference hit, leaving the non-aligned portion. This
process could end up creating different versions of similar or identical putative
accessory portions of proteins based on what aligned to each toxin reference hit.

Once identified, we clustered all accessory sequences based on sequence
homology, generating accessory sequence clusters from which we extracted a
representative sequence and annotated using the whole Pfam HMMs database.

We generated 2,566 accessory sequences from the 1,225 outlier sequences (as
we chose to keep any possible accessory sequences per outlier according to the
DIAMOND BLAST result). We further clustered these accessory sequences into
accessory sequence clusters (ASCs) and extracted one representative sequence
for each cluster using mmseqs2 easy-cluster (version 14.7e284) pejmi21. We

obtained 371 accessory sequence clusters.

Analyzing accessory sequence clusters

We concluded this work by analyzing the ASCs we generated from our custom
venom protein dataset. We sought to investigate the potential functions
associated with accessory sequences, as well as their distribution and

conservation across species and associated toxins.
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Filtering out accessory sequence clusters annotated with
toxin-associated Pfam

We annotated the representative sequences from the 371 ASCs against the
Pfam.hmm database 141. 288 sequences were assigned with one Pfam annotation.
We decided to consider any annotation with an E-value greater than 187° as
having no Pfam annotation, as this is a low-confidence annotation.

We identified a list of 481 Pfam annotations that are associated with toxins by
combining the lists of Pfams associated with the proteins of the “venom proteins
and toxins” database, and the curated list provided in a useful reference paper r1s).
According to that list, 80 representative sequences of ASCs were annotated with
a toxin-associated Pfam. We filtered out these sequences and their associated
ASCs for the rest of the analysis.

Investigating the species and toxin diversity within each
accessory sequence clusters

For each accessory sequence cluster (ASC), we determined the number of
species the clustered accessory sequences originated from as well as the number
of different toxins the clustered accessory sequences have been associated with.

Additional methods

We used ChatGPT to write some code and add comments to our code.

The results

Length-based outlier search identifies venom toxin
proteins that may have acquired accessory
sequences

Our strategy to identify possible fusion events between toxins and other genes is
to screen multiple venom transcriptome datasets for proteins that contain a
known toxin component and stand out as length outliers among their homologs.

To start this search, we compiled protein sequences from 124 species’ venom
glands and from the salivary glands of 21 tick species, collecting them in a custom
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“venom proteins from transcriptomes” dataset. In parallel, we generated a
reference toxin database by clustering the “VYenom proteins and toxins” database

from UniProt’s animal toxin annotation project (Tox-Prot) and keeping one single

representative toxin sequence per cluster. We used our custom protein dataset
from venoms to query the reference toxin database. This allowed us to identify
the proteins with known toxin sequences in venoms and infer the types of toxin
present. We identified 33,515 venom toxin proteins in our custom dataset and
sorted them into 394 toxin groups based on homology to a unique toxin from the
reference database for each group. The size of these groups ranged from one
protein (68 groups) to 3,786 proteins (one group). Since we wanted to find group
outliers, we omitted any group that contained fewer than five proteins and kept
236 groups.
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Figure 3. Size ratio distribution of proteins in toxin clusters.

Orange points represent length outliers. Hover over a point to see the protein’s ID in our dataset.
View a static version or open the interactive version in a new tab.

To identify length-based outliers, we considered the length ratio of each protein
to its group-associated reference toxin (see “Identifying protein length outliers in

toxin groups” for how we define outliers). Figure 3 depicts the size distribution of

"
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proteins across 10 different groups, four of which contained outliers. We
identified 1,225 outliers that come from 123 different groups, are part of around
30 different categories of toxins, and involve 60 different species (Figure 4). 71%
of the outliers were among tick species, with patterns that seem consistent across
multiple species, suggesting the possibility that ticks have a higher proportion of
gene fusions than other venomous species.
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Figure 4. Map of toxin outliers and associated species.

This interactive figure shows the outliers we found in different species (x-axis) within each group

where outliers have been found (y-axis). Each group is identified by its associated reference toxin
and we've colored data points by taxon. Hover over a point to see each protein sequence’s taxon,

species, functional category, and UniProt ID. View a static version or open the interactive version in

a new tab.
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Altogether, we have been able to identify toxins that are significantly longer than
most of their homologs. All these outliers are candidates for further investigation
to learn about the non-toxin portion of their sequence, which we refer to as the
“accessory sequence.”

