
Identifying candidate
accessory domains by mining
putative venom protein
fusions

Hoping to find proteins that alter physiology in useful ways, we

screened venom data sets for toxins fused to domains with

additional functionality. We identified candidates, but struggled

to infer any novel functions, and none seem well-conserved

across venomous species.

Purpose
Animal venoms are complex mixtures of mainly toxin proteins and peptides that

can broadly interfere with host physiology. While toxins are the most well-

characterized proteins in venoms, there is evidence that molecules facilitating

toxin activity are present as well. We decided to search for toxin-like or toxin

proteins with extra accessory domains with interesting functions (especially toxin-

facilitating functions). Based on evolutionary precedent in bacteria, we thought we

might find novel accessory proteins/domains by searching for uncharacterized

domains fused to known toxins.

We developed a computational strategy to screen for potential gene fusion events

and identified 1,225 possible candidates across 145 species. The accessory

portions of the identified proteins are not well-conserved nor broadly conserved

across venomous species. We tried sequence-based analysis (BLASTp and HMM)
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but ran into issues with annotating sequences of potential accessory domains.

Most had only a very general or low-confidence predicted function. We are

working to refine functional annotation as a whole, and this project further

emphasized the need for new or improved solutions to functional prediction.

While we don’t plan to follow up on this work, we’re sharing our results in case

they may be useful for those studying venom biology or perhaps to the functional

annotation community.

All associated code and metadata are available in this GitHub repository.

You can access data from this pub on Zenodo, including FASTA files
containing representative sequences of the clustered toxin reference
database, our custom venom and tick toxin dataset, and the accessory
sequences of the toxin outliers.

We’ve put this effort on ice! 🧊

Background and goals
Venoms are secretions that an animal produces in a specialized gland that are

delivered to a target animal through a wound — they contain molecules that

disrupt normal physiology to assist feeding or defense [1]. A single venom can

contain hundreds of different toxins, and the ability to produce venom has

evolved independently more than 100 times across the tree of life [2]. There has

been a lot of convergent evolution across venom toxin proteins, which target key

aspects of host physiology (neurological functions, the cardiovascular system,

homeostasis, etc.) [3][4].

Additional venom proteins are known to facilitate the action of toxins. For

instance, hyaluronidases are found in multiple venoms across species. Their

hyaluronic acid hydrolysis activity is described as a “spreading agent,” facilitating

toxin diffusion through the prey’s skin layers [5]. While a great deal of work has
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focused on venom toxins, little is known about other functional molecules,

particularly those with toxin-facilitating functions, in venoms.

For bacterial botulinum neurotoxins produced by Clostridium species, non-toxin

proteins are known to be essential for the toxins’ activity. The neurotoxin-

associated proteins NTNH, HA, and ORFX play important roles to help the

botulinum neurotoxin survive the acidic environment of the digestive tract (NTNH)

and cross the intestinal barrier (HA). These neurotoxin-associated proteins have

emerged from either toxin gene duplication followed by divergence (NTNH) or

gene fusion between clostridial toxins and pre-existing HA and ORFX genes,

which played other roles in Clostridium [6].

By combining old parts to make something new, gene fusion is an efficient

mechanism of evolutionary innovation, generating proteins with complex

structures and functions. We sought to understand whether similar fusion

scenarios between a toxin and another accessory protein have happened in

animal venoms, and whether such gene fusions may have evolved convergently in

multiple venoms.

There are no set and simple methods to identify gene fusion events and they are

rarely investigated at the protein level, but rather at the gene or transcript level.

We anticipate that any protein resulting from a fusion event between a toxin and

another protein will emerge as a length outlier among its toxin homologs. We

screened 145 species’ venom transcriptome public datasets (that provide the

protein content information of venoms), to identify possible venom proteins that

result from the association of a toxin domain and an accessory domain as

identified length outliers in their toxin category. For such proteins, we further

investigate the accessory sequences to determine (i) whether they are found

broadly across different venoms, (ii) whether they are associated with multiple

toxin types, and (iii) whether we can infer their functions.

