
A capsid-based search
recovers viral sequences
from human brain
sequencing data

We implemented a lightweight method to identify viruses
in 342 human brain bulk and single-cell sequencing data
sets, and identified two glioblastoma cells from a single
patient that contained deltapolyomavirus sequences.

Purpose
Viruses have naturally evolved to infect cell types and organ
compartments across the body, making them very effective delivery
systems for genetic medicines. However, tissue-specific targeting is
still a major challenge in this area, and some compartments are
more difficult to target than others. The brain is one of the most
protected organs in the human body, making drug delivery to this
organ a huge challenge. We hoped to identify viruses that evolved
the ability to cross the blood–brain barrier.

We consider it likely that many healthy humans have
latent/asymptomatic viral infections in different organ
compartments, including the brain. We sought to identify viruses
capable of entering the brains of healthy people to determine
molecular signatures of neurotropism. We therefore decided to
implement a method capable of capturing viral genomes from
sequencing data from human tissues and single cells, starting in
human brain datasets.

We implemented a lightweight pipeline that first uses a marker gene-
based approach to identify sequencing libraries containing viral
capsids, and then uses read mapping and assembly to pull out viral
sequences. Using this approach, along with several steps of
aggressive filtering, we found 11 possible hits. We are most
confident that we’ve recovered deltapolyomavirus sequences from
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two glioblastoma cells of a single patient. While the biological
significance of this finding is unclear, we are pleased with how our
approach performed.

We will not be following up on this work at this time due to the
scarcity of appropriate sequencing datasets, and are sharing the
details for others who are interested in similar applications. While
we did not test this approach in other tissue types, we think it could
be used to find viral sequences in other human sequencing datasets.

Access all of our code and data, including our initial capsid
search results, candidate viral capsid reads, capsid
assemblies, read mapping results, and assemblies from
mapped reads in this GitHub repository.

We’ve put this effort on ice! 🧊

Background and goals
A wide variety of diseases stem from pathology or misregulation in
the brain, from neurodegenerative conditions to mood disorders.
Finding methods of delivery that bypass this barrier has historically
been a major challenge, and the toolkit for delivering genetic cargos
to the brain is still very limited. We thought there might be potential
to find new viruses that cross the blood–brain barrier by checking for
traces of their genomes in brain sequencing datasets.

We hypothesized that healthy humans have latent viral infections
that we could detect by analyzing publicly available sequencing
datasets. Indeed, a previous PCR-based survey revealed that ~12% of
human brain tissue samples are positive for adeno-associated virus
(AAV) DNA sequences [1]. A variety of approaches exist for recovering

microbial sequences in human data (e.g. IDseq [2] and PathSeq [3][4]),

and are often applied through the lens of pathogen identification.

We set out to recover viral genomes and define the basis of their
neurotropism (specificity for the brain) by searching brain
sequencing datasets. We therefore created a lightweight pipeline to
mine human brain DNA and RNA sequencing datasets for viral
sequences.
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The approach
We used a lightweight computational approach to rapidly scan
human brain sequencing libraries for the presence of viruses, using
viral capsid proteins as marker genes. After filtering to remove
contaminants and false positives, we used assembly and read
mapping to recover reads of viral origin.

Dataset selection
We initially considered using four types of publicly available
sequencing datasets: Bulk RNA sequencing, bulk DNA sequencing,
single-cell RNA sequencing, and single-cell DNA sequencing. We
decided to survey these different types of data because we had no
idea which type would be most amenable to viral sequence mining.
In bulk tissue sequencing, researchers survey many cells at once,
increasing the odds that a viral genome may be present. In single-
cell sequencing datasets, they cast a much smaller net, but there
may be a more favorable ratio of viral to host nucleic acids. We were
also unsure whether DNA or RNA sequencing would yield more viral
hits. DNA sequencing will catch double-stranded DNA (dsDNA)
viruses, but may not capture single-stranded DNA (ssDNA) viruses
and will definitely miss RNA viruses. RNA sequencing will catch RNA
viruses, but can only capture DNA viruses if they are transcriptionally
active. As we dug further into these data types, we became
concerned that single-cell RNA sequencing datasets may not be
sequenced deeply enough to allow for assembly of viral genes and
genomes. We can leverage single-cell RNA sequencing datasets for
microbial detection (for example, using SIMBA [5]), but we specifically

wanted our pipeline to be able to reconstruct full viral genes and
genomes from sequencing data. This would be impossible with the
short fragments that this type of approach typically returns. We
chose to move forward with only paired-end bulk RNA/DNA
sequencing and paired-end single-cell DNA sequencing.