Pfam annotation of accessory sequences offers
limited information about potential function

After BLASTing our outlier sequences against UniProt’s curated toxin database,
we extracted each outlier’s associated accessory sequences (the protein
sequence minus the segment or segments that align with a toxin). Consequently,
we sometimes obtained multiple accessory sequences for a given outlier.
Eventually, we generated 2566 accessory sequences and used sequence
homology to cluster them into 371 accessory sequence clusters, further referred
to as ASCs (see “Extracting_and clustering outlier accessory sequences” for more

details). Cluster size ranges from one accessory sequence (110 clusters) to 170
accessory sequences (one cluster) (Figure 5).

Since the goal of this work was to find novel protein functions that modulate host
physiology, we next sought to understand what each of our putative toxin
accessory domains does in the hope that something useful or intriguing might
pop out at us. We annotated one representative accessory sequence for each
cluster using HMMER (version 3.3.2) and the whole Pfam database [141. 125
representative sequences obtained a Pfam annotation with an E-value lower than
1075, our chosen threshold to select for real matches with confidence. Relying on
the UniProt-curated “Venom proteins and toxins” database and additional

annotations [1s}, we generated a list of Pfam annotations that are known to be
associated with toxins. Using this list, we further identified which accessory
sequence clusters are annotated as toxin-associated, non-toxin-associated, or had
no Pfam annotation (Figure 5). Overall, 8® ASCs were annotated as toxin-
associated, suggesting that our workflow did not fully remove all toxin sequences,
either because a single toxin can contain multiple toxin domains and we missed
some or that the “toxin” portion of some sequences extends beyond the area that
aligned with the reference sequence. We omitted these ASCs for the rest of the
analysis.
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291 accessory sequence clusters had either no Pfam annotation or a non-toxin
annotation. 45 of them have a non-toxin annotation, and these span 30 different
Pfam annotation categories (see these data in “Table-
2_Summary_metrics_accessory_sequence_clusters_.csv” on GitHub). Most Pfam

annotations are “domains” (collections of related sequence regions that form a
distinct structural unit), some are “families” (collections of related sequence
regions that may contain one or more domains, but where there is insufficient
evidence to support subdivision), and some are repeats.

While multiple annotations point to domains associated with signaling, signal
transduction, or protein-protein interactions, these annotations are pretty general
and hard to interpret, especially as they indicate functions that can also be found

in toxins.

Overall, it is challenging to obtain reliable information about the potential
functions carried out by accessory sequences through Pfam annotation. Another
solution could be to perform a protein BLAST against the non-redundant protein
database [161. This could identify sequence matches between the accessory
sequences and annotated non-toxin proteins, informing us of the nature and
function of the accessory sequence. However, our putative accessory sequences
are portions of proteins that are very likely to be present in the non-redundant
database (or homologs from closely related species), so our queries would likely
just align with those full-length proteins.

Altogether, current sequence-based annotation had limited success in identifying
reliable annotated domains and functions for the accessory sequences, making it
challenging to conclude that these toxin length outliers emerge from an actual
gene fusion.
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Figure 5. Distribution of putative accessory sequence cluster length.

This histogram shows how many clusters (y-axis) contain a given number of accessory sequences
(x-axis).

Cross-species convergence of accessory sequences
1s limited to closely related species

The functional annotations of the putative accessory sequences didn’t contain
any strong clues, but we thought we might zero in on exciting functionality by
determining which of these sequences are present across venoms from many
species and types of toxins (and therefore likely important). Such convergent
evolution of accessory sequences would suggest an evolutionary benefit, pointing
us to globally important accessory functions in venoms.

For 224 of our 291 clusters, we noticed that the accessory sequence derived from
a single outlier sequence (but not from the same outlier for all clusters). This is
because we decided to keep all the possible accessory sequences for each outlier
based on alignment results, ensuring that we investigated all possible accessory
sequences and increasing our chances of identifying something of interest. For
some outliers, this led us to include multiple very similar accessory sequences,
some differing by only a few amino acids. Each of these 224 clusters is inherently
associated with a single species and a single toxin, and they don’t provide any
workable information regarding convergence of accessory sequences so we
removed them for the rest of the analysis. However, the fact that 77% of the



accessory sequence clusters are associated with individual outlier proteins
suggests that convergence of accessory sequence is likely uncommon.