While focused on gene fusion involving toxins in venoms, this work provides a

general framework for screening evolutionary innovation through gene fusion.
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The approach
The overarching goal of this work is to determine whether proteins resulting from

the fusion of a toxin and another protein with an accessory function are found in

venoms and whether any accessory functions are convergent across species.

As we can infer predicted protein sequences from transcriptomes, we started by

generating a custom dataset of venom proteins from available venom gland or

salivary gland transcriptomes (145 species) (Figure 1). In parallel, we clustered the

toxin reference database, a curated database that is part of UniProt’s animal toxin

annotation project (Tox-Prot) [7], and further refer to it as the “Venom proteins and

toxins” database. We next compared our custom dataset to this database to find

sequence-based similarities between our custom dataset proteins and the

reference toxins. We thereby generated groups of related proteins where each

group contains at least one protein from our custom dataset and is characterized

by a single toxin of the toxin reference database. We then identified proteins

emerging as length outliers within each group independently. We continued the

analysis by extracting the “non-toxin” sequences (the putative accessory

sequences) of each outlier. We further clustered accessory sequences based on

their sequence homology. We isolated a representative sequence for each

accessory cluster and conducted Pfam annotation in an attempt to identify

accessory domains. Finally, we investigated whether these accessory sequences

are broadly shared or specific to venomous species or known toxins.
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Figure 1. Overview of computational workflow.

Read about our methods in detail below or skip straight to “The results.”

Creating the custom venom transcriptome dataset
We first downloaded proteins or transcribed RNA datasets from venom glands or

salivary glands. We downloaded protein accessions or transcribed RNA files from

transcriptome shotgun assemblies (TSA) datasets for transcriptomes that are
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publicly available and listed them in the metadata file,

“SRA_TSA_venom_gland_accessions.csv.”

Many species were associated with accessions with already-called predicted

proteins. For each of these species, we generated a FASTA file that contains all

proteins in the TSA, titled by the species name. Other species only had

accessions with transcriptome data without called proteins. After downloading the

transcribed sequences for each of these species’ individual FASTA files, we used

TransDecoder (version 5.7.0) [8] to obtain predicted ORFs/proteins.

Overall, we obtained protein sequences for the venom glands of 124 species and

from the salivary glands of 21 tick species (Figure 2). We generated Figure 2 using

TimeTree [9] and the phylogenetic tree viewer software FigTree (version 2018-11-

25 - v1.4.4). We pooled all the protein FASTA files into a single FASTA file that

represents our custom “venom proteins from transcriptomes” dataset, the starting

point for the rest of the analysis.
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Figure 2. Phylogenetic tree of the species included in this work.

Species have been collapsed into larger groups of species categories. We generated this tree using
TimeTree and available information regarding the different species. We further edited the tree to
collapse species into groups using FigTree. Because no genetic information was available for some
species, this tree is actually missing two groups: crustacean (one species: Xibalbanus tulumensis)
and bloodworm (one species: ​​Glycera tridactyla).

Searching the custom venom proteins against the
UniProt venom proteins and toxins reference
database
In UniProt, the animal toxin annotation project contains a manually curated

database of proteins and toxins from various venoms. We used this curated

database as our reference toxin database and refer to it as the “venom proteins

and toxins” database in this work. As we expect this database to contain identical

or similar homologs, we clustered it using mmseqs2 easy-cluster  (version

14.7e284) [10][11][12], and kept only one representative sequence per cluster to

remove redundancy. Out of the original 7736 sequences of the “venom proteins

and toxins” database, we obtained 1645 clusters and thus 1645 reference

sequences. We then used mmseqs2 createdb  to generate a toxin reference

database from these sequences.
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We further used mmseqs2 easy-search  [10][11][12] to search this query toxin

reference database against the target database: our custom venom proteins

dataset. During this search, we aligned each venom protein to each

representative sequence of the toxin reference database to find possible matches

and generate alignment scores.