We curated a list of 561 publicly available sequencing runs (spanning
81 individuals) from the NCBI Sequence Read Archive (SRA). While
our goal was to identify viral genomes from latent infections in
healthy individuals, we also included data from glioblastoma and
COVID-19 patients. More of these patient datasets were available and
they could still contain intriguing hits, they’re just more likely to
include viruses that can only infect people with a compromised
blood–brain barrier and/or immune system. As we began to work
with the data, we found that samples with file sizes larger than three
gigabytes were difficult to work with in our computing setup, due to
increased hard drive space and RAM requirements. We also found
that the deeply sequenced samples appeared to have higher rates of
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background contamination (presumably from sample handling, kit
contamination, and index hopping), as measured by running
sourmash gather  (v4.7.0) [6] on the samples with our SeqQC

contamination database [7]. Higher contamination rates strongly limit

our ability to detect true positives and are a major red flag for us. We
chose to move forward with 319 “small” samples (< 3 GB) and 23
large samples that we had already downloaded and processed. This
left us with a total of 342 sequencing runs.

Computational rationale
In designing our approach, we first aimed to implement a fully
organism-agnostic, database-free pipeline that would be able to
discover any non-human read in sequencing data. We thought this
would cast the broadest net to discover new or unusual viral agents,
and would even capture non-viral entities as well. Our plan was to
use read mapping against the human reference genome followed by
more targeted cleanup steps inspired by approaches such as Read
Origin Protocol [8], PathSeq [3][4], and IDseq [2]. We anticipated that

we'd be able to remove > 98% of reads, leaving us with a small set of
putatively microbial reads to deal with. We then planned to de novo
assemble these leftover reads and then classify the resulting contigs.
However, when we tried implementing this approach on a subset of
the data, we ran into several snags. First, it took a long time to
process even a few samples. Second, for the datasets that we did
process this way, very few of the leftover reads actually assembled
into contigs. This created more challenges — accurately annotating
short reads is challenging, and it was difficult to assess shared
sequence content within and between samples. In rethinking our
pipeline, we decided to use a marker gene-based approach inspired
by recent petabase-scale discovery efforts for novel RNA viruses [9].

This type of method is highly scalable while being more robust to the
magnitude of evolutionary divergence common in viruses.

Capsid-based search
We used DIAMOND BLASTx (v2.0.8) [10] to align the translated read set

(including all human reads) against a database of viral capsid amino
acid sequences that we downloaded from the Virus Orthologous
groups (VOG) database. Most viruses have some type of capsid,
making this a reliable indicator gene for the presence of a virus. We
found that a 90% ID cutoff reliably returned non-human/viral
sequences, as determined by BLASTn against the NCBI nt ( -remote ).
We tried lower cutoffs (67% and 80%), but these frequently returned
human reads. We also required that both read pairs hit a viral capsid
to reduce spurious hits. We excluded all hits related to
bacteriophage capsids, as these likely come from exogenous
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contamination. Given that we do not expect to find bacteria in the
brains of healthy, glioblastoma, or COVID-19 patients, it is unlikely
that the bacteria-infecting phages would be present either. We also
discarded a common hit to a repetitive region of a Mimivirus capsid
(VOG ID: 2487768.AYV81705.1), as well as an obvious case where an
entire NCBI BioProject was likely contaminated with human
mastadenovirus sequences (VOG ID: 10515.AP_000172.1). After
encountering this putatively contaminated BioProject (PRJNA527986),
we made a filtering rule where we required that a capsid hit be
represented at the family level in more than one BioProject to avoid
recovering potential laboratory contaminants. If we were to repeat
this, we wouldn’t implement this filtering rule since we are
concerned it could lead to the removal of legitimate hits — rather,
we’d just remove the single problematic BioProject. After filtering, we
assembled the reads that hit the capsid sequences to make mini
assemblies using MEGAHIT (v1.2.8) [11] and used BLASTn to search

these mini-assemblies as well as any unassembled reads against the
NCBI Nucleotide database to determine their origin. We then
discarded all capsid hits that had any read matches to human
sequences or cloning vectors.