We calculated the number of different species represented in each of the
remaining 67 clusters. The number of different species identified per cluster
ranges from one species (20 clusters) to 10 species (one cluster) (Figure 6 and
“Table-1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). 16

clusters are associated with more than three species. When multiple species are
present, they are part of the same group. For instance, in 11 clusters with
accessory sequences from more than three species, all the species are ticks. In
four clusters, the only species represented are snakes, sometimes from the same
family (e.qg., cluster 61 contains sequences from eight species across four genera
of Viperidae snakes).

Overall, we found that accessory sequences that cluster together are usually from
the same species or group of species, suggesting some low amount of
convergence of accessory sequences across closely related species, and very little
or no convergence across a broader range of phylogenetically distant species.

Only one cluster (cluster 19) contained two outliers from species from different
groups: the spider species Latrodectus tredecimguttatus and the snake species
Bungarus multicinctus. These outlier sequences are associated with the same
toxin, a galactose-specific lectin called nattectin. Protein BLAST of the accessory
sequence yields the best matches with other lectin proteins in spiders
(macrophage mannose receptor or secretory phospholipase A2 receptor) with best
identity matches of 59% and 52%. This suggests that the whole protein is part of
the lectin family for both L. tredecimguttatus and B. multicinctus, including the
portion we thought could have been an accessory sequence. Moreover, the
transcriptome data we obtained for B. multicinctus is the only dataset that wasn’t
restricted to the venom gland and contained protein information from other
tissues. As lectins represent a major protein family and they’re present in many
tissues and not restricted to toxin activity, it is possible that non-toxin lectins
from this species have been incorrectly assigned to a toxin group.
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Figure 6. Summary of characteristic metrics of accessory sequence clusters.

Histogram of the number of different species per accessory sequence cluster.

While accessory sequences appear to be species-specific, this doesn’t exclude
the possibility that they can be shared across different toxins. To test this
hypothesis, we looked at each of the 67 ASCs and determined how many different
toxins are associated with each accessory sequence (see “Table-
1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). Strikingly,

most of the accessory sequence clusters are associated with single toxins (61
clusters). The highest number of different toxins found in a cluster is just two (six
clusters). For these clusters, the identified toxins are from the same toxin family
(clusters 48 and 4: veficolin, cluster 56: protease inhibitor, clusters 32 and 60:
thrombin-like enzyme, cluster 59: venom serine protease). Altogether, this
undeniably shows the toxin-specificity of accessory sequences.

Overall, by investigating the diversity of species and toxins found in each ASC,
we've demonstrated that there is little convergence of toxin-associated accessory

sequences across species and toxins.

Key takeaways

In this work, we sought to identify conserved venom proteins with interesting
toxin-facilitating functions. Our strategy relied on screening venom
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transcriptomes to identify toxin proteins potentially fused with extra domains, and
then looking for patterns in the distribution or conservation of these accessory
domains across a broad range of species.

While our approach identified multiple candidates, analysis of these accessory
sequences showed that they are poorly conserved across distant venomous
species and highly specific to the toxin they are associated with, refuting the
hypothesis that venomous species share fused domains that facilitate the action

of toxins.

Our ability to interpret the potential function of these candidate accessory
sequences was limited. Currently available sequence-based annotation methods
were insufficient for our purposes, highlighting the need for alternative or
improved annotation tools.

Finally, ticks stood out as the organisms with the most length outliers, and their
accessory sequences appear to be conserved across tick species. This strongly
suggests that ticks have evolved specific sets of toxins that are divergent from
other venomous species and that could carry out different or modified functions.

Next steps

We found poor conservation of toxin-associated accessory sequences, and
couldn’t confidently identify specific functions associated with these sequences.
Because of current limitations in computationally predicting protein function, we
are not pursuing this project further. However, others interested in this subject
might consider a couple of directions to take the project one step further.

One obvious direction would be to develop better approaches to characterize the
functions associated with identified accessory sequences. An alternative
approach to sequence-based annotation that would be particularly relevant in this
field would be structural analysis of the toxin and their accessory sequences, as
protein structure is crucial for their proper function, especially for proteins that
are known to interact with other proteins or molecules. This could reveal whether
the accessory portion of the protein has a similar structure to other proteins with
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known functions. Comparing structures of length outliers to structures of
homologs without extensions could also show how the additional sequence
affects the overall structure of the toxin and might hint at how it impacts activity.

Because our datasets were mostly associated with snakes, the most-studied
venomous animals, this work is biased toward snake species. Venomous species
are incredibly abundant on Earth, so it could be informative to extend this analysis
to less studied venoms as more sequencing data becomes available.