Ultimately, 33,515 proteins from our custom venom proteins dataset got at least

one hit in the toxin reference database.

Identifying protein length outliers in toxin groups
As each protein from the custom venom protein dataset may have yielded

multiple matches with the reference database, we kept only one hit per venom

protein, corresponding to the hit with the lowest E-value. Then we defined a

“toxin group” as any ensemble of all the venom proteins that hit the same

representative toxin from the toxin reference database. Consequently, each toxin

group contains at least one venom protein and is characterized by a reference

toxin protein. Altogether, we generated 394 groups.

We filtered out any group that contained less than five venom protein sequences,

which left us with 236 groups. For each venom protein, we calculated its length

ratio compared to the group-associated reference toxin. We further used this

length ratio as the metric to identify length outliers within each cluster.

In each cluster, an outlier is defined as any venom protein that meets both of

these criteria:

Soft outlier criteria: Length-ratio greater than Q3 + 1.5*IQ (Q3: 3rd quartile
of the group length-ratios distribution, IQ: the interquartile range)

Minimal ratio criteria: Length-ratio greater than 1.5

We identified 1,225 outlier sequences out of 33,207 sequences, which you can

find in the file, “Venomproteins_ticks_toxins_outliers_June2023.csv.” We isolated

the amino acid sequences of these outliers to identify accessory sequences, as

described below.
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Extracting and clustering outlier accessory
sequences
We next identified and extracted the accessory sequences from the identified

outlier sequences. Accessory sequences are defined as any sequence that doesn’t

match a reference representative sequence from the toxin reference database.

We used DIAMOND (version 2.1.6) [13] to create DIAMOND individual databases of

the 1,225 outlier sequences and of the toxin reference database, and to further

perform a protein BLAST (BLASTp) of the outlier sequences against the reference

toxin sequences.

Our strategy was to extract putative accessory sequences for every hit obtained

for each outlier sequence and generate a multi-FASTA file. For every DIAMOND

hit against the toxin reference sequences, we removed the portion of the venom

protein that aligned to the reference hit, leaving the non-aligned portion. This

process could end up creating different versions of similar or identical putative

accessory portions of proteins based on what aligned to each toxin reference hit.

Once identified, we clustered all accessory sequences based on sequence

homology, generating accessory sequence clusters from which we extracted a

representative sequence and annotated using the whole Pfam HMMs database.

We generated 2,566 accessory sequences from the 1,225 outlier sequences (as

we chose to keep any possible accessory sequences per outlier according to the

DIAMOND BLAST result). We further clustered these accessory sequences into

accessory sequence clusters (ASCs) and extracted one representative sequence

for each cluster using mmseqs2 easy-cluster  (version 14.7e284) [10][11][12]. We

obtained 371 accessory sequence clusters.

Analyzing accessory sequence clusters
We concluded this work by analyzing the ASCs we generated from our custom

venom protein dataset. We sought to investigate the potential functions

associated with accessory sequences, as well as their distribution and

conservation across species and associated toxins.
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Filtering out accessory sequence clusters annotated with
toxin-associated Pfam
We annotated the representative sequences from the 371 ASCs against the

Pfam.hmm database [14]. 288 sequences were assigned with one Pfam annotation.

We decided to consider any annotation with an E-value greater than 10  as

having no Pfam annotation, as this is a low-confidence annotation.

We identified a list of 481 Pfam annotations that are associated with toxins by

combining the lists of Pfams associated with the proteins of the “venom proteins

and toxins” database, and the curated list provided in a useful reference paper [15].

According to that list, 80 representative sequences of ASCs were annotated with

a toxin-associated Pfam. We filtered out these sequences and their associated

ASCs for the rest of the analysis.

Investigating the species and toxin diversity within each
accessory sequence clusters
For each accessory sequence cluster (ASC), we determined the number of

species the clustered accessory sequences originated from as well as the number

of different toxins the clustered accessory sequences have been associated with.

Additional methods
We used ChatGPT to write some code and add comments to our code.