Viral genome reconstruction
We took the runs that seemed to have legitimate virus signal in them
after all of our filtering and built them into an assembly graph using
BCALM (v 2.2.3) [12] to try and recover the whole viral genome. In

most cases, we were not able to recover viral contigs, despite having
an indication from our capsid-based search that there were
potentially reads of viral origin present. In a further effort to
reconstruct these genomes, we used spacegraphcats (v2.1.2) [13] to

query with the capsid reads to try and bait out viral reads located
nearby in the assembly graph. This approach failed for the samples
on which we tried it, for one of two reasons. For some samples,
there were no additional connected reads in the assembly graph
neighborhood, indicating that sequencing was too shallow to capture
the whole viral genome. For the other samples, there were many
additional connected reads. However, when we visualized the
assembly graph neighborhood with Bandage [14], and when we

BLASTed the capsid reads back to these graphs, the assembly graphs
were too tangled to be helpful in genome recovery. We therefore did
not pursue this approach further.

Read mapping
Using BLAST results of putative viral reads and mini-assemblies
against the NCBI Nucleotide database, we identified the viral
genomes most likely to be representative of the viruses in the brain
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samples (Table 2). We also pulled the genomes of the viruses from
which the initial capsid hit originated (Table 2). We then used read
mapping of the capsid-positive sequencing runs against those
genomes as another way to try and bait out all of the reads of
potential viral origin. We used Bowtie 2 (v2.5.1) [15] for nucleotide

read mapping with parameters --no-unal --very-sensitive-local . We also
tried read mapping with the protein read mapper PALADIN [16] and

DIAMOND BLASTx [10], but found that both of these methods returned

too many false positives, so we moved forward with nucleotide
mapping alone.

Serratus Explorer NT search query
We used the serratus.io web server to compare the results of the
Serratus NT search to our capsid-based search. The Serratus NT
search is a pre-computed database of the results of read mapping
the full SRA against the vertebrate viral pangenome [9], and

represents a complementary approach to the marker gene-based
search that we used. We searched the database using the SRA run as
our query and retrieved hits that had an alignment ID of > 75% and a
non-zero score. This filtering is not stringent, and likely would not be
appropriate for initial virus discovery. However, our goal here was to
compare this read mapping approach to the marker gene-based
approach. A protein-based search is inherently more evolutionarily
flexible, so we loosened the read mapping parameters accordingly.

The results
Initial hits
We searched 342 human brain sequencing datasets for viral capsids
using DIAMOND BLASTx searches of translated reads against a
capsid database from VOGDB. With a 90% ID cutoff and the
requirement that both read pairs hit a capsid protein, we found 49
capsid sequences (representing unique viral lineages) in the human
brain data. After removing phage hits and hits that were only present
in a single NCBI BioProject at the family level, we were left with eight
viral lineages. Next, we assembled the reads that hit those viruses,
BLASTing both the mini-assemblies and the unassembled reads to
discard all hits that potentially derived from human sequence or
cloning vectors.

After filtering, we were left with a total of 11 samples from three
different BioProjects that we predicted to contain virus capsid
marker genes. Based on the capsid hits, we predicted seven out of
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the 11 viruses to be polyomaviruses (alpha and delta). There were
two hits to gammapapillomavirus, one hit to mastadenovirus, and
one hit to parvovirus (Table 1). We confirmed the deltapolyomavirus
hits by BLASTing the capsid reads, but the alphapolyomavirus hits
didn't match anything, or in one case, the capsid reads matched
many different viruses (Table 1). We saw similar patterns for the
other hits — some were supported by the BLAST results and others
were not. We also queried Serratus Explorer, a precomputed
database that has results from read mapping the entire SRA against a
vertebrate viral pangenome [9]. The Serratus read mapping data

didn't find any viruses in the whole-genome sequencing (WGS) runs
that we flagged as virus-positive using our capsid-based search, but
did have more overlap with our analysis of RNA sequencing libraries
(Table 1).
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Run BioProject Experiment

Serratus

Explorer BLAST of reads Capsid marker

SRR1778915 PRJNA273155 WGS of WGA

DNA from

single nuclei

from brain

tumor patient

BT325

[17]