Finally, our project assumed that some toxin-facilitating functions would come
from additional amino acids fused to toxins that can also exist in a standalone
context. Our findings don’t refute the possibility that broadly conserved
facilitating functions could exist without being cleanly segmented within toxin
sequences. Amino acids that confer additional function may be indissociable from
the toxin sequence. Identifying whether some toxins have more subtly evolved
added functionality would require an in-depth structural analysis of toxins and
analysis of protein-protein interactions between toxins and their potential targets.

Contributors (A-Z)

Adair L. Borges: Critical Feedback

Rachel J. Dutton: Conceptualization, Supervision

Megan L. Hochstrasser: Editing, Visualization

Elizabeth A. McDaniel: Methodology, Software

Manon Morin: Formal Analysis, Investigation, Methodology, Visualization, Writing

Dennis A. Sun: Visualization

References

1. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ,
Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. (2009). The
Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms.
https:/doi.org/10.1146/annurev.genom.9.081307.164356

20


https://doi.org/10.1146/annurev.genom.9.081307.164356

10.

11.

12.

13.

14.

15.

Schendel V, Rash LD, Jenner RA, Undheim EAB. (2019). The Diversity of Venom: The
Importance of Behavior and Venom System Morphology in Understanding Its
Ecology and Evolution. https:/doi.org/10.3390/toxins1111066 6

Surm JM, Moran Y. (2021). Insights into how development and life-history dynamics
shape the evolution of venom. https:/doi.org/10.1186/s13227-020-00171-w

Zancolli G, Reijnders M, Waterhouse RM, Robinson-Rechavi M. (2021). Convergent
evolution of venom gland transcriptomes across Metazoa.
https:/doi.org/10.1101/2021.07.04.45104 8

Girish K, Jagadeesha D, Rajeev K, Kemparaju K. (2002). Snake venom hyaluronidase:
An evidence for isoforms and extracellular matrix degradation.
https:/doi.org/10.1023/2:10206 51607164

Mansfield MJ, Doxey AC. (2018). Genomic insights into the evolution and ecology of
botulinum neurotoxins. https:/doi.org/10.18093/femspd/fty840

Jungo F, Bairoch A. (2005). Tox-Prot, the toxin protein annotation program of the
Swiss-Prot protein knowledgebase. https:/doi.org/10.18016/j.toxicon.2004.10.018

https:/github.com/transdecoder/transdecoder

Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges
SB. (2022). TimeTree 5: An Expanded Resource for Species Divergence Times.
https:/doi.org/10.1893/molbev/msaci74

Steinegger M, Soding J. (2017). MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. https:/doi.org/10.1838/nbt.3988

Steinegger M, Soding J. (2018). Clustering huge protein sequence sets in linear
time. https:/doi.org/10.1838/s41467-018-04964-5

Mirdita M, Steinegger M, Soding J. (2019). MMseqs2 desktop and local web server
app for fast, interactive sequence searches.
https:/doi.org/10.189 3/bioinformatics/bty1057

Buchfink B, Reuter K, Drost H-G. (2021). Sensitive protein alignments at tree-of-life
scale using DIAMOND. https:/doi.org/10.1838/s41592-021-01101-x

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G, Sonnhammer ELL, Tosatto
SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. (2020). Pfam: The protein
families database in 2021. https:/doi.org/10.1893/nar/gkaa%?13

Negi SS, Schein CH, Ladics GS, Mirsky H, Chang P, Rascle J-B, Kough J, Sterck L,
Papineni S, Jez JM, Pereira Mouriés L, Braun W. (2017). Functional classification of

21


https://doi.org/10.3390/toxins11110666
https://doi.org/10.1186/s13227-020-00171-w
https://doi.org/10.1101/2021.07.04.451048
https://doi.org/10.1023/a:1020651607164
https://doi.org/10.1093/femspd/fty040
https://doi.org/10.1016/j.toxicon.2004.10.018
https://github.com/transdecoder/transdecoder
https://doi.org/10.1093/molbev/msac174
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1093/bioinformatics/bty1057
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1093/nar/gkaa913

16.

protein toxins as a basis for bioinformatic screening. https:/doi.org/10.1038/s41598-
017-13957-1

Pruitt KD. (2004 ). NCBI Reference Sequence (RefSeq): a curated non-redundant
sequence database of genomes, transcripts and proteins.
https:/doi.org/10.1893/nar/gki®25

22


https://doi.org/10.1038/s41598-017-13957-1
https://doi.org/10.1038/s41598-017-13957-1
https://doi.org/10.1093/nar/gki025