The results

Length-based outlier search identifies venom toxin
proteins that may have acquired accessory
sequences
Our strategy to identify possible fusion events between toxins and other genes is

to screen multiple venom transcriptome datasets for proteins that contain a

known toxin component and stand out as length outliers among their homologs.

To start this search, we compiled protein sequences from 124 species’ venom

glands and from the salivary glands of 21 tick species, collecting them in a custom

-5
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“venom proteins from transcriptomes” dataset. In parallel, we generated a

reference toxin database by clustering the “Venom proteins and toxins” database

from UniProt’s animal toxin annotation project (Tox-Prot) and keeping one single

representative toxin sequence per cluster. We used our custom protein dataset

from venoms to query the reference toxin database. This allowed us to identify

the proteins with known toxin sequences in venoms and infer the types of toxin

present. We identified 33,515 venom toxin proteins in our custom dataset and

sorted them into 394 toxin groups based on homology to a unique toxin from the

reference database for each group. The size of these groups ranged from one

protein (68 groups) to 3,786 proteins (one group). Since we wanted to find group

outliers, we omitted any group that contained fewer than five proteins and kept

236 groups.

Figure 3. Size ratio distribution of proteins in toxin clusters.

Orange points represent length outliers. Hover over a point to see the protein’s ID in our dataset.
View a static version or open the interactive version in a new tab.

To identify length-based outliers, we considered the length ratio of each protein

to its group-associated reference toxin (see “Identifying protein length outliers in

toxin groups” for how we define outliers). Figure 3 depicts the size distribution of
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proteins across 10 different groups, four of which contained outliers. We

identified 1,225 outliers that come from 123 different groups, are part of around

30 different categories of toxins, and involve 60 different species (Figure 4). 71%

of the outliers were among tick species, with patterns that seem consistent across

multiple species, suggesting the possibility that ticks have a higher proportion of

gene fusions than other venomous species.
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Figure 4. Map of toxin outliers and associated species.

This interactive figure shows the outliers we found in different species (x-axis) within each group
where outliers have been found (y-axis). Each group is identified by its associated reference toxin
and we’ve colored data points by taxon. Hover over a point to see each protein sequence’s taxon,
species, functional category, and UniProt ID. View a static version or open the interactive version in
a new tab.
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Altogether, we have been able to identify toxins that are significantly longer than

most of their homologs. All these outliers are candidates for further investigation

to learn about the non-toxin portion of their sequence, which we refer to as the

“accessory sequence.”

Pfam annotation of accessory sequences offers
limited information about potential function
After BLASTing our outlier sequences against UniProt’s curated toxin database,

we extracted each outlier’s associated accessory sequences (the protein

sequence minus the segment or segments that align with a toxin). Consequently,

we sometimes obtained multiple accessory sequences for a given outlier.

Eventually, we generated 2566 accessory sequences and used sequence

homology to cluster them into 371 accessory sequence clusters, further referred

to as ASCs (see “Extracting and clustering outlier accessory sequences” for more

details). Cluster size ranges from one accessory sequence (110 clusters) to 170

accessory sequences (one cluster) (Figure 5).

Since the goal of this work was to find novel protein functions that modulate host

physiology, we next sought to understand what each of our putative toxin

accessory domains does in the hope that something useful or intriguing might

pop out at us. We annotated one representative accessory sequence for each

cluster using HMMER (version 3.3.2) and the whole Pfam database [14]. 125

representative sequences obtained a Pfam annotation with an E-value lower than

10 , our chosen threshold to select for real matches with confidence. Relying on

the UniProt-curated “Venom proteins and toxins” database and additional

annotations [15], we generated a list of Pfam annotations that are known to be

associated with toxins. Using this list, we further identified which accessory

sequence clusters are annotated as toxin-associated, non-toxin-associated, or had

no Pfam annotation (Figure 5). Overall, 80 ASCs were annotated as toxin-

associated, suggesting that our workflow did not fully remove all toxin sequences,