None Deltapolyomavirus Deltapolyomavirus

undecihominis

SRR1779200 PRJNA273155 WGS of WGA

DNA from

single nuclei

from brain

tumor patient

BT325

[17]

None Deltapolyomavirus Deltapolyomavirus

undecihominis

SRR8750801 PRJNA527986 Bulk RNA-seq,

Inferior

temporal,

Healthy adult

human ha

[18]

Poxviridae,

Adenoviridae,

Herpesviridae,

Coronaviridae,

Unknown,

Iridoviridae

Hits to several

different viruses

including SARS-CoV-2

Alphapolyomavirus

cardiodermae

SRR8750456 PRJNA527986 Bulk RNA-seq,

Substantia

nigra, Healthy

adult human

hb

[18]

Poxviridae,

Adenoviridae,

Herpesviridae,

Papillomaviridae,

Unknown

Gammapapillomavirus Gammapapillomavirus

1

SRR8750473 PRJNA527986 Bulk RNA-seq,

Supramarginal,

Healthy adult

human hc

[18]

Poxviridae,

Adenoviridae,

Herpesviridae,

Papillomaviridae,

Alloherpesviridae

Gammapapillomavirus Gammapapillomavirus

1

SRR8750734 PRJNA527986 Bulk RNA-seq,

Dorsolateral

prefrontal,

Healthy adult

human hb

[18]

Poxviridae,

Adenoviridae,

Herpesviridae,

Coronaviridae,

Unknown

None Human

mastadenovirus B

SRR14788345 PRJNA736951 WGS of bulk

brain,

Cerebellum,

Healthy adult

human 8305

[19]

None None Alphapolyomavirus

cardiodermae
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Run BioProject Experiment

Serratus

Explorer BLAST of reads Capsid marker

SRR14862871 PRJNA736951 WGS of bulk

brain, Left

temporal,

Healthy adult

human 8305

[19]

None None Alphapolyomavirus

cardiodermae

SRR14862884 PRJNA736951 WGS of bulk

brain,

Cerebellum,

Healthy adult

human 8305

[19]

None None Alphapolyomavirus

cardiodermae

SRR14999724 PRJNA736951 WGS of bulk

brain, Right

prefrontal,

Healthy adult

human 8307

[19]

None None Alphapolyomavirus

cardiodermae

SRR14862871 PRJNA736951 WGS of bulk

brain, Left

temporal,

Healthy adult

human 8305

[19]

None Parvovirus Erythroparvovirus

species

Table 1. Sequencing runs with viral hits.

For each sequencing run, we have listed the BioProject that it comes from, a
description of the experiment, analysis of that run on the Serratus Explorer database,
BLAST results of the reads/mini-assemblies searched against the nr database, and
the capsid marker gene hit from our initial search.

Attempts to recover additional viral
sequences
To recover all the viral sequences in the 11 sequencing runs (instead
of just the reads mapping to capsid), we tried assembling the full
read sets. We also used read mapping against a handful of viral
genomes (Table 2) — either top BLAST hits or some of our original
capsid hits — to bait out viral reads using an assembly-free
approach. This worked well for the two datasets (SRR1778915 and
SRR8750456) that hit a deltapolyomavirus capsid in our initial scan
(Table 1). These read sets are single-cell whole genomes from two
different glioblastoma cells from the same patient, from whom a
total of 98 glioblastoma cells were sequenced. We were able to
recover genomic information from both datasets using read
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mapping against a representative deltapolyomavirus genome (STL
polyomavirus isolate HB201). Specifically, SRR1778915 had 170 reads
that mapped to the deltapolyomavirus genome, covering 4551 bp of
the 4775 bp genome. SRR8750456 had 32 reads that mapped,
covering 1689 bp of the genome. We were also able to successfully
assemble the higher-coverage datasets (SRR1778915) into viral
genome fragmented across seven contigs.