either because a single toxin can contain multiple toxin domains and we missed

some or that the “toxin” portion of some sequences extends beyond the area that

aligned with the reference sequence. We omitted these ASCs for the rest of the

analysis.
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291 accessory sequence clusters had either no Pfam annotation or a non-toxin

annotation. 45 of them have a non-toxin annotation, and these span 30 different

Pfam annotation categories (see these data in “Table-

2_Summary_metrics_accessory_sequence_clusters_.csv” on GitHub). Most Pfam

annotations are “domains” (collections of related sequence regions that form a

distinct structural unit), some are “families” (collections of related sequence

regions that may contain one or more domains, but where there is insufficient

evidence to support subdivision), and some are repeats.

While multiple annotations point to domains associated with signaling, signal

transduction, or protein-protein interactions, these annotations are pretty general

and hard to interpret, especially as they indicate functions that can also be found

in toxins.

Overall, it is challenging to obtain reliable information about the potential

functions carried out by accessory sequences through Pfam annotation. Another

solution could be to perform a protein BLAST against the non-redundant protein

database [16]. This could identify sequence matches between the accessory

sequences and annotated non-toxin proteins, informing us of the nature and

function of the accessory sequence. However, our putative accessory sequences

are portions of proteins that are very likely to be present in the non-redundant

database (or homologs from closely related species), so our queries would likely

just align with those full-length proteins.

Altogether, current sequence-based annotation had limited success in identifying

reliable annotated domains and functions for the accessory sequences, making it

challenging to conclude that these toxin length outliers emerge from an actual

gene fusion.
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Figure 5. Distribution of putative accessory sequence cluster length.

This histogram shows how many clusters (y-axis) contain a given number of accessory sequences
(x-axis).

Cross-species convergence of accessory sequences
is limited to closely related species
The functional annotations of the putative accessory sequences didn’t contain

any strong clues, but we thought we might zero in on exciting functionality by

determining which of these sequences are present across venoms from many

species and types of toxins (and therefore likely important). Such convergent

evolution of accessory sequences would suggest an evolutionary benefit, pointing

us to globally important accessory functions in venoms.

For 224 of our 291 clusters, we noticed that the accessory sequence derived from

a single outlier sequence (but not from the same outlier for all clusters). This is

because we decided to keep all the possible accessory sequences for each outlier

based on alignment results, ensuring that we investigated all possible accessory

sequences and increasing our chances of identifying something of interest. For

some outliers, this led us to include multiple very similar accessory sequences,

some differing by only a few amino acids. Each of these 224 clusters is inherently

associated with a single species and a single toxin, and they don’t provide any

workable information regarding convergence of accessory sequences so we

removed them for the rest of the analysis. However, the fact that 77% of the
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accessory sequence clusters are associated with individual outlier proteins

suggests that convergence of accessory sequence is likely uncommon.

We calculated the number of different species represented in each of the

remaining 67 clusters. The number of different species identified per cluster

ranges from one species (20 clusters) to 10 species (one cluster) (Figure 6 and

“Table-1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). 16

clusters are associated with more than three species. When multiple species are

present, they are part of the same group. For instance, in 11 clusters with

accessory sequences from more than three species, all the species are ticks. In

four clusters, the only species represented are snakes, sometimes from the same

family (e.g., cluster 61 contains sequences from eight species across four genera

of Viperidae snakes).

Overall, we found that accessory sequences that cluster together are usually from

the same species or group of species, suggesting some low amount of

convergence of accessory sequences across closely related species, and very little

or no convergence across a broader range of phylogenetically distant species.

Only one cluster (cluster 19) contained two outliers from species from different

groups: the spider species Latrodectus tredecimguttatus and the snake species

Bungarus multicinctus. These outlier sequences are associated with the same

toxin, a galactose-specific lectin called nattectin. Protein BLAST of the accessory

sequence yields the best matches with other lectin proteins in spiders

(macrophage mannose receptor or secretory phospholipase A2 receptor) with best

identity matches of 59% and 52%. This suggests that the whole protein is part of

the lectin family for both L. tredecimguttatus and B. multicinctus, including the

portion we thought could have been an accessory sequence. Moreover, the

transcriptome data we obtained for B. multicinctus is the only dataset that wasn’t

restricted to the venom gland and contained protein information from other

tissues. As lectins represent a major protein family and they’re present in many

tissues and not restricted to toxin activity, it is possible that non-toxin lectins

from this species have been incorrectly assigned to a toxin group.
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Figure 6. Summary of characteristic metrics of accessory sequence clusters.

Histogram of the number of different species per accessory sequence cluster.

While accessory sequences appear to be species-specific, this doesn’t exclude

the possibility that they can be shared across different toxins. To test this

hypothesis, we looked at each of the 67 ASCs and determined how many different

toxins are associated with each accessory sequence (see “Table-

1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). Strikingly,

most of the accessory sequence clusters are associated with single toxins (61

clusters). The highest number of different toxins found in a cluster is just two (six

clusters). For these clusters, the identified toxins are from the same toxin family

(clusters 48 and 4: veficolin, cluster 56: protease inhibitor, clusters 32 and 60:

thrombin-like enzyme, cluster 59: venom serine protease). Altogether, this

undeniably shows the toxin-specificity of accessory sequences.

Overall, by investigating the diversity of species and toxins found in each ASC,

we’ve demonstrated that there is little convergence of toxin-associated accessory

sequences across species and toxins.

Key takeaways
In this work, we sought to identify conserved venom proteins with interesting

toxin-facilitating functions. Our strategy relied on screening venom
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transcriptomes to identify toxin proteins potentially fused with extra domains, and

then looking for patterns in the distribution or conservation of these accessory

domains across a broad range of species.

While our approach identified multiple candidates, analysis of these accessory

sequences showed that they are poorly conserved across distant venomous

species and highly specific to the toxin they are associated with, refuting the

hypothesis that venomous species share fused domains that facilitate the action

of toxins.

Our ability to interpret the potential function of these candidate accessory

sequences was limited. Currently available sequence-based annotation methods

were insufficient for our purposes, highlighting the need for alternative or

improved annotation tools.

Finally, ticks stood out as the organisms with the most length outliers, and their

accessory sequences appear to be conserved across tick species. This strongly

suggests that ticks have evolved specific sets of toxins that are divergent from

other venomous species and that could carry out different or modified functions.

Next steps
We found poor conservation of toxin-associated accessory sequences, and

couldn’t confidently identify specific functions associated with these sequences.

Because of current limitations in computationally predicting protein function, we

are not pursuing this project further. However, others interested in this subject

might consider a couple of directions to take the project one step further.

One obvious direction would be to develop better approaches to characterize the

functions associated with identified accessory sequences. An alternative

approach to sequence-based annotation that would be particularly relevant in this

field would be structural analysis of the toxin and their accessory sequences, as

protein structure is crucial for their proper function, especially for proteins that

are known to interact with other proteins or molecules. This could reveal whether

the accessory portion of the protein has a similar structure to other proteins with
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known functions. Comparing structures of length outliers to structures of

homologs without extensions could also show how the additional sequence

affects the overall structure of the toxin and might hint at how it impacts activity.

Because our datasets were mostly associated with snakes, the most-studied

venomous animals, this work is biased toward snake species. Venomous species

are incredibly abundant on Earth, so it could be informative to extend this analysis

to less studied venoms as more sequencing data becomes available.

Finally, our project assumed that some toxin-facilitating functions would come

from additional amino acids fused to toxins that can also exist in a standalone

context. Our findings don’t refute the possibility that broadly conserved

facilitating functions could exist without being cleanly segmented within toxin

sequences. Amino acids that confer additional function may be indissociable from

the toxin sequence. Identifying whether some toxins have more subtly evolved

added functionality would require an in-depth structural analysis of toxins and

analysis of protein-protein interactions between toxins and their potential targets.
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