We couldn’t recover viral contigs from the other nine datasets in
which we initially detected virus, despite using spacegraphcats [13] to

try and pull viral regions directly from the assembly graph. Our read
mapping approach didn’t help to clarify things either. For seven out
of the nine remaining samples, read mapping resulted in coverage of
less than 100 bp of the viral genomes, which we do not consider to
be legitimate. Two samples (both bulk RNA sequencing) had > 100 bp
of the query viral genomes, but were still extremely low-signal.
Specifically, SRR8750473 had four reads that mapped across 194 bp
of the human adenovirus type 7 genome. SRR8750456 had 12 reads
that mapped across 189 bp of the human papillomavirus type 4
genome, and two reads that mapped across 130 bp of the human
adenovirus type 7 genome.

In these cases, we could not validate our initial viral hits using read
mapping or assembly, but they’re also not clearly attributable to
laboratory contamination. It's possible that a virus is truly present,
but at an extremely low level, hindering our ability to accurately
identify and classify it. However, these are extremely weak signals
and it is difficult to say anything conclusive.
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Viral genome name

Viral genome

accession Inclusion criteria

Pbunalikevirus phiFenriz GCA_002597305.1 BLAST match (phage,

included to capture

background contamination

and/or spurious read

mapping)

Severe acute respiratory

syndrome coronavirus 2

GCF_009858895.2 BLAST match (Included to

capture background

contamination and/or

spurious read mapping)

STL polyomavirus,

ViralProj186434

GCF_000904055.1 Match to VOG capsid

(deltapolyoma virus)

Human papillomavirus

4, ViralProj15492

GCF_000864845.1 BLAST match

Alphapolyomavirus

cardiodermae,

ViralProj185188

GCF_000903895.1 Match to VOG capsid

(alphapolyoma virus)

Human parvovirus B19,

ViralProj14090

GCF_000839645.1 BLAST match

Human adenovirus 7,

ViralProj15114

GCF_000859485.1 BLAST match

Human papillomavirus

isolate HPV-msk_013

MH777161.1 BLAST match

Table 2. Representative viral genomes that we used for read mapping.

We defined representative viral genomes for each putative hit (Table 1), and then
used these for read mapping to try and recover additional viral sequences. We used
BLAST of capsid reads to identify the best hit reference genome (BLAST match), and
included the reference genome from which the initial capsid match originated (Match
to VOG capsid).

Intriguing polyomavirus hits
Out of all the possible viral hits that we found, we consider the
polyomavirus-related hits to be most interesting from both a
technical and a biological perspective. Polyomaviruses are small
double-stranded, non-enveloped viruses with a 5 kb genome that
infect humans, other mammals, and birds [20].

On the technical side, we unambiguously detected
deltapolyomavirus reads in the glioblastoma single-cell sequencing
dataset, and assembled one partial deltapolyomavirus genome. It is
also intriguing that we detected alphapolyomavirus capsids in
several other datasets, though we were never able to successfully
assemble out a viral sequence to work with, and most of the capsid-
encoding reads didn't have any BLAST matches.
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From a biological standpoint, polyomaviruses match several of the
criteria we set out for ourselves at the beginning of this study.
Polyomaviruses can establish asymptomatic infection in healthy
individuals [20], and at least one member of the polyomavirus family

can transit the human blood–brain barrier to infect cells in the
brain [21][22][23].

The particular deltapolyomavirus that we found is very closely
related to STL polyomavirus, which was initially discovered in fecal
samples from children [24]. Seroprevalence studies show that STL

polyomaviruses are highly prevalent in human populations [25],

causing asymptomatic (and potentially latent) infection. However, the
significance of finding deltapolyomavirus sequences in two out of 98
glioblastoma cells from a single patient is difficult to assess.

From a therapeutic delivery standpoint, we hoped to have enough
hits to hint at the molecular basis of neurotropism rather than
identifying a single virus. While that wasn't an outcome of the
current project, with further validation our results could point toward
exploring deltapolyomaviruses for delivery to brain, similar to
previous work on betapolyomaviruses [26].

While our biological findings would require much more data to
properly contextualize, we consider our technical findings to be the
most immediately useful takeaway from our study. At the outset, we
were unsure what data types would be most amenable to viral
sequence discovery. In our small study, we only analyzed a few
single-cell WGS datasets and many more bulk datasets. However, we
found the single-cell WGS datasets to be much easier to work with
computationally and ended up yielding our most promising results.
As an added bonus, the multiple displacement amplification (MDA)
whole-genome amplification step used in single-cell WGS is strongly
biased toward capture of circular ssDNA and dsDNA viral
genomes [27]. Though we will not be moving forward with this work in

the near term, we consider our most useful finding from this study to
be a much stronger understanding of how to implement a search for
viral sequences in human sequencing data.

Recommendations
Below, we share our learnings for others who want to use a similar
approach. You'll notice that our recommended approach doesn't
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include all the filtering steps that we used, but those can be added
back in at the user’s discretion depending on end goals.

Target single-cell WGS data, as those gave us the most viral
information while also being small and quick to process.

Curate the viral capsid DB to make it as big and specific as
possible.

Integrate with the Amazon S3 SRA mirror, which should reduce
sample download times, which was one of the longest steps.

BLASTx the raw reads against the capsid database. Filter the
results to reads that have > 90% identity and reads where both
pairs map to a viral capsid.

Assemble the reads and BLAST the product and any
unassembled reads against NCBI nt to check if you recovered
viral sequences. Remove all hits that have matches to the
human or to laboratory vectors.

For the BLAST results that pass this filter, pull down the viral
genome that the results matched and map the library against
this genome using Bowtie 2 with appropriate parameters. Be
sure to include some controls here (non-integrating RNA virus
for DNA samples, phage for samples with low bacterial
burden, etc.) for viruses you don’t expect to be present.
Consider including the human genome as well. Also, filter
BAMs to include mapped reads only at the write step to save
on hard drive space.

Filter to only properly mapped reads and use SAMtools stats ,
flagstat , depth , and coverage  to summarize alignments.

Filter to genome mappings that have a coverage of ~100 or
150 base pairs at a minimum. The more coverage the better,
as this increases the workable information you will have. For
the deltapolyomaviruses we found, we had coverage over
1,000 bp, which in one case corresponded to successful
genome assembly. Having this level of genomic recovery is
critical for assessing viral overlap between samples, opens up
implementation of phylogenetic approaches, and can facilitate
SNP comparison across samples.

Use depth results to see where the reads mapped against the
genome, which in cases of low coverage can help determine if
the virus is legitimately present (reads spread across the
genome) or if a small region of the genome is recruiting a lot
of reads (less legitimate).

Use SAMtools stats  results to determine the “error” rate in
mapping, which is useful for estimating variants without
having to do a proper variant-calling workflow.

Last, assemble any promising samples with substantial
genomic coverage of a virus of interest from the full read set
to recover viral contigs.
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Key takeaways
We implemented a quick, lightweight pipeline for scanning human
RNA and DNA sequencing datasets for viral sequences, using capsids
as viral marker genes. We were able to recover deltapolyomavirus
sequences from two glioblastoma cells from a single patient, though
we are unsure as to the significance of this finding. Overall, we found
that WGS single-cell sequencing datasets were the easiest to work
with for this type of viral discovery effort, suggesting this approach
may be useful for discovery of ssDNA or dsDNA viruses in other
contexts.

Next steps
Based on our hit rates, we estimated that we would need single-cell
DNA sequencing data from at least 100 cells from > 50 healthy
individuals to assess if the viral signal we saw from
deltapolyomaviruses was repeatable and present in non-
glioblastoma states. Glioblastomas are thought to arise from
astrocytes, so if we were to continue this work, we would start by
doing targeted sequencing of astrocytes from healthy donors to see
if we can detect more deltapolyomavirus genomes. To identify
unique molecular adaptations underlying viral neurotropism, we
would want an even larger sequencing cohort sampled across
multiple cell and tissue types. This would be a substantial and
expensive undertaking.

Alternatively, it may be possible the single-cell WGS data gave us
better viral coverage because the multiple displacement
amplification (MDA) step in single-cell WGS is over-amplifying the
circular deltapolyomavirus genomes, driving them to relatively high
copy number and letting us detect them. In this case, it may be
possible to enrich for circular viral DNA sequences in bulk samples
using this amplification approach, sacrificing the single-cell
resolution but gaining throughput. One could also leverage related
enrichment approaches for extrachromosomal circular DNA like
mobilome-seq [28] to push the ratio of viral to host DNA higher. At the

end of the day, we're icing this project due to strategic misalignment
and technical limitations. These types of sequencing surveys are not
efforts that Arcadia is going to invest in right now, and to our
knowledge, these types and quantities of data are not currently
available in publicly accessible databases.
